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Abstract—This paper presents a novel use of Genetic 

Programming, Co-Evolution and Interactive Fitness to evolve 

algorithms for the game of Tic-Tac-Toe. The selected 

tree-structured algorithms are evaluated based on a fitness-less  

double-game strategy and then compete against a human player.  

This paper will outline the evolution process which leads to 

producing the best Tic-Tac-Toe playing algorithm. The evolved 

algorithms have proven effective for playing against human 

opponents.  

 
Index Terms—Co-evolution, game algorithms, genetic 

programming, interactive fitness, tic-tac-toe, tournament 

selection  

 

I. INTRODUCTION 

In this paper we deployed Genetic Programming, 

Co-Evolution, and Interactive Fitness to create a human- 

competitive algorithm for playing Tic-Tac-Toe game.  

A game of Tic-Tac-Toe, also known as “Noughts and 

crosses”, involves two players, one playing as an “X” and the 

other playing as an “O”. The game board consists of a 3x3 

grid, where a player may put their symbol into an empty 

position in the grid. Only one player's symbol may occupy 

each position. The objective of the game is for a player to 

place three of their symbols in a row, either vertically, 

horizontally, or diagonally. The game is considered a draw, if 

neither player is able to successfully get three symbols in a 

row. 

The proposed method for generating a Tic-Tac-Toe 

playing algorithm is to use Genetic Programming (GP), 

Co-Evolution and periodic Interactive Fitness. GP is one of 

many methodologies for computer simulation of evolution. It 

is inspired by biological evolution, mainly Darwin's theory of 

evolution [1], to evolve tree-structured computer programs in 

order to generate more efficient solutions and programs. 

Co-Evolution, also known as fitness-less evaluation, 

replaces the standard fitness measurement in GP by playing 
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one evolved algorithm against another. The winner of these 

games is deemed to have a better fitness value and is selected 

for further evolution. It is important to note that this is 

qualitative.  

We are proposing the use of periodic Interactive Fitness 

evaluation, by which the individuals are played against a 

human player, to guide evolution. This methodology 

provides the creation of more capable individuals through the 

generations. The evolved algorithms not only play against the 

other evolved algorithms but also are evaluated by a human 

player after each run. Therefore the best individuals are kept 

and the worse algorithms are eliminated by the human player.  

The goal of this paper is to successfully use GP, 

Co-Evolution and Interactive Fitness to develop a 

human-competitive algorithm for playing Tic-Tac-Toe and to 

evaluate the impact of Interactive Fitness evaluation in 

contrast to a simple fitness-less Co-Evolution. The success of 

this project will be measured by the algorithm's ability to play 

the Tic-Tac-Toe game against a human competitor.  

Genetic Programming is a methodology based on 

evolutionary algorithms. Stephen F. Smith was the first 

person who reported results on this methodology in 1980. 

However, John Koza, the main proponent of GP, popularized 

GP and applied it to several complex optimization and search 

problems. Additionally, he was the first to separate GP from 

Genetic Algorithms (GA) [2]. 

There are three main operators used in GP: Reproduction, 

Cross-over and Mutation. Reproduction is basically the 

replication of the same tree or individual to the next 

generation without performing any changes to it. This 

operation is mainly utilized when the fitness value of the 

individual is comparatively high. Cross-over is applied using 

two individuals (parents) and creates two children (offspring) 

by exchanging the whole sub-tree of the selected node of the 

parents, at the specified crossover points [3], [2]. Mutation 

affects an individual by replacing one of its nodes with a new 

element or sub-tree.  

Co-Evolutionary algorithms are mainly utilized in 

artificial life, machine learning, optimization and game 

learning. Daniel Hills, who Co-Evolved sorting networks, 

and Karl Sims, who used Co-Evolution to evolve virtual 

creatures, were the pioneers of Co-Evolution methods. In this 

paper, we focus on evolving a human-competitive 

game-playing algorithm for the Tic-Tac-Toe game.  

 

II. BACKGROUND 

There have been few works done to optimize the existing 

algorithms in order to generate a fast and efficient 
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Tic-Tac-Toe playing algorithm. D.B. Fogel produced 

interesting results in an earlier application of Neural 

Networks to competitive games [4]. His model was based on 

multi-layer feed-forward Neural Networks. In both [5], [6], 

they examined a look-ahead planning model based on a 

recurrent Neural Network and applied it to the game of 

Tic-Tac-Toe.  

A review of recent literature showed that little research has 

been done using Co-Evolution as the sole method to improve 

a Tic-Tac-Toe algorithm. [7] introduced a Co-Evolutionary 

system in which they utilized Shared Sampling and 

Competitive Fitness Sharing. [8] performed an interesting 

implementation using single population Co-Evolution. The 

authors of [8] have introduced Fitness-less Co-Evolution in 

order to generate Tic-Tac-Toe playing algorithm. However, 

they did not utilize Mutation operation along with 

Reproduction and Cross-over. [9] reduced the possible states 

of a Tic-Tac-Toe game to 827 states, by eliminating the seven 

similar states produced by rotating or flipping the game board. 

This idea is an inspiration to reduce the terminal set to three 

terminals (corner, center and edge), instead of nine positions 

of the playing game board. [10], [9] have utilized GA in order 

to produce Tic-Tac-Toe game playing algorithm.  

This paper aims to apply Co-Evolution and Genetic 

Programming to the game of Tic-Tac-Toe, since it is a 

competition-based game containing two players; thus, it is a 

suitable game to perform competitive Co-Evolution on. It is a 

simple game with Minimax strategy and few interesting 

works have been done on this game, starting with Michie's 

MENACE [11], through Susan Epstein's Hoyle system [12]. 

Achieving good results from applying Co-Evolution on a 

simple game of Tic-Tac-Toe is a leading way to solving the 

many existing unsolved problems. 

 

III. METHODOLOGY 

In this paper we used Genetic Programming, Co-Evolution 

and Interactive Fitness in order to evolve a human 

competitive Tic-Tac-Toe game playing algorithm.  

We selected Genetic Programming (GP) as the mechanism 

of evolution over Genetic Algorithms (GA) because of the 

ability for GP to evolve more expressive programs. Genetic 

programming is a tree-based evolutionary algorithm that 

consists of a population individuals competing against each 

other in order to improve their ability to perform an assigned 

task. The trees that represent the individual programs are 

executed in a depth first manner, where the leaf nodes are 

terminal values and the branch nodes are functions. The 

terminals and functions are selected from pools or sets 

referred to as the Terminal Set and the Function Set. Inspired 

by the implementation of [5], our terminal represent game 

board positions and the function sets are game playing 

queries and tasks. 

The Terminal Set uses constant values based on row and 

column notation to refer to each possible board position. For 

example:  {pos00, pos01, ..., pos22}. As Fig. 1 demonstrates, 

these are the positions on the game board. As mentioned 

earlier, the game board consists of nine positions in which the 

players can place their symbols. 

 

Fig. 1. Tic-tac-toe game board positions 

 

The Function Set contains the following game operations: 

AND, OR, IF, MINE, YOURS, OPEN, and PLAY-AT. 

These functions return either a position on the game board or 

the value NIL, which is introduced in [8] and discussed 

shortly. The “IF” function is the only operator in the function 

set that requires three arguments. This function will return the 

second argument, if the first argument (the condition of the 

“IF”) is non-NIL, and the third argument, otherwise. If none 

of the arguments are NIL, “AND” returns the second 

argument, otherwise it returns NIL. “OR” returns the first 

non-NIL argument. If both of the arguments are NIL, it will 

return NIL. MINE, YOURS, and OPEN return the position 

that is passed to them if it belongs to the player, the opponent 

or is empty, respectively. They return NIL otherwise. 

PLAY-AT places the symbol of the player in the position that 

is passed to it and makes the player wait for the opponent to 

play. It returns the position otherwise.  

There is a special return value NIL utilized by the 

functions in this algorithm. The NIL value is used to 

represent the absence of a value and is generated as a return 

value from a function. The NIL value is not considered a 

terminal value, because it is never used as the value of a tree 

node. 

We evolved tree-structure individuals with an initial tree 

depth size of 20. Each node has a parent link and three 

possible child links. All the child links that do not exist are 

null or empty. The non-leaf nodes are the functions from the 

function set and the leaf nodes are the 9 positions of the game 

board. We populate the child links from left to right. That is, 

for the functions with only of child (such as MINE, YOURS, 

PLAY-AT, and Open), the terminal is assigned to the left 

child. For the functions with two child links (such as OR and 

AND), the left child and middle child are assigned. Finally, 

for our only function with three child links (IF function), all 

the left child, middle child and right child are assigned from 

left to right.   

The trees are traversed in a depth-first order and the 

traverse function is a recursive function that is forced to 

return a value when meeting a PLAY-AT function.  

According to [8] one population Co-Evolution is 

computationally more feasible than a two population 

Co-Evolution, therefore, we utilized Co-Evolution with a 

single population.  

Considering the fact that there is a greater probability of 

winning for the player who has started the game, we 

employed a double-game strategy. Both players have the 

opportunity to be the first player. A player is assigned 20 

points if it wins both games and 5 if wins one game and loses 

the other. We have observed players with no PLAY-AT 

function in their algorithms; therefore, we have decided to 
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assign extra points regarding the number of PLAY-AT 

function in the tree-structure of the individual. If the 

individual has the turn and makes a move, they gain a point.  

We employed Random Sampling method to randomly 

select a group of opponent algorithms to play against the 

individuals of the population. The individual plays a 

double-game with the first individual of the group and the 

winner plays against the next individual of the sampled group. 

This group is selected in a manner that does not contain the 

individual of the population that starts playing against the 

group. Afterwards, the next individual in the population is 

selected to play against another randomly selected group of 

individuals. This procedure iterates over every individual of 

the population and the best individuals of each sampled 

group are stored in the parent pool.  

After selecting the best individuals and storing them in the 

parent pool, we apply the GP operators on the individuals. 

The likely hood that a GP operator will be applied to a given 

individual is specified as tuning parameters prior to the run.  

We utilized three standard GP operators: Crossover, 

Mutation and Reproduction. We prevented the Mutation 

operator from modifying the root node of the individuals, 

because it was observed to be excessively disruptive.  

 

 

Fig. 2. Overall architecture 

 

To evaluate the fitness of the individuals, we have 

employed a simple tournament technique in addition to 

Interactive Fitness Evaluation. The tournament selection 

technique selects a sample of individuals from the population 

and plays them against other members of the random sample, 

which then evaluates the fitness of the individuals. The 

fitness of the individual is the sum of the number of wins and 

the bonus points that was explained earlier. This method has 

been used during the double-games between the individuals 

and the randomly selected group. The winner of each 

tournament is used as a parent for the next generation of 

individuals.  

After the completion of a run (or series of generations), the 

Interactive Fitness Evaluation (IFE) phase begins, during 

which a human player plays against the evolved individuals 

and decides which N individuals provide the best game-play 

and should be used as seeds for the next run. Since N 

individuals are used as seeds for the next evolutionary run 

and we need to maintain a constant population size of P,    (P 

- N) individuals are randomly generated and added to the 

population for the next run. Since no Interactive Fitness 

occurred before the first run, the starting population of run 

number 0 is entirely composed of random individuals.  Fig. 2 

illustrates the overall architecture of our system.  

 

IV. RESULTS 

The expected result of this experiment is that a Genetic 

Programming system utilizing Co-Evolution and Interactive 

Fitness as its fitness mechanism, will successfully develop a 

human competitive Tic-Tac-Toe playing algorithm for a 3x3 

Tic-Tac-Toe board.  

The experiments consisted of a series of runs, utilizing 

different combinations of parameters and evaluation methods. 

The population size was tested from 64 to 512 individuals, 

but 128 seemed to provide the best results in the shortest 

time. 

The probability of crossover was tested from 0 to 1, in 0.1 

increments. It was observed that too little crossover hurt the 

evolutionary process, but so did too high a crossover level. 

The final value that provided the best balance was 0.8. Since 

the implementation selected an individual either for 

crossover or reproduction, the reproduction value was always 

(1 - crossover). 

Finally, a mutation rate from 0 to 1 was also tested. Too 

low of a mutation value caused the population to become 

stagnant and not evolve. However, when the mutation was 

very high, it was extremely disruptive, causing the population 

to not evolve effectively. Ultimately, a mutation rate of 0.5 

seemed to work best. 

The parameters of the final experiment were: 

 Population size = 128 

 Depth size = 20 

 Crossover probability = 0.8 

 Mutation probability = 0.5  

 Replication probability = 0.2 

 Coevolution and Interactive Fitness 

After evolving an effective Tic-Tac-Toe playing game, we 

have performed several games in order to determine whether 

the obtained algorithm is a human-competitive algorithm or 

not.  

We have performed several experiments to determine if 

the original hypothesis is valid. By evolving optimal players 

using fewer evaluations than what has been done until now, a 

great amount of success can be achieved. 

We have performed the methodology explained earlier and 

gained promising results.  

 

V. DISCUSSION AND FUTURE WORK 

By randomly selecting a group of individuals from a single 
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population, we greatly reduced the run time. Individuals of 

the population were randomly generated in the first 

generation and evolved quickly through the generations. Fig. 

3 demonstrates a case where the individuals of the population 

competed against one another and co-evolved without 

employing the Interactive Fitness evaluation. It can be 

observed that individuals have fewer wins and there are a few 

fit individuals in the population. 

As Fig. 4 demonstrates, applying Interactive Fitness 

evaluation to the fitness evaluation procedure of the 

individuals in the population, we were able to highly enhance 

the evolution process. The results demonstrate that the 

individuals have become more enhanced and are able to 

defeat more algorithms. This Fig also shows that the 

individuals have successfully co-evolved and the difference 

between the number of wins of the individuals have 

decreased. 

  

Fig. 3. Co-evolution of 512 individuals without employing interactive fitness 

evaluation 

 

The best 20 individuals of the run and 20 random 

individuals were played against a human player. This was 

observed to drastically improve the playability of the 

individuals. However, it was surprising that the fitness values 

of the population did not appear to be drastically different. It 

would appear that by guiding the evolution using Interactive 

Fitness, the over fitness was not affected as much as the 

playability of the individuals.  This is significant, because 

while it is possible to create highly fit individuals, the metric 

of playability can only be ascertained by a human competitor. 

Another significant and unexpected result of the 

experiments was the evolution of the location and use of the 

play-at function. Without Interactive Fitness the individuals 

of the population were observed to commonly evolve 

multiple play-at nodes. This was the expected evolutionary 

path, since more play-at nodes would ensure different 

strategies and higher fitness. However, when Interactive 

Fitness was introduced, it was observed over multiple 

experiments and runs that the trees would quickly evolve to a 

structure with only a single play-at node, which was always 

in the root of the tree. This seems to work more like a human 

opponent would plan and execute a strategy. 

In the future, we are planning to perform a comparison 

between different sampling and fitness evaluation 

methodologies discussed in [9] in order to achieve a more 

enhanced game playing algorithm. 

 

Fig. 4. Co-evolution of 128 individuals after employing interactive fitness 

evaluation 

 

As mentioned before, Hochmuth has explained the fact 

that there are seven similar playing states, which can be 

mapped into only one game state by rotating or flipping the 

game plane. This would be an inspiration for a novel solution 

to reduce the number of the similar states by changing our 

proposed terminal set. By changing “pos00, pos02, pos20 

and pos22” to “corner”, “pos01, pos10, pos12 and pos21” to 

“edge”, and “pos11” to “center”, our terminal set would 

contains only three elements and we are able to eliminate 

these seven identical permutations for each game state hence 

reduce massive replicated game states. 

 

VI. CONCLUSIONS 

This paper was a demonstration of a novel way of using 

Co-Evolution and Genetic Programming in order to evolve a 

human-competitive Tic-Tac-Toe playing algorithm. We have 

performed Random Sampling to select a number of 

individuals to play as the opponents of the individual that was 

to be evaluated. As mentioned earlier, Co-Evolution is 

fitness-less evolution of individuals which are being 

improved by competing against one another. In order to 

evaluate the fitness of the individuals, we have performed 

Simple Tournament method which is based on the number of 

wins an individual can achieve through playing against the 

randomly selected group.  

Furthermore, we have used Interactive Fitness evaluation 

by which we were able to enhance the obtained individuals in 

order to achieve a human-competitive algorithm. 
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