

Abstract—This paper presents a novel use of Genetic

Programming, Co-Evolution and Interactive Fitness to evolve

algorithms for the game of Tic-Tac-Toe. The selected

tree-structured algorithms are evaluated based on a fitness-less

double-game strategy and then compete against a human player.

This paper will outline the evolution process which leads to

producing the best Tic-Tac-Toe playing algorithm. The evolved

algorithms have proven effective for playing against human

opponents.

Index Terms—Co-evolution, game algorithms, genetic

programming, interactive fitness, tic-tac-toe, tournament

selection

I. INTRODUCTION

In this paper we deployed Genetic Programming,

Co-Evolution, and Interactive Fitness to create a human-

competitive algorithm for playing Tic-Tac-Toe game.

A game of Tic-Tac-Toe, also known as “Noughts and

crosses”, involves two players, one playing as an “X” and the

other playing as an “O”. The game board consists of a 3x3

grid, where a player may put their symbol into an empty

position in the grid. Only one player's symbol may occupy

each position. The objective of the game is for a player to

place three of their symbols in a row, either vertically,

horizontally, or diagonally. The game is considered a draw, if

neither player is able to successfully get three symbols in a

row.

The proposed method for generating a Tic-Tac-Toe

playing algorithm is to use Genetic Programming (GP),

Co-Evolution and periodic Interactive Fitness. GP is one of

many methodologies for computer simulation of evolution. It

is inspired by biological evolution, mainly Darwin's theory of

evolution [1], to evolve tree-structured computer programs in

order to generate more efficient solutions and programs.

Co-Evolution, also known as fitness-less evaluation,

replaces the standard fitness measurement in GP by playing

Manuscript received January 5, 2013; revised March 8, 2013. This work

was supported in part by the Ryerson University (RGS) and Government of

Ontario (OGS).

H. Mohammadi is with the Electrical and Computer Engineering

Department, University of Toronto, Ontario, Canada (e-mail:

helia.mohammadi@utoronto.ca).

Nigel P. A. Browne was with the Computer Science Dept., Ryerson

University, Toronto, Ontario, Canada (e-mail: nbrowne@acm.org).

Anastasios N. Venetsanopoulos is with the Department of Electrical and

Computer Engineering, University of Toronto and also Department of

Electrical Engineering, Ryerson University, Toronto, Ontario, Canada

(e-mail: anv@comm.utoronto.ca).

Marcus V. dos Santos is with the Computer Science Dept., Ryerson

University, Toronto, Ontario, Canada (e-mail: m3santos@ryerson.ca).

one evolved algorithm against another. The winner of these

games is deemed to have a better fitness value and is selected

for further evolution. It is important to note that this is

qualitative.

We are proposing the use of periodic Interactive Fitness

evaluation, by which the individuals are played against a

human player, to guide evolution. This methodology

provides the creation of more capable individuals through the

generations. The evolved algorithms not only play against the

other evolved algorithms but also are evaluated by a human

player after each run. Therefore the best individuals are kept

and the worse algorithms are eliminated by the human player.

The goal of this paper is to successfully use GP,

Co-Evolution and Interactive Fitness to develop a

human-competitive algorithm for playing Tic-Tac-Toe and to

evaluate the impact of Interactive Fitness evaluation in

contrast to a simple fitness-less Co-Evolution. The success of

this project will be measured by the algorithm's ability to play

the Tic-Tac-Toe game against a human competitor.

Genetic Programming is a methodology based on

evolutionary algorithms. Stephen F. Smith was the first

person who reported results on this methodology in 1980.

However, John Koza, the main proponent of GP, popularized

GP and applied it to several complex optimization and search

problems. Additionally, he was the first to separate GP from

Genetic Algorithms (GA) [2].

There are three main operators used in GP: Reproduction,

Cross-over and Mutation. Reproduction is basically the

replication of the same tree or individual to the next

generation without performing any changes to it. This

operation is mainly utilized when the fitness value of the

individual is comparatively high. Cross-over is applied using

two individuals (parents) and creates two children (offspring)

by exchanging the whole sub-tree of the selected node of the

parents, at the specified crossover points [3], [2]. Mutation

affects an individual by replacing one of its nodes with a new

element or sub-tree.

Co-Evolutionary algorithms are mainly utilized in

artificial life, machine learning, optimization and game

learning. Daniel Hills, who Co-Evolved sorting networks,

and Karl Sims, who used Co-Evolution to evolve virtual

creatures, were the pioneers of Co-Evolution methods. In this

paper, we focus on evolving a human-competitive

game-playing algorithm for the Tic-Tac-Toe game.

II. BACKGROUND

There have been few works done to optimize the existing

algorithms in order to generate a fast and efficient

Helia Mohammadi, Nigel P. A. Browne, Anastasios N. Venetsanopoulos, and Marcus V. dos Santos

Evolving Tic-Tac-Toe Playing Algorithms Using

Co-Evolution, Interactive Fitness and Genetic

Programming

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

797DOI: 10.7763/IJCTE.2013.V5.799

Tic-Tac-Toe playing algorithm. D.B. Fogel produced

interesting results in an earlier application of Neural

Networks to competitive games [4]. His model was based on

multi-layer feed-forward Neural Networks. In both [5], [6],

they examined a look-ahead planning model based on a

recurrent Neural Network and applied it to the game of

Tic-Tac-Toe.

A review of recent literature showed that little research has

been done using Co-Evolution as the sole method to improve

a Tic-Tac-Toe algorithm. [7] introduced a Co-Evolutionary

system in which they utilized Shared Sampling and

Competitive Fitness Sharing. [8] performed an interesting

implementation using single population Co-Evolution. The

authors of [8] have introduced Fitness-less Co-Evolution in

order to generate Tic-Tac-Toe playing algorithm. However,

they did not utilize Mutation operation along with

Reproduction and Cross-over. [9] reduced the possible states

of a Tic-Tac-Toe game to 827 states, by eliminating the seven

similar states produced by rotating or flipping the game board.

This idea is an inspiration to reduce the terminal set to three

terminals (corner, center and edge), instead of nine positions

of the playing game board. [10], [9] have utilized GA in order

to produce Tic-Tac-Toe game playing algorithm.

This paper aims to apply Co-Evolution and Genetic

Programming to the game of Tic-Tac-Toe, since it is a

competition-based game containing two players; thus, it is a

suitable game to perform competitive Co-Evolution on. It is a

simple game with Minimax strategy and few interesting

works have been done on this game, starting with Michie's

MENACE [11], through Susan Epstein's Hoyle system [12].

Achieving good results from applying Co-Evolution on a

simple game of Tic-Tac-Toe is a leading way to solving the

many existing unsolved problems.

III. METHODOLOGY

In this paper we used Genetic Programming, Co-Evolution

and Interactive Fitness in order to evolve a human

competitive Tic-Tac-Toe game playing algorithm.

We selected Genetic Programming (GP) as the mechanism

of evolution over Genetic Algorithms (GA) because of the

ability for GP to evolve more expressive programs. Genetic

programming is a tree-based evolutionary algorithm that

consists of a population individuals competing against each

other in order to improve their ability to perform an assigned

task. The trees that represent the individual programs are

executed in a depth first manner, where the leaf nodes are

terminal values and the branch nodes are functions. The

terminals and functions are selected from pools or sets

referred to as the Terminal Set and the Function Set. Inspired

by the implementation of [5], our terminal represent game

board positions and the function sets are game playing

queries and tasks.

The Terminal Set uses constant values based on row and

column notation to refer to each possible board position. For

example: {pos00, pos01, ..., pos22}. As Fig. 1 demonstrates,

these are the positions on the game board. As mentioned

earlier, the game board consists of nine positions in which the

players can place their symbols.

Fig. 1. Tic-tac-toe game board positions

The Function Set contains the following game operations:

AND, OR, IF, MINE, YOURS, OPEN, and PLAY-AT.

These functions return either a position on the game board or

the value NIL, which is introduced in [8] and discussed

shortly. The “IF” function is the only operator in the function

set that requires three arguments. This function will return the

second argument, if the first argument (the condition of the

“IF”) is non-NIL, and the third argument, otherwise. If none

of the arguments are NIL, “AND” returns the second

argument, otherwise it returns NIL. “OR” returns the first

non-NIL argument. If both of the arguments are NIL, it will

return NIL. MINE, YOURS, and OPEN return the position

that is passed to them if it belongs to the player, the opponent

or is empty, respectively. They return NIL otherwise.

PLAY-AT places the symbol of the player in the position that

is passed to it and makes the player wait for the opponent to

play. It returns the position otherwise.

There is a special return value NIL utilized by the

functions in this algorithm. The NIL value is used to

represent the absence of a value and is generated as a return

value from a function. The NIL value is not considered a

terminal value, because it is never used as the value of a tree

node.

We evolved tree-structure individuals with an initial tree

depth size of 20. Each node has a parent link and three

possible child links. All the child links that do not exist are

null or empty. The non-leaf nodes are the functions from the

function set and the leaf nodes are the 9 positions of the game

board. We populate the child links from left to right. That is,

for the functions with only of child (such as MINE, YOURS,

PLAY-AT, and Open), the terminal is assigned to the left

child. For the functions with two child links (such as OR and

AND), the left child and middle child are assigned. Finally,

for our only function with three child links (IF function), all

the left child, middle child and right child are assigned from

left to right.

The trees are traversed in a depth-first order and the

traverse function is a recursive function that is forced to

return a value when meeting a PLAY-AT function.

According to [8] one population Co-Evolution is

computationally more feasible than a two population

Co-Evolution, therefore, we utilized Co-Evolution with a

single population.

Considering the fact that there is a greater probability of

winning for the player who has started the game, we

employed a double-game strategy. Both players have the

opportunity to be the first player. A player is assigned 20

points if it wins both games and 5 if wins one game and loses

the other. We have observed players with no PLAY-AT

function in their algorithms; therefore, we have decided to

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

798

assign extra points regarding the number of PLAY-AT

function in the tree-structure of the individual. If the

individual has the turn and makes a move, they gain a point.

We employed Random Sampling method to randomly

select a group of opponent algorithms to play against the

individuals of the population. The individual plays a

double-game with the first individual of the group and the

winner plays against the next individual of the sampled group.

This group is selected in a manner that does not contain the

individual of the population that starts playing against the

group. Afterwards, the next individual in the population is

selected to play against another randomly selected group of

individuals. This procedure iterates over every individual of

the population and the best individuals of each sampled

group are stored in the parent pool.

After selecting the best individuals and storing them in the

parent pool, we apply the GP operators on the individuals.

The likely hood that a GP operator will be applied to a given

individual is specified as tuning parameters prior to the run.

We utilized three standard GP operators: Crossover,

Mutation and Reproduction. We prevented the Mutation

operator from modifying the root node of the individuals,

because it was observed to be excessively disruptive.

Fig. 2. Overall architecture

To evaluate the fitness of the individuals, we have

employed a simple tournament technique in addition to

Interactive Fitness Evaluation. The tournament selection

technique selects a sample of individuals from the population

and plays them against other members of the random sample,

which then evaluates the fitness of the individuals. The

fitness of the individual is the sum of the number of wins and

the bonus points that was explained earlier. This method has

been used during the double-games between the individuals

and the randomly selected group. The winner of each

tournament is used as a parent for the next generation of

individuals.

After the completion of a run (or series of generations), the

Interactive Fitness Evaluation (IFE) phase begins, during

which a human player plays against the evolved individuals

and decides which N individuals provide the best game-play

and should be used as seeds for the next run. Since N

individuals are used as seeds for the next evolutionary run

and we need to maintain a constant population size of P, (P

- N) individuals are randomly generated and added to the

population for the next run. Since no Interactive Fitness

occurred before the first run, the starting population of run

number 0 is entirely composed of random individuals. Fig. 2

illustrates the overall architecture of our system.

IV. RESULTS

The expected result of this experiment is that a Genetic

Programming system utilizing Co-Evolution and Interactive

Fitness as its fitness mechanism, will successfully develop a

human competitive Tic-Tac-Toe playing algorithm for a 3x3

Tic-Tac-Toe board.

The experiments consisted of a series of runs, utilizing

different combinations of parameters and evaluation methods.

The population size was tested from 64 to 512 individuals,

but 128 seemed to provide the best results in the shortest

time.

The probability of crossover was tested from 0 to 1, in 0.1

increments. It was observed that too little crossover hurt the

evolutionary process, but so did too high a crossover level.

The final value that provided the best balance was 0.8. Since

the implementation selected an individual either for

crossover or reproduction, the reproduction value was always

(1 - crossover).

Finally, a mutation rate from 0 to 1 was also tested. Too

low of a mutation value caused the population to become

stagnant and not evolve. However, when the mutation was

very high, it was extremely disruptive, causing the population

to not evolve effectively. Ultimately, a mutation rate of 0.5

seemed to work best.

The parameters of the final experiment were:

 Population size = 128

 Depth size = 20

 Crossover probability = 0.8

 Mutation probability = 0.5

 Replication probability = 0.2

 Coevolution and Interactive Fitness

After evolving an effective Tic-Tac-Toe playing game, we

have performed several games in order to determine whether

the obtained algorithm is a human-competitive algorithm or

not.

We have performed several experiments to determine if

the original hypothesis is valid. By evolving optimal players

using fewer evaluations than what has been done until now, a

great amount of success can be achieved.

We have performed the methodology explained earlier and

gained promising results.

V. DISCUSSION AND FUTURE WORK

By randomly selecting a group of individuals from a single

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

799

population, we greatly reduced the run time. Individuals of

the population were randomly generated in the first

generation and evolved quickly through the generations. Fig.

3 demonstrates a case where the individuals of the population

competed against one another and co-evolved without

employing the Interactive Fitness evaluation. It can be

observed that individuals have fewer wins and there are a few

fit individuals in the population.

As Fig. 4 demonstrates, applying Interactive Fitness

evaluation to the fitness evaluation procedure of the

individuals in the population, we were able to highly enhance

the evolution process. The results demonstrate that the

individuals have become more enhanced and are able to

defeat more algorithms. This Fig also shows that the

individuals have successfully co-evolved and the difference

between the number of wins of the individuals have

decreased.

Fig. 3. Co-evolution of 512 individuals without employing interactive fitness

evaluation

The best 20 individuals of the run and 20 random

individuals were played against a human player. This was

observed to drastically improve the playability of the

individuals. However, it was surprising that the fitness values

of the population did not appear to be drastically different. It

would appear that by guiding the evolution using Interactive

Fitness, the over fitness was not affected as much as the

playability of the individuals. This is significant, because

while it is possible to create highly fit individuals, the metric

of playability can only be ascertained by a human competitor.

Another significant and unexpected result of the

experiments was the evolution of the location and use of the

play-at function. Without Interactive Fitness the individuals

of the population were observed to commonly evolve

multiple play-at nodes. This was the expected evolutionary

path, since more play-at nodes would ensure different

strategies and higher fitness. However, when Interactive

Fitness was introduced, it was observed over multiple

experiments and runs that the trees would quickly evolve to a

structure with only a single play-at node, which was always

in the root of the tree. This seems to work more like a human

opponent would plan and execute a strategy.

In the future, we are planning to perform a comparison

between different sampling and fitness evaluation

methodologies discussed in [9] in order to achieve a more

enhanced game playing algorithm.

Fig. 4. Co-evolution of 128 individuals after employing interactive fitness

evaluation

As mentioned before, Hochmuth has explained the fact

that there are seven similar playing states, which can be

mapped into only one game state by rotating or flipping the

game plane. This would be an inspiration for a novel solution

to reduce the number of the similar states by changing our

proposed terminal set. By changing “pos00, pos02, pos20

and pos22” to “corner”, “pos01, pos10, pos12 and pos21” to

“edge”, and “pos11” to “center”, our terminal set would

contains only three elements and we are able to eliminate

these seven identical permutations for each game state hence

reduce massive replicated game states.

VI. CONCLUSIONS

This paper was a demonstration of a novel way of using

Co-Evolution and Genetic Programming in order to evolve a

human-competitive Tic-Tac-Toe playing algorithm. We have

performed Random Sampling to select a number of

individuals to play as the opponents of the individual that was

to be evaluated. As mentioned earlier, Co-Evolution is

fitness-less evolution of individuals which are being

improved by competing against one another. In order to

evaluate the fitness of the individuals, we have performed

Simple Tournament method which is based on the number of

wins an individual can achieve through playing against the

randomly selected group.

Furthermore, we have used Interactive Fitness evaluation

by which we were able to enhance the obtained individuals in

order to achieve a human-competitive algorithm.

REFERENCES

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

800

[1] C. Darwin, On the origin of species by means of natural selection, or

the preservation of favoured races in the struggle for life, London:

John Murray, 1859.

[2] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection, Cambridge, Mass.: The MIT Press,

1992.

[3] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin, Genetic

Programming, an Introduction, San Francisco, CA: Morgan Kaufmann

Publishing., 1998.

[4] D. Fogel, “Using evolutionary programming to create neural network

that are capable of playing tic-tac-toe,” in Proceedings of ICNN93, pp.

875-880, 1993.

[5] P. Angeline and J. Pollack, “Competitive environments evolve better

solutions for complex tasks,” in Proceedings of the Fifth International

Conference on Genetic Algorithms, pp. 264-270, 1993.

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

801

[6] Y. Sato and T. Furuya, “Coevolution in recurrent neural networks using

genetic algorithms,” Syst Comput Jpn, vol. 27, no. 5, pp. 64-73, 1996.

[7] C. Rosin and R. Belew, “Methods for competitive co-evolution:

Finding opponents worth beating,” in Proceedings of the Sixth

International Conference on Genetic Algorithms, pp. 373-380, 1995.

[8] W. Ja śkowski, B. Wieloch, and K. Krawiec, “Fitnessless

coevolution,” GECCO ’08: Proceedings of the 10th annual conference

on Genetic and evolutionary computation, 2008.

[9] G. Hochmuth, “On the genetic evolution of a perfect tic-tac-toe

strategy,” Genetic Algorithms and Genetic Programming at Stanford,

pp. 75-82, 2003.

[10] A. Bhatt, P. Varshney, and K. Deb, “In search of no-loss strategies for

the game of tic-tac-toe using a customized genetic algorithm,” in Proc.

10th Annual Genetic and Evolutionary Computation Conference,

GECCO 2008, pp. 889-896, Atlanta, GA, 2008.

[11] D. Michie, “Trial and error,” Science Survey, Part 2, pp. 129-145, 1961.

[12] S. L. Epstein, “Learning plans for competitive domains,” in

Proceedings of the Seventh International Conference on Machine

Learning, pp. 190-197, 1990.

Helia Mohammadi is a Ph.D. student of the Edward S.

Rogers Department of Electrical and Computer

Engineering at the University of Toronto. She received

her M.Sc. degree from Ryerson University, department

of Computer Science in 2010. She has two Bachelor's

of Science degrees, one in the field of Computer

Engineering and the other in the field of Business

Management. She has received a number of

scholarships and awards, including: Natural Sciences

& Engineering Research Council of Canada (NSERC), Ontario Graduate

Scholarship (OGS), Ryerson Graduate Scholarship (RGS), Edward S.

Rogers Sr. Graduate Scholarship, and Graduate Teaching Assistant Award of

Excellence. Additionally her Master's thesis (a Precarn funded project) was

nominated for the Governor General’s Gold medal from the department of

Computer Science at Ryerson University and was awarded the

"Best Graduate Thesis Award in Recognition of Excellence in Research and

Nomination for Governor General's Gold Medal".

Nigel Browne is currently a senior

programmer/analyst with the Woodbridge Group

based in Mississauga, Canada, but with work

experience throughout Mexico, the USA and Canada.

He received his Master of Science in computer science

from Ryerson University in 2009 and his Bachelor of

Science in computer science from Ryerson University

in 2005. His thesis “Adaptive Representations for Improving Evolvability,

Parameter Control, and Parallelization of Gene Expression Programming",

was published in Applied Computational Intelligence and Soft Computing,

Volume 2010 (Hindawi). Mr. Browne is a member of the Association for

Computing Machinery and was a receipient of Ryerson Graduate

Scholarship.

Anastasios N. Venetsanopoulos is a professor of

electrical and computer engineering at Ryerson

University, founding VP-Research and Innovation at

Ryerson University (2006-2010), Professor Emeritus

of the Edward S. Rogers Department of Electrical and

Computer Engineering at the University of Toronto,

and the 12th dean of the Faculty of Applied Science and

Engineering at the University of Toronto (2001-2006).

He has published over 800 papers on digital signal and

image processing and digital communications and has served as Chair on

numerous boards, councils and technical conference committees including

IEEE committees. In 1994 Dr. Venetsanopoulos was awarded an Honorary

Doctorate from the National University of Technology in Athens, Greece. In

1996, he was awarded the “Excellence in Innovation” Award from the

Information Technology Research Centre of Ontario and the Royal Bank of

Canada for his work in image processing. Venetsanopoulos was also

awarded the “Millennium Medal of IEEE”, and the MacNaughton Medal”.

In March 2006, he was a joint recipient of the IEEE Transactions on Neural

networks Outstanding Paper Award. He is a Fellow of the Engineering

Institute of Canada, the IEEE and the Canadian Academy of Engineering. In

2008, A. N. Venetsanopoulos was awarded the “Most Cited Paper Award”

by the Journal of Visual Communication and Image Representation for their

work in artificial neural networks. In 2010, Dr. Venetsanopoulos was elected

as Fellow of the Royal Society of Canada.

Marcus Dos Santos is currently an associate

professor, undergraduate program director of the

department of computer science, Ryerson University,

Canada, where he supervises research students both at

the undergraduate and graduate level. Marcus was

born and raised in Minas Gerais, Brazil. He studied at

the Federal University of Uberlândia, where he

received Bachelor’s and Master’s degrees on computer

engineering, and at the University of São Paulo, where

he received a Ph.D. in Computer Engineering. His research interests reside in

advancing the understanding and application of evolutionary computing

systems. In 2007, he was a visiting professor in the Department of Electrical

Engineering at Chung-Ang University, Seoul, Korea.

