

Abstract—The article describes the implementation of the

new synchronization method for parallel discrete event

simulation and presents the experimental results obtained from

parallel environment. In the proposed method the time steps are

introduced and the synchronization occurs only at the end of a

time step to achieve reduction of messages, exchanged between

local processes of simulation. The method was implemented in

C++, using the MPI library. The studies have shown that it is

possible, under certain conditions and using appropriate

hardware architecture, the significant acceleration of

distributed simulations.

Index Terms—Distributed simulations, wireless network

simulation, synchronization.

I. INTRODUCTION

With increasing complexity of simulation models and

scenarios, the demands on computational resources also

significantly increase. This problem is particularly important

for the simulation of wireless networks, due to the

complexity of the physical layer, shared medium and

especially interferences.

The efficient and scalable simulations assume simplified

models especially of the PHY layer and/or using the parallel

simulations [1]. Parallel discrete event simulations (DES) use

several processors, cores or hosts to achieve a considerable

speedup. The simulation’s scenario is divided in a number of

logical processes of simulation (LPs), each of them having its

own clock (LVT, local virtual time) and executing a part of

the scenario. The LPs must be synchronized to ensure

consecutive processing of events in accordance with time

stamps and avoid the causuality errors (where an incoming

event’s timestamp is less than LVT of the given LP) [2].

There are two main concepts to handle event

synchronization: conservative algorithms and optimistic ones.

In the conservative algorithms, by avoiding violating the

local causality constraint, a causality errors never happen.

The basic and most popular conservative synchronization

method is the Chandy/Misra/Bryant [3] algorithm, where LPs

exchange control messages called null messages, containing

lower timestamp bound of given LP’s future messages.

In optimistic approach the causality errors may occur, but

they are recovered using a rollback mechanism, which

restores the correct state of LP. As withdrawal action taken

Manuscript received 05 December 2012; revised January 30, 2013.

Sławomir Nowak and Mateusz Nowak are with the Institute of

Theoretical and Applied Informatics of PAS, 44-100 Gliwice, ul. Bałtycka 5,

Poland (e-mail: emanuel@iitis.pl, mateusz@iitis.pl).

Agnieszka Debudaj-Grabysz is with the Silesian University of

Technology, Institute of Informatics (e-mail:

Agnieszka.Debudaj-Grabysz@polsl.pl).

by given LP, also events sent in roll backed period must be

cancelled. This leads to rollback on another LPs. The

drawback is the necessity of storing last objects states.

Rollback operation is usually time-costly, and links with high

memory overhead. The representative optimistic

synchronization algorithm is the Time Warp [4].

In [5] a new method of synchronization was proposed to

improve performance of parallel simulation of wireless

communication, with potential maintaining the accuracy of

detailed model of the PHY/L2 layers. The method in general

represents an optimistic synchronization with time windows

(e.g. [6], [7]), and was adapted (by introducing simulation

time steps) to specific of wireless communication with

contention based media access, as in 802.11 based wireless

networks

The parallel simulator presented in the paper combines

benefits of conservative and optimistic synchronization

methods, and thanks to a number of improvements a

significant reduction in the number synchronization of

messages was achieved.

In the following sections the context of the parallel

simulation of wireless networks is presented, then the short

description of the methods, the implementation, the results of

experiments in distributed environment. At the end of the

article we summarize and present the conclusion.

II. PARALLEL SIMULATION OF WIRELESS NETWORKS

The maintaining of physical layer accuracy in distributed

simulations of wireless networks is a difficult issue, mostly

because of the shared type of the medium and the resulting

intensity of communication between objects.

To model the complexity of the wireless physical layer it is

required, among others, to represent each data frame by at

least two events: the beginning (FRAME_START) and end

of the transmission (FRAME_END), separately for each

simulation object using a shared medium. Additional events

are used to model the changing conditions of the medium

during transmission (e.g. change of signal power).

When receiving a FRAME_END event, the interference

for that frame is evaluated, to determine which signals

interfere with the transmission of the frame. The correct

frames can be passed to upper layers. This set of interfering

signals can be large for large scale simulations [1].

Some of the simulation tools support parallel simulation

(e.g., PDNS – distributed version of NS-2 [8], GTNetS [9] or

OMNeT++ [10]) in the case of complex simulation models

(e.g. INET for TCP/IP and some models of wireless network

simulations) but using parallelization to evaluate complex

scenario is not possible or is very difficult. Also dedicated

Evaluations of the New Synchronization Method for the

Parallel Simulations of Wireless Networks

Sławomir Nowak, Agnieszka Debudaj-Grabysz, and Mateusz Nowak

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

698DOI: 10.7763/IJCTE.2013.V5.778

simulation tools are available, for parallel simulation of

wireless and mobile networks, e.g. MoVeS [11], GloMoSim

[12], and related works in [13]-[15].

The presented method allows to increase the simulation

performance (and lower the memory usage per single node)

by using multi-core and multi-node servers. In the presented

study a simplified model of 802.11 was used, but the increase

in the complexity of the model is planned as future work.

III. TIME STEPPED SYNCHRONIZATION METHOD

In the distributed simulation the scenario is partitioned into

a number of LP (logical processes). Each LP handles events,

arranged by increasing timestamps, and cooperate with the

others in accordance using specified synchronization

method.

In the proposed method the time steps are introduced and

the synchronization occurs only at the end of a time step.

During the time step each LP operates as an independent,

sequential DES. Events created and directed to local

simulations objects are stored in local future events set

(L-FES), and LP processes events with timestamps limited to

boundaries of the current time step. The advantage of this

approach is the full simulation performance by each LP

during a given time step (it corresponds with the optimistic

synchronization).

Events directed to simulation’s objects, managed by other

LPs, are stored in structure called external future events set

(E-FES) and exchanged during the synchronization phase.

External events received by the LP are inserted into the

L-FES at the end of the synchronization phase.

Each frame transmission is simulated by two events,

related to start of transmission (FRAME_START event) and

end of transmission (FRAME_END). The obvious

consequence of delayed exchange of external events is the

number of causality errors (depends on the length of time step)

and the possibility of starting the transmission of the frame,

which should not be started due to busy channel.

As external events are delayed, the LP sending such

erroneous frame discovers the fact that the channel is busy

just at the beginning of next time step (after receiving delayed

FRAME_START event). Therefore the FRAME_CANCEL

is introduced, to handle such a situation.

The optimistic synchronization assumes rollback

operations and so called anti-messages (to cancel particular

events) to restore correct state of objects and re-simulation of

cancelled time-period. Compared to the optimistic

synchronization the proposed synchronization method does

not require anti-messages, but only single

FRAME_CANCEL event. Cancelling frame event does not

imply subsequent withdrawal of next events, neither locally

nor in other LPs.

For the method to work properly it is necessary to impose

additional boundaries on time, in which causality errors can

occur and implement appropriate causality error handling at

the level of simulation objects. It is possible to restore the

synchronization with the single FRAME_CANCEL event

when the time step is limited to:

)min(
2

1
max __ STARTFRAMEENDFRAMEk ttT

where Tk is the length of time step k, and tFRAME_START and

tFRAME_END means the timestamps of events related to

respectively beginning and end of a frame transmission. In

other words, the length of a single time step must be less than

half the time of minimum frame transmission time in a given

scenario.

O1

O2

O3

Frame1

Frame2

(A)

Frame 1

Frame1

Frame2

Frame2

Frame2

Frame1

(B)

Frame1

Frame1

Frame2 cancelled

Frame2 cancelled

Frame2 cancelled Frame1

(C)

LP
1

LP2

LP3

Frame1 START/END Frame2 START/END Frame2 CANCEL
 Causuality error detection

Fig. 1. The causality error in the synchronization method with the time step

(A, -B, C: subsequent time steps). (A) Object 1 (O1) detects free channel and

send Frame1. O2 detects free channel, and sent Frame2, (B) Obj2 has

detected the causality error, cause channel was not free for Frame2

transmission FRAME_CANCEL of Frame2 is sent. O3 has detected both (1

and 2) frames, (C) O1 and O3 have received event FRAME_CANCEL

before the FRAME_END of Frame2 will occur and restore the correct state

of objects [5].

Adoption of the length of time step consistent with (1)

ensures that the transmission of the frame, started in time step

k will be delivered to the destination objects in step k +2 (or

later). Therefore, the causality error may occur in the specific

situation (Fig.1): The object O2 located in LP2 in time step k

at time t2 checks the status of the wireless medium, and states

that it can start sending a frame, so it sends

a FRAME_START event. On the next time step k+1, the O2

object is receiving a delayed FRAME_START event from

simulation object O1, located in the LP1. The timestamp of the

event t1 < t2. This would allow the object to withdraw the

state associated with the errorneus frame without generating

further events.

This solution involves the need to remember the state of

the object (within the time of one time step). The objects must

be able to withdraw its state before receiving

a FRAME_START event (with restoration of counters,

timers, collisions indicators etc.). This is clearly an

implementation overhead, and is associated with the

implementation of object-level simulation and may be

supported only slightly by a kernel of simulator.

IV. IMPLEMENTATION

The method described above has been previously tested in

terms of accuracy using the pseudo-parallel implementation

[5]. In this paper fully parallel implementation is described as

well as the obtained results.

Our algorithm was implemented in C++, using an

MPICH2 library for message-passing communication

scheme (MPI, Message Passing Interface) and gcc as the

compiler. MPI is used to exchange the E-FES content (which

is the STL array) between processes [16].

Exchanging data comprises two stages: the first - where

the information about the number of items sent by each LP is

transmitted; the second - where the content of E-FES is

distributed. It should be stressed that the amount of data to be

sent during the second stage need not be equal at each LPs.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

699

The MPI functions: MPI_Allgather and MPI_Allgatherv

turned out to be the best tools for the first and the second

stage, respectively. Both of them are efficiently implemented

functions of collective communication.

The most important due to the memory usage and

computational of simulations are structures responsible for

the interference analysis.

The main structure is the STL map, which stores

information about the currently transmitted frames. Each of

the transmitted frame structure, in turn, stores information

about frames, which interfere with the frame. These

structures are required to transfer at the end of the frame to

analyze whether the frame was seen as correct and can be

forwarded to the upper layers.

Each L2 object a set of frames maintain own Instance of

such data structures. For this reason in case of more objects

and the broadcast nature of the wireless transmission the

overhead associated with operation with threes structures is

significant. Distribution of these operations is also a major

source of efficiency for distributed simulations.

In addition to above, the mechanism of so called

connectors objects was also implemented. The connector

corresponds to the available transmission channel and

intermediates between local and external objects in the

transmission of frames for given LP. Simulation objects send

frames events directly to the appropriate connector, which

performs the following:

1) Frame addressed to local objects is multiplied and

inserted into L-FES as FRAME_START and

FRAME_END events.

2) Frame addressed to external objects are stored in E-FES

in the form of single bulk event, and broadcasted to

others LPs during synchronization phase.

3) Bulk event that arrived from external object is sent

locally in the same way as in case a).

In our implementation it is assumed that the exchange of

messages between LPs in the synchronization phase occurs

only between connectors’ objects. Exchanging events

between individual objects significantly slows down the

process of synchronization and the performance of

simulation.

In the current implementation, one connector object is

assigned to each LP. It is also possible to define multiple

connectors, corresponding to a number of communication

channels, which will useful to examine more complex

protocols (eg, MIMO, planned as future works).

The simplified model of communication in a wireless

network was adopted (described in details in [17]), since the

primary objective of the study was to evaluate the methods

for synchronization. This model, however, remains

consistent with the Distributed Coordination Function (DCF)

of the IEEE 802.11-2007 standard [18], [19]. A few

mechanisms modeled according the standard are used:

carrier sensing (CS), NAV timers (NAV), inter-frame

spacing (IFS) and exponential back-off (EBO).

Fig. 2. The acceleration as a function of LPs number (architecture A only).

Fig. 3. The memory usage (per single LP) as a function of LPs number

(architecture A and B).

Nodes only exchange frames without using

acknowledgements (ACK), what reflects a multicast

transmission. The RTS/CTS mechanism is not used – it has

been poorly adopted by the ISP industry due to its

performance and is rarely used nowadays.
The simulation scenario includes n hosts, acting as

client-server pairs (n/2 pairs). The client requests a file

transfer from a dedicated server and the server responds by

sending data. At the application layer a protocol similar to the

TFTP protocol [20] is used, using UDP datagrams.
Client objects send requests at random time intervals with

uniform distribution (0, 1) s. The transmission rate is set to

1Mbps. The distance (and delay) between any two hosts on

the network is fixed.

VI. EXPERIMENTS

Numerical data were obtained by running the simulator for

scenarios embracing 800, 1000, 1500 and 2000 objects

communicating in pairs. The execution time, as well as

memory usage was tested.

The speedup obtained after 100000 synchronization points

(represents 10s of real time) is presented in Fig. 2. For the

number of LP of 10 and more we observe speedup of the

simulation (the B architecture). On the other hand, for

smaller numbers of LP, synchronization and inter-core

communication overhead is too great to gain the benefit of

parallelization. However, the profits from distributing the

internal data structures among working processors/cores

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

700

V. SIMULATION MODEL AND SCENARIO

Experiments were carried out on cluster of 4 core-machines

(each node is 22 core AMD Opteron processor, 8 GB of

RAM server) – the first architecture (A) and on a 24

core-server (212 core AMD Opteron processors, 64 GB of

RAM) – the second architecture (B).

cannot be ignored. The greater number of LPs, the smaller

amount of RAM is needed per a single core (Fig.3). It is

especially important for architectures similar to the first one,

where it was impossible to run the simulation for 2000

objects with the number of LPs lesser than 4. At that time

memory requirements exceeded available 8GB per a node.

The described phenomenon is advantageous for number of

LPs between 2 and 10. With a bigger number of LPs there is a

need to extend the structures for rollback of the simulation,

thus the memory requirements are not reduced so much.

For the number of simulating objects lesser than 100

(which is not presented in the figures) we observed no gain as

long as time and memory requirements are concerned. The

gain from distribution of data structures among cores is too

small to compensate for the communication overhead.

Additionally, some data structures must be kept indivisibly

on each LP and in case of the small number of objects there

are too many of them as compared to the portion of structures

that can be distributed to observe decrease of memory

requirements.

Another undesirable speedup phenomenon is observed for

our first architecture. When the number of LPs is greater than

10, then the computing time surges. As was expected the

communication between nodes is much slower than

communication inside nodes.

The obtained results make us conclude that our simulator

is advantageous in terms of speedup on the machines with the

architecture of the second type (multi-core server with

common memory). For the first type (computing cluster) our

simulator may be applied to overcome the limitation of

memory available on a single node by collective usage of

memory of several nodes.

VII. CONCLUSIONS

In the article the implementation of the new method of

synchronization as well as and some experimental results

were described.

Using a set of solutions (grouping simulation events into a

single MPI message, exchanging messages at regular

intervals at the end of the time window (synchronization

phase), duplication of messages directed to the group of

objects at destination’s LPs etc.) we achieved a significant

reduction in the number synchronization of messages.

The method combines the benefits of optimistic

synchronization (no blank messages/null messages and

frequent synchronization) while reducing its drawbacks.

With the limitation on the length of the synchronization time

window, the method prevents the need to send anti-messages

by subsequent nodes. As the result there is no need to send

anti-messages. So the total overhead of the inter-processes

communication has been reduced. It is particularly important

in simulations of wireless networks which is a complex

problem to simulate, both the computational complexity and

memory usage.

The obtained experimental results show that it is possible,

under certain conditions and using appropriate hardware

architecture (large number of cores), the significant

acceleration of distributed simulations of wireless networks.

The additional advantage of the method is the distribution

of resources demanded by a model, which reduces memory

usage for individual LP.

The authors are aware that the presented model and

scenario is simple and largely unrealistic (simple 802.11

protocol, many nodes competing for the link on the relatively

small area). At this stage the goal was to examine mainly the

synchronization method, for intense interprocess

communication.

In future work we will focus on the development of more

detailed simulation models of PHY layer and L2 protocols.

When developing the model, we expect the growth of

computational complexity, so the results of the distributed

simulation should which should have a positive effect on the

acceleration (in compare to the single node case).

REFERENCES

[1] E. Ben Hamida, G. Chelius, and J. M. Gorce, “Impact of the physical

layer modeling on the accuracy and scalability of wireless network,”

Simulation, vol. 85, pp. 574-588, 2009.

[2] R. Fujimoto, “Parallel and distributed simulation systems,” John Wiley

and Sons, Inc, 2000.

[3] K. Chandy and J. Misra, “Distributed Simulation, a case study in design

and verification of distributed programs,” IEEE Transactions on

Software Engineering, vol. 5, no. 5, pp. 440-452, 1979.

[4] D. Jefferson and H. Sowizral, “Fast concurrent simulation using the

time warp mechanism,” presented at SCS Conf. Distributed Simulation,

San Diego, CA; (USA); Jan. 1985.

[5] S. Nowak, M. Nowak, and P. Foremski, “New synchronization method

for the parallel simulations of wireless networks,” NEW2AN/ruSMART

2011, LNCS 6869, Springer-Verlag Berlin Heidelberg, pp. 405-416,

2011.

[6] L. Sokol, B. K. Stucky, and V. S. Hwang, “MTW: a control mechanism

for parallel discrete simulation,” in Proc. the International Conference

on Parallel Processing-ICPP, pp. 250-254, 1989.

[7] J. S. Steinman, “Breathing time warp,” in Proc. the Seventh Workshop

on Parallel and Distributed Simulation, PADS '93, ACM, New York,

pp. 109-118, 1993.

[8] The network simulator. [Online]. Available:

http://www.isi.edu/nsnam/ns/.

[9] GTNstS homepage. [Online]. Available:

http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS

[10] OMNeT++ [Online]. Available: http://inet.omnetpp.org/.

[11] L. Bononi, M. Felice, G. D. Angelo, M. Bracuto, and L. Donatiello,

“MoVES: A framework for parallel and distributed simulation of

wireless vehicular ad hoc networks,” Computer Networks, vol. 52, pp.

155-179, 2008.

[12] X. Zeng, R. Bagrodia, and M. Gerla, “A library for parallel simulation

of large-scale wireless networks,” in Proc. the 12th Workshop on

Parallel and Distributed Simulation (PADS'98), pp. 154-161, 1998.

[13] M. Nowak and S. Nowak, “Parallel simulations with modified INET

simulation package,” Theoretical and Applied Informatics, vol. 19, no.

2, pp. 147-156, 2007.

[14] P. Peschlow, A. Voss, and P. Martini, “Good news for parallel wireless

network simulations,” in Proc. the 12th ACM International Conference

on Modeling, Analysis and Simulation of Wireless and Mobile Systems,

pp. 134-142, 2009.

[15] H. K. Wu, Ch. Chiang, V. Jha, M. Grela, and R. Bagrodia, “Parallel

simulation environment for mobile wireless networks,” in Proc. Winter

Simulation Conference, pp. 605-612,1996.

[16] W. Gropp, E. Lusk, and A. Skjellum, “Using MPI: portable parallel

programming with the message-passing interface,” MIT Press, ISBN:

0262571323, 1999.

[17] M. Nowak and S. Nowak, “Synchronisation concept for distributed

simulation of networks with packet loss,” Studia Informatice, vol. 30,

no. 1, pp. 81-89, 2009.

[18] Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications, IEEE Standard 802, Part 11, 2007.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

701

http://dl.acm.org/author_page.cfm?id=81100440087&coll=DL&dl=ACM&trk=0&cfid=220657888&cftoken=94447148
http://inet.omnetpp.org/

[19] Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications, IEEE Standard 802, Part 11, Amendment 5,

2009.

[20] K. Sollins, The TFTP Protocol (Revision 2), IETF RFC 1350, 1992.

Sławomir Nowak was born in 1974, received MSc

degrees in Computer Science from Silesian Tchnical

University in Gliwice in 2000 and Ph.D. in Computer

Science form Institute of Theoretical and Applied

Informatics of Polish Academy od Science (IITiS

PAN, www.iitis.pl) in 2005. He is presently working

as lecturer in IITIS PAN Gliwice and Academy of

Business in Dąbrowa Górnicza. Authored many

research papers in International/ national Journals and conferences in the

field of computer network simulations (based on DES concept).

Agnieszka Debudaj-Grabysz was born in 1973,

received MSc degree in Computer Science from

Silesian University of Technology in Gliwice, Poland,

in 1996, and PhD in Computer Science from the same

University, in 2007. In 2005 she got an HPC-Europa

Transnational Access scholarship for a short term stay

in High Performance Computing Center Stuttgart

(HLRS). Currently she is an adjunct professor in the Institute of Computer

Science of her alma mater. Her research interests focus on concurrent

programming, in particular in applications to solve optimization problems.

Mateusz Nowak was born in 1972, received MSc degree

in Computer Science from Silesian University of

Technology in Gliwice, Poland, in 1996, and PhD in

Computer Science from Institute of Theoretical and

Applied Informatics of Polish Academy od Sciences

(IITiS PAN, www.iitis.pl) in 2006. He works as an

assistant professor at IITIS PAN Gliwice and lecturer at

Katowice Institute of Information Technologies.

Authored many research papers in international and national journals and

conferences in the field of parallel processing, computer network modeling

and communication protocols. TPC member of a few networking

conferences.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

702

