



Abstract—In this paper we present a model of computer

architecture. The proposed model uses a triplet to describe the

static structures of a computing machine; the more dynamic

parts of the architecture are modeled as relations between the

triplet components. A recursive formalism of the model is

developed to facilitate the hierarchical representation of an

entire machine’s architecture or the architecture of its

components. A simple, but functional, 8-bit microprocessor

architecture is used to show how the formalisms of the model

may be applied to existing architectures. Two additional

applications of the model are presented to describe

microprogramming and virtualization.

Index Terms—Computer architecture, formal models,

instruction sets, ISA, microprogramming, virtualization.

I. INTRODUCTION

The design of general-purpose computers has, until

recently, been largely a qualitative exercise [1]. The work by

Flynn [2] and Hennessy and Patterson [3] has helped start a

reversal of that trend by putting the design of computers on a

quantitative footing. Along those lines, in this work we

propose to formalize the description of computer

architectures. We develop a generic model for computing

architecture that has the following three features.

1) Fidelity: The model accurately represents the structural

parts of a given architecture and how they are related,

while at the same time it allows for abstract computer

models to represent the operations of these parts and

their interactions.

2) Accessibility: The model is an intuitive, algebraic model

that can be used by computer architects and other

designers of digital systems with little training in formal

mathematical methods.

3) Extensibility: The model can be used to model entire

systems or the individual components of such systems.

Our development of the model presented in this paper

looks at both the static and dynamic aspects of a computers

architecture. The static aspects are the associations between

the components. While the dynamic aspects describe how the

connected components interact in order to perform the

computations.

The rest of the paper is organized as follows. Section II

describes some related work and defines some key terms.

Manuscript received December 10, 2012; revised January 20, 2013.

C. Mutigwe is with the School of Electrical and Computer Systems

Engineering, Central University of Technology, Bloemfontein, South Africa

9320 (e-mail: cmutigwe@ ieee.org).

J. Kinyua is with the School of Computer Information Systems, Virginia

International University, Fairfax, VA 22030 USA (e-mail:

jkinyua@viu.edu).

F. Aghdasi is with the Faculty of Science and Agriculture, University of

Fort Hare, Alice, South Africa 5700 (e-mail: faghdasi@ufh.ac.za).

Section III describes the development of the simple model,

together with an example of its application. Section IV

extends the simple model into the general model and it also

provides a small example. Section V applies the generic

model to the computer design techniques of

microprogramming and virtualization. Section VI concludes

the paper.

II. RELATED WORK

The term computer architecture was first used to describe

the attributes of the IBM System/360 as seen by the

programmer [4], [5], today this aspect of a computers design

is commonly known as its instruction set architecture (ISA).

Over time the concept of computer architecture has grown to

be more encompassing. Mudge [5] defines computer

architecture as the ISA together with its implementation

using hardware components. He adds that computer

architecture influences and is influenced by the existing

technology, the applications targeted to run on the computer,

and other constraints such as costs, compatibility and the

marketplace. Hennessy and Patterson [3], define computer

architecture as the design specifications for a computer,

which include the description of its: (i) ISA, (ii)

microarchitecture, also known as computer organization, and

(iii) hardware. These design specifications or blueprints

when implemented should result in a computer that

maximizes performance while subject to constraints, such as

costs and power. In this paper we will adopt the definition of

computer architecture by Hennessy and Patterson. When

dealing with physical machines, the „program‟ and „data‟

components of our proposed model relate to the ISA part of

this definition, while the „resources‟ part of our model relates

to the microarchitecture and the hardware descriptions.

A constructive computation-based theoretical framework

for modeling the underlying structures of computer

architecture is presented by Albrecht [6]. While this

framework is generic, it has some limitations in that it is not

intuitive and it is mainly focused on modeling the operations

of the components. Furthermore, it is only accessible to

computer architects with advanced mathematical training in

formal models.

In the literature the architecture of physical computers and

virtual computers are treated as a separate subjects [3], [7].

Given the growing importance of virtualization in the

computer industry we are of the view that a framework which

seamlessly handles both physical and virtual computer

architectures will be advantageous. Chen et al. [8] proposed a

virtual machine model that extends an existing model that is

used for real machines. This is a state machine-based model

that does not easily lend itself to modeling the structural

differences between architectures.

A Model of Computer Architecture with Applications

Charles Mutigwe, Johnson Kinyua, and Farhad Aghdasi

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

683DOI: 10.7763/IJCTE.2013.V5.775

Sima et al. [9] put forward a recursive formalism to model

a computing machine. Their model is similar to Flynn‟s

requestor/server formalism [10]. It defines a computing

machine (CM) as a doublet, consisting of a microprogram

(P), and a set of resources (R); that is CM= (P, R). This

model uses the microcode in order to abstract away any

references to a particular ISA. Our proposed computer

architecture model extends this formalism by adding a third

component that will be used to model the data processed by

the computing machine. This data component will facilitate

the modeling of virtual devices and operations on inputs with

different data types.

III. FORMULATING THE SIMPLE MODEL

For the development of the first iteration of our model we

are going to use, as an example, a simple microprocessor that

has a hard-wired control unit without pipelining and no other

sophisticated microarchitecture. Ways to add new

microarchitectural features to the processor model will be

discussed later, in the APPLICATIONS section. We will call

this simple microprocessor the k85. The simple model will

follow along the lines of the one proposed by Sima et al. [9],

however we make significant extensions to that model in

order to facilitate later generalizations. Our model uses a

triplet instead of a doublet as the primary structure and we

introduce the use of relations to describe the relationship

between the triplet elements.

Let us assume that we have a computing machine (CM)

which consists of a set of N computing resources (R) that use

a set of Q operations or instructions (I) to operate on a set of P

data types (D). An implementation of a CM can be formalized

by means of a triplet:

  , ,CM I R D (1)

For the instruction set,

  1 2, , , QI i i i  (2)

each instruction, ik, where 1  k  Q, is typically represented

by an instruction mnemonic or an opcode. Similarly, for the

computing resources or functional units

  1 2, , , NR r r r  (3)

A resource, rk, 1  k  N, may represent a component of the

microprocessor, such as, an adder or a register.

Fig. 1. Instruction to resources relation.

Fig. 2. Resources to data relation.

Each instruction, ik, controls one or more resources, as

shown in Fig. 1. That is, each instruction controls a set of

resources, Rk, where:

and

0

k

k

R R

R




 (4)

We introduce a set of triggers, T , where these triggers are

state transitions that are used to initiate other processes. An

example of such triggers is a set of X sequential rising edges

of a clock signal that are numbered and represented as

 1 2, , , Xclock clock clock .

  1 2, , , XT t t t  (5)

Let kU represents the relation between ki , kR and, where

kT T and it represents the set of triggers needed to

implement instruction ki . We are now able to model kU as a

set of triplets, where each instruction‟s resource pool can

now be scheduled up to the point when each element in the

pool is required. That is:

  
1 1 2 2

(, ,),(, ,), , (, ,) .
N Xk k k k k k k k k kU i r t i r t i r t  (6)

Following a similar line of development, we now consider

the data types, where

  1 2, , , .PD d d d  (7)

Each data type, kd , where 1 k P  , represents a data

format or addressing mode. Data types may represent

immediate data, or indirect data. Immediate data is

embedded in the instruction and as such is available for

immediate processing by the computing resources, while

indirect data represents a location where the computing

resources can find the data to be processed as part of the

instruction execution.

Each resource, kr , can operate on zero or more data types,

Fig. 2. That is, each resource can process a set of data types,

kR , where:

and

0

k

k

D D

D




 (8)

Let kV represent the relation between kr , kD and kT –

that is:

  
1 1 2 2

(, ,),(, ,), ,(, ,)
N Xk k k k k k k k k kV r d t r d t r d t  (9)

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

684

Fig. 3. The triplet components and relations.

Putting the component of the triplet together, as shown in

Fig. 3, we see that the composition
k kU V allows us to

express the relationship that exists between the instruction ik

and data of type kd whenever there exists a suitable resource

kr at interval
jt , that is

  () |() ()k k k k k j k k k k k ki U V d r t i U r r V d    (10)

Suppose bop is a generic binary operation, such as addition,

and that ik is a specific instance of that operation acting on

two data items of types dk1 and dk2. An example of ik would be

the addition of an unsigned integer and a floating point

number. We have ki bOp and

  
1 2 1 2

() () .k k k k k k k k k ki U V d i U V d d bOp d     (11)

Generalizing the result above to ik that is an n-ary

operation ()nOp acting on n data items, we have

  
1

1

()

, , .

()
n

n

k k k k

k k

k k k k

i U V d

nOp d d

i U V d

 
 

   
 
 



 



 (12)

The distribution of processor specifications in a format

consistent with relationships (10), (11) and (12) should

facilitate automated compiler construction for new

architectures.

Next, we present a way to model the dynamic aspects of a

computer‟s architecture. The resources needed to execute

each instruction, as shown in Fig. 1, are often marshaled

using a sequence of micro-operations that are ordered by the

elements of the trigger set T . We introduce a set of

micro-operations, M , where

  1 2, , , YM m m m  (13)

For each instruction, ik, there is a corresponding set of

micro-operations, Mk, where Mk  M, Each micro-operation,

mk1, where mk1  Mk, accesses at most two resources, rki1 and

rki2, for inputs. Each micro-operation places its result in one

resource, rko, at most. Now, we are able to model Wk, the

operations of each instruction, ik over the interval Tk, as a

sequence of triplets shown in (14). Now,

1 1 1 2 2 2

(, ,), (, ,),

, (, ,)
X X X

w w

k k k k k k

k w

k k k

m R t m R t
W

m R t

 
 
 
 

 (14)

where

1 2
(, ,)

i i i o

w

k k k kR r r r

A. Example of the Simple Model

In this section we apply the model to the k85, which is a

simple 8-bit microprocessor that is binary-compatible with

the Intel 8085. The architecture diagram of the k85 is shown

in Fig. 4. We assume that the Control Unit for our processor

is hardwired and not microprogrammed. At the top-level we

describe the processor model as

 85 85 85 85(, ,)k k k kCM I R D (15)

where

  85 , , , ,kI ANDA MOV CALL XHL  (16)

using instruction mnemonics, or using opcode templates

85k

10100XXX,01XXXXXX
I

11001101, ,11100011

 
  
 

 (17)

The processor has 59 types of instructions, that is:

85 59kM I  (18)

The width of the data bus is 8 bits; we will use that as the

default size of each resource. Any resource with a different

size will be shown with its size in parenthesis next to the

resource name. Using Fig. 4, we can put together 85kR as

  85 , ,kR ALU ControlUnit Register File,  (19)

where Register File is a macro for an array of all the registers

in the processor, that is

 A,B,C,D,E,Flags,H,L,IR,
Register File =

PC(16),SP(16),Temp,W,Z

 (20)

Some registers or combinations of registers are directly

available to 85kI and these represent data types. In the case of

our processor REG is the set of available 8-bit registers,

while 16REG consists of overlapping register pairs or other

16-bit registers that are available to 85kI .

  , , , , , ,REG A B C D E H L (21)

and

  16 , , , (16)REG BC DE HL PC (22)

Now we can put together the data types for our processor.

 85

16

(16), , (16),
k

REG REG
D

address data data port

 
 (23)

where data and port are any 8-bit numbers representing data

or a port respectively. While, data(16) and address(16) are

any 16-bit numbers representing data or a memory address

respectively.

Next the relations S and T are specified. Let us consider

the ANDA instruction group, that is, k ANDA in (6) and

(9). The ANDA instruction has two options:

ANDA

register

- the register is ANDed with the

A register and the result is stored in

A .

ANDA M - the data in the memory location

pointed to by the contents of the HL

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

685

register is ANDed with the A

register and the result is stored in A .

In RTL, the actions performed by the ANDA instruction

are described as follows:

Fig. 4. The k85 processor architecture diagram.

1:

1

1

1

0

3 3

A A registertANDA register

S

P

C

A A register

 









 

where register is replaced by M for the second option and

the number between each angled bracket represents a bit

position. A , C , P , S and Z represent the individual flags

in the Flags register. We can now model how this

instruction operates as

(,), (,),

(,), (,),

(,), (,)

ANDA

ANDA ALU ANDA REG

U ANDA HL ANDA ControlUnit

ANDA IR ANDA DecoderUnit

 
 

  
 
 

 (24)

(,), (,), (,),

(, (16)), (,),

(,

ANDA

ALU REG ALU data ALU Flags

V PC address ControlUnit REG

DecoderUnit data

 
 

  
 
 

 (25)

 

 

 

1

1

1

, (, ,), ,

, (1, ,), ,
.

, (3 , 3 ,),

ANDA

A register A t

Z t
W

A register A t

  
 
 

  
 
  


 (26)

IV. THE GENERAL MODEL

We generalize our model by transforming (1) into a

recursive formalism. Our simple model may be viewed as a

computing object consisting of three related components: the

program or ordered set of instructions that direct some

computing resources to act on some data. The computing

object can be represented by the triplet:

 (, ,)computing object instructions resources data (27)

In the general model, parts of I , R and D from (1) may

be replaced by models for computing objects that each have a

format corresponding to (27). We represent the general

model of the computing machine using the following triplet:

  (1) (1) (1), ,level level level level

architecure architecture architecture architectureCM I R D   (28)

and the relations as:

(1) (1)andlevel level

architecture architectureU V 
 (29)

The implementation reference level (IRL) is defined as

0level  , as shown in Fig. 5. The IRL can be set arbitrarily,

however, it is preferable to set the IRL close to the primary

computing device being modeled. In this way the

components of the device being modeled will appear at

0level  and any aggregates structures or networks using the

device will appear at 0level  .

A. Example of the General Model

The ALU can now be modeled as

3

2 3

85

3

,

,

MUX

k MUX

MUX

OpSelLUT

ALU OpModules

ControlSignals

 
 

  
 
 

 (30)

where 3

MUX OpSelLUT is the set of codes used to direct the

MUX to select the appropriate function circuit, and

 3
, , ,

, , ,
MUX

Adder Shifter AND
OpModules

OR NOT XOR MUX

 
  
 

 (31)

0 1 1 1

85 85 85 85(, ,)k k k kCM I R D (32)

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

686

Let us consider the ALU from our previous example as an

assembly of a multiplexor together with six 8-bit circuits that

implement the Adder, Shifter, AND, OR, XOR and NOT

functions, as shown in Fig. 6. The MUX along with its input

and output signals forms the processor‟s control plane, while

the 8-bit circuits along with their data input and output form

the processor‟s datapath.

The 3

MUX ControlSignals emanate from the Control Unit

shown in Fig. 4. We can now rewrite (28) as

where

  1 2 2

85 85 85, ,k k kR ALU ControlUnit  (33)

Fig. 5. Tree-based representation of the generic model.

Fig. 6. The arithmetic logic unit (ALU).

V. APPLICATIONS

Our proposed model can be used to either:

1) Describe the architecture of an entire computing

machine, as the virtualization application example below

shows; or to

2) Describe an optimized part of an existing machine, as

demonstrated by the microprogramming application

example below.

An existing lower (numerical) level model may be

extended by „plugging‟ into it the model of a new higher level

component, as shown in Fig. 5.

In general the proposed model can be used in the following

manner. Firstly, identify a potential processor application or

optimization scheme. Next, generate a triplet covering the

whole application area. If required, interface this new model

to an existing higher- or lower-level model. Finally, define

the relationships between the triplet components.

A. Microprogramming

While hard-wired processors, such as the one in our

microprocessor example above, may offer a performance

advantage over their microprogrammed counterparts, many

commercial microprocessors today are microprogrammed.

Microprogramming offers the following advantages when

compared to hardwired architectures: ease of development

and maintenance, flexibility, and lower costs [11].

A microprogram is a sequence of microinstructions that

are not directly accessible to the programs running on the

machine. Each microinstruction corresponds to a primitive

operation that the machine can perform, often referred to as a

micro-operation. The microinstructions are often described

using register-transfer level. A processor‟s

programmer-visible instruction can then be described by a

microprogram, as the example of the LHL instruction from

the k85 architecture shows.

1

2

3

4

: []

[]

[]

[]

tLHL addr Z M PC

PC

t W M PC

PC

t L M WZ

WZ

H M WZt











 



 (34)

The microprogrammed control unit can be implemented

using control memory, a control address register and a next

address generator unit [12], as shown in Fig. 7. Each

microinstruction is stored as a word in the control memory.

We model the microprogrammed control unit as the triplet:

 

 

3 3 3

2

2 3 2

, , ,

, ,

n a m

i n o

I R R
ControlUnit

D D D

 
 
 
 

 (35)

where 2

iD and 2

oD map one-to-one with the Control Unit

input and output signals from Fig. 4, respectively. 3

nI is a

hardware circuit that generates the next address to be latched

into 3

aR based on 2

iD and 3

nD . Now, model (35) can be

substituted into model (33).

Fig. 7. The arithmetic logic unit (ALU).

The discussion above, as well as the model (35), can be

applied to co-designed virtual machines. By way of contrast,

Chen et al. provide state machine-based model [8] of such

machines. In a co-designed virtual machine the source

architecture, that is the one visible to the binary applications

running on the machine, is emulated on a target architecture.

One of the most well-known co-designed virtual machines is

the Transmeta Crusoe processor [13], which uses a „code

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

687

morphing‟ (CMS) layer [14] to transparently run Intel

IA-32-based software (source architecture) on an underlying

VLIW (Very Long Instruction Word) architecture (target

architecture). Using our model, this CMS layer can be

implemented in 3

nI , in order to maximize performance or it

can be implemented in 3

mR , in order to maximize design

flexibility and postproduction maintenance.

B. Virtualization

Virtualization is formally described as a one-one

homomorphism between a „real‟ system and a „virtual‟

system, with respect to all the operators in an instruction

sequence set [15]. That is, for any state transformation in the

„real‟ system an equivalent transformation can be performed

in the „virtual‟ system. One realization of virtualization is

through virtual machines (VM). A VM is a software layer

that emulates a desired machine‟s architecture [7]. The VM

executes (runs) on a real machine whose architecture may or

may not be the same as that emulated by the VM.

We will model the generic virtual machine as

 , ,soft

architecture architecture architecture architectureVM I R D (36)

while, the physical or „real machine is modeled as

 , ,architecture architecture architecture architecturePM I R D (37)

where
soft

architecture R is a set of programs that emulate

corresponding elements of architecture R in model (37). Note

that there are no physical components in architecture VM.

The model for a physical machine that is hosting a VM is

  _1 _1 _1 _ 2, ,arch arch arch archCM VMM PM VM (38)

where VMM is the virtual machine monitor or hypervisor.

Traditionally, if arch_1arch_2 the host machine model

above is said to represent a simulation, else, the model

represents virtualization.

The host machine model presented above allows us to

more easily propose and describe extensions to existing

virtualization technologies. An example is a multi-tenancy

hypervisor that can support multiple virtual machines with

different architectures. Such a system can be modeled by

replacing arch_2vm in (38) with  _1 _, ,arch arch nVM VM .

In this case we can have, say, an x86 hypervisor that supports

ARM, PowerPC and x86 virtual machines modeled as

 

86 86

86

86

, ,

, ,

x x

x

ARM PowerPC x

VMM PM
CM

VM VM VM

 
   
 

 (39)

We note that all the elements of the model triplet can be

implemented as hardware or software, depending on the

purpose of the model. For example, the I triplet-component

in the microprogramming example (35) is implemented in

hardware, while the I , R and D triplet components in the

virtualization example (36) are all implemented in software.

VI. CONCLUSION

In this paper, we have developed a formal model of

computer architecture. We have also shown how the model

can be used to describe hard-wired processors,

microprogramming and virtualization. The triplet

components of the model can be used to represent programs,

hardware/resources and the data of the system under design

to an arbitrary level of detail as required by the designer. The

model requires an understanding of some basic set theory and

Boolean logic operators, both of which are almost universally

accessible to computer architects and other digital designers.

The level notation combined with the recursive nature of the

formalism allows the model to be extended by including

detailed sub-component triplets or by adding the primary

models triplet into that of a larger superstructure. We believe

that this model combined with the quantitative computer

architecture tools mentioned in the introduction, can help

take the design of new computer architectures from an art

into a science.

REFERENCES

[1] G. A. Blaauw and F. P. Brooks, Computer Architecture: Concepts and

Evolution, Reading, MA: Addison-Wesley, 1997.

[2] M. J. Flynn, Computer Architecture: Pipelined and Parallel Processor

Design, Boston, MA: Jones and Bartlett, 1995.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach, 5th ed. San Francisco, CA: Morgan Kaufmann,

2011.

[4] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the

IBM System/360,” IBM Journal of Research and Development, vol. 8,

no. 2, pp. 87-101, 1964.

[5] T. Mudge, “Strategic directions in computer architecture,” ACM

Computing Surveys, vol. 28, no. 4, pp. 671-678, 1996.

[6] R. Albrecht, “Modeling of computer architectures,” in Proc. 1st Int.

Conf. on Massively Parallel Computing Systems, pp. 434-442, 1994.

[7] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for

Systems and Processes, San Francisco, CA: Morgan Kaufmann, 2005.

[8] W. Chen, W. Xu, Z. Wang, Q. Dou, Y. Wang, B. Zhao, and B. Wang,

“A formalization of an emulation based co-designed virtual machine,”

in Proc. 5th Int. Conf. Innovative Mobile and Internet Services in

Ubiquitous Computing, pp. 164-168, 2011.

[10] M. J. Flynn, “Some computer organizations and their effectiveness,”

IEEE Trans. on Computers, vol. C-21, no. 9, pp. 948-960, 1972.

[11] T. G. Rauscher and P. M. Adams, Tutorial: Microprogramming and

Firmware Engineering, Piscataway, NJ: IEEE Press, 1989, ch.

Microprogramming: a tutorial and survey of recent developments, pp.

2-20.

[12] M. M. Mano, “Digital logic and computer design,” Eastern Economy

ed. New Delhi, India: Prentice-Hall, 1996.

[13] A. Klaiber, “The technology behind Crusoe processors,” Transmeta

Corp., Tech. Rep., 2000.

[14] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A.

Klaiber, and J. Mattson, “The transmeta code morphing software: using

speculation, recovery, and adaptive retranslation to address reallife

challenges,” in Proc. Int. Symp. Code Generation and Optimization:

Feedback-directed and Runtime Optimization, pp. 15-24, 2003.

[15] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable

third generation architectures,” Communications of the ACM, vol. 17,

no. 7, pp. 412-421, 1974.

Charles Mutigwe was born in Zimbabwe in 1970. He

obtained a bachelor's degree in electrical engineering

from the University of Zimbabwe, Harare, Zimbabwe

in 1994; a master's degree in electrical engineering

from Western New England University, Springfield,

Massachusetts, U.S.A. in 2003; and an M.B.A. from

Norwich University, Northfield, Vermont, U.S.A. in

2005. He is a doctoral candidate in electrical

engineering at the Central University of Technology,

Bloemfontein, South Africa.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

688

[9] M. Sima, S. Vassiliadis, S. Cotofana, J. T. J. V. Eijndhoven, and K. A.

Vissers, “Field-programmable custom computing machines-a

taxonomy,” in Proc. Reconfigurable Computing Is Going Mainstream,

12th Int. Conf. Field-Programmable Logic and Applications, pp. 79-88,

2002.

 He is currently an IT & Data Analyst at the University of Massachusetts

(UMass) Amherst. He is also an adjunct professor at the Isenberg School of

Management at UMass Amherst, where he teaches Information Management

in the online MBA program. He has worked as an IT professional for over 15

years and his previous positions include: Systems Engineer, Systems

Administrator, Systems Developer, Lab Manager and IT Director at dot-com

start-ups, a university and Fortune500 companies. His research interests are:

electronic design automation, reconfigurable computing and RFID systems.

Mr. Mutigwe is a member of the IEEE, the IEEE Computer Society and the

ACM.

Johnson Kinyua was born in Kenya in 1958. He

obtained a bachelor's degree in electrical engineering

from University College London (UCL), London in

United Kingdom (U.K.) in 1981; a master's degree in

digital communications from the University of Kent,

Canterbury in U.K. in 1984; and a PhD in computer

science from the University of Cambridge, Cambridge

in U.K. in 1992. He is currently the Dean and Professor

in the School of Computer Information Systems at Virginia International

University, Fairfax, VA, USA. He has publishes widely in international

journals and conferences. His previous positions include: Research &

Innovation Professor, Associate Professor and Director, Senior Lecturer and

Lecturer at different universities. His current and previous research interests

are: Software Engineering, Cybersecurity, Database Security, Security

Engineering, Distributed Systems, multi-agent systems, Fixed and Wireless

networks, and Computer Architecture.

 Prof. Kinyua is a member of the IEEE, the IEEE Computer Society and

the ACM. Prof. Kinyua has acted as an external examiner for several

universities, has been a panel member for external program assessment of

programs at two universities and was a committee member of the higher

education qualifications accreditation committee in South Africa for a

number of years. Prof. Kinyua is member of the international technical

program committees (TPC) for two international conferences: ITNG

networking track (see http://www.symbolicscience.com/ITNG2012.pdf),

held annually in Las Vegas; and IASTED African Conference on Modeling

and Simulation (http://www.iasted.org/conferences/ipc-685.html).

Farhad Aghdasi was obtained a bachelor‟s degree

with honors in electronic \& electrical engineering from

the University of Manchester, in the U.K.; a master‟s

degree in electrical \& computer systems engineering

from Oregon State University, Corvallis, Oregon,

U.S.A.; an M.B.A. degree from the University of

Portland, Oregon, U.S.A.; and a PhD in Electrical

Engineering from the University of Bristol, in the U.K.

He is currently the Dean of the Faculty of Science and Agriculture at the

University of Fort Hare in South Africa. Over the past 30 years he has held

academic posts in universities in Southern Africa including Professor and

Director: School of Electrical and Computer Systems Engineering and Dean

of the Faculty of Engineering and Information Technology, Central

University of Technology, Bloemfontein, South Africa; Vice-Rector:

Academic Affairs and Research, Polytechnic of Namibia, Windhoek,

Namibia.

Prof. Aghdasi is currently the NRF grant holder for the Risk and

Vulnerability Assessment Centre (RAVAC) for food and water security in

the Eastern Cape region of South Africa. Prof. Aghdasi‟s passion is to

increasingly use the postgraduate research projects and postdoctoral

activities for innovations in the betterment of the lives of the community, job

creation, collaboration with the industry and adding quality to teaching and

learning of undergraduates.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

689

