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Abstract—In this paper we present a model of computer 

architecture. The proposed model uses a triplet to describe the 

static structures of a computing machine; the more dynamic 

parts of the architecture are modeled as relations between the 

triplet components. A recursive formalism of the model is 

developed to facilitate the hierarchical representation of an 

entire machine’s architecture or the architecture of its 

components. A simple, but functional, 8-bit microprocessor 

architecture is used to show how the formalisms of the model 

may be applied to existing architectures. Two additional 

applications of the model are presented to describe 

microprogramming and virtualization. 

 
Index Terms—Computer architecture, formal models, 

instruction sets, ISA, microprogramming, virtualization.  

 

I. INTRODUCTION 

The design of general-purpose computers has, until 

recently, been largely a qualitative exercise [1]. The work by 

Flynn [2] and Hennessy and Patterson [3] has helped start a 

reversal of that trend by putting the design of computers on a 

quantitative footing. Along those lines, in this work we 

propose to formalize the description of computer 

architectures. We develop a generic model for computing 

architecture that has the following three features. 

1) Fidelity: The model accurately represents the structural 

parts of a given architecture and how they are related, 

while at the same time it allows for abstract computer 

models to represent the operations of these parts and 

their interactions. 

2) Accessibility: The model is an intuitive, algebraic model 

that can be used by computer architects and other 

designers of digital systems with little training in formal 

mathematical methods. 

3) Extensibility: The model can be used to model entire 

systems or the individual components of such systems. 

Our development of the model presented in this paper 

looks at both the static and dynamic aspects of a computers 

architecture. The static aspects are the associations between 

the components. While the dynamic aspects describe how the 

connected components interact in order to perform the 

computations. 

The rest of the paper is organized as follows. Section II 

describes some related work and defines some key terms. 
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Section III describes the development of the simple model, 

together with an example of its application. Section IV 

extends the simple model into the general model and it also 

provides a small example. Section V applies the generic 

model to the computer design techniques of 

microprogramming and virtualization. Section VI concludes 

the paper. 

 

II. RELATED WORK 

The term computer architecture was first used to describe 

the attributes of the IBM System/360 as seen by the 

programmer [4], [5], today this aspect of a computers design 

is commonly known as its instruction set architecture (ISA). 

Over time the concept of computer architecture has grown to 

be more encompassing. Mudge [5] defines computer 

architecture as the ISA together with its implementation 

using hardware components. He adds that computer 

architecture influences and is influenced by the existing 

technology, the applications targeted to run on the computer, 

and other constraints such as costs, compatibility and the 

marketplace. Hennessy and Patterson [3], define computer 

architecture as the design specifications for a computer, 

which include the description of its: (i) ISA, (ii) 

microarchitecture, also known as computer organization, and 

(iii) hardware. These design specifications or blueprints 

when implemented should result in a computer that 

maximizes performance while subject to constraints, such as 

costs and power. In this paper we will adopt the definition of 

computer architecture by Hennessy and Patterson. When 

dealing with physical machines, the „program‟ and „data‟ 

components of our proposed model relate to the ISA part of 

this definition, while the „resources‟ part of our model relates 

to the microarchitecture and the hardware descriptions.  

A constructive computation-based theoretical framework 

for modeling the underlying structures of computer 

architecture is presented by Albrecht [6]. While this 

framework is generic, it has some limitations in that it is not 

intuitive and it is mainly focused on modeling the operations 

of the components. Furthermore, it is only accessible to 

computer architects with advanced mathematical training in 

formal models. 

In the literature the architecture of physical computers and 

virtual computers are treated as a separate subjects [3], [7]. 

Given the growing importance of virtualization in the 

computer industry we are of the view that a framework which 

seamlessly handles both physical and virtual computer 

architectures will be advantageous. Chen et al. [8] proposed a 

virtual machine model that extends an existing model that is 

used for real machines. This is a state machine-based model 

that does not easily lend itself to modeling the structural 

differences between architectures. 

A Model of Computer Architecture with Applications 

Charles Mutigwe, Johnson Kinyua, and Farhad Aghdasi 

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

683DOI: 10.7763/IJCTE.2013.V5.775



  

Sima et al. [9] put forward a recursive formalism to model 

a computing machine. Their model is similar to Flynn‟s 

requestor/server formalism [10]. It defines a computing 

machine (CM) as a doublet, consisting of a microprogram 

(P), and a set of resources (R); that is CM= (P, R). This 

model uses the microcode in order to abstract away any 

references to a particular ISA. Our proposed computer 

architecture model extends this formalism by adding a third 

component that will be used to model the data processed by 

the computing machine. This data component will facilitate 

the modeling of virtual devices and operations on inputs with 

different data types. 

 

III. FORMULATING THE SIMPLE MODEL 

For the development of the first iteration of our model we 

are going to use, as an example, a simple microprocessor that 

has a hard-wired control unit without pipelining and no other 

sophisticated microarchitecture. Ways to add new 

microarchitectural features to the processor model will be 

discussed later, in the APPLICATIONS section. We will call 

this simple microprocessor the k85. The simple model will 

follow along the lines of the one proposed by Sima et al. [9], 

however we make significant extensions to that model in 

order to facilitate later generalizations. Our model uses a 

triplet instead of a doublet as the primary structure and we 

introduce the use of relations to describe the relationship 

between the triplet elements. 

Let us assume that we have a computing machine (CM) 

which consists of a set of N computing resources (R) that use 

a set of Q operations or instructions (I) to operate on a set of P 

data types (D). An implementation of a CM can be formalized 

by means of a triplet: 

  , ,CM I R D  (1) 

For the instruction set, 

  1 2, , , QI i i i   (2) 

each instruction, ik, where 1  k  Q, is typically represented 

by an instruction mnemonic or an opcode. Similarly, for the 

computing resources or functional units  

  1 2, , , NR r r r   (3) 

A resource, rk, 1  k  N, may represent a component of the 

microprocessor, such as, an adder or a register. 
 

 

Fig. 1. Instruction to resources relation. 

 

Fig. 2. Resources to data relation. 

Each instruction, ik, controls one or more resources, as 

shown in Fig. 1. That is, each instruction controls a set of 

resources, Rk, where: 

 
and

0

k

k

R R

R




 (4) 

We introduce a set of triggers, T , where these triggers are 

state transitions that are used to initiate other processes. An 

example of such triggers is a set of X  sequential rising edges 

of a clock signal that are numbered and represented as 

 1 2, , , Xclock clock clock . 

  1 2, , , XT t t t   (5) 

Let kU  represents the relation between ki , kR  and, where 

kT T  and it represents the set of triggers needed to 

implement instruction ki . We are now able to model kU  as a 

set of triplets, where each instruction‟s resource pool can 

now be scheduled up to the point when each element in the 

pool is required. That is: 

  
1 1 2 2

( , , ),( , , ), , ( , , ) .
N Xk k k k k k k k k kU i r t i r t i r t   (6) 

Following a similar line of development, we now consider 

the data types, where 

  1 2, , , .PD d d d   (7) 

Each data type, kd , where 1 k P  , represents a data 

format or addressing mode. Data types may represent 

immediate data, or indirect data. Immediate data is 

embedded in the instruction and as such is available for 

immediate processing by the computing resources, while 

indirect data represents a location where the computing 

resources can find the data to be processed as part of the 

instruction execution. 

Each resource, kr , can operate on zero or more data types, 

Fig. 2. That is, each resource can process a set of data types, 

kR , where: 

 
and

0

k

k

D D

D




 (8) 

Let kV  represent the relation between kr , kD  and kT  – 

that is:  

  
1 1 2 2

( , , ),( , , ), ,( , , )
N Xk k k k k k k k k kV r d t r d t r d t   (9) 
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Fig. 3. The triplet components and relations. 

Putting the component of the triplet together, as shown in 

Fig. 3, we see that the composition 
k kU V  allows us to 

express the relationship that exists between the instruction ik 

and data of type kd  whenever there exists a suitable resource 

kr  at interval 
jt , that is  

  ( ) |( ) ( )k k k k k j k k k k k ki U V d r t i U r r V d     (10) 

Suppose bop is a generic binary operation, such as addition, 

and that ik is a specific instance of that operation acting on 

two data items of types dk1 and dk2. An example of ik would be 

the addition of an unsigned integer and a floating point 

number. We have ki bOp  and  

  
1 2 1 2

( ) ( ) .k k k k k k k k k ki U V d i U V d d bOp d      (11) 

Generalizing the result above to ik that is an n-ary 

operation ( )nOp  acting on n data items, we have  

  
1

1

( )

, , .

( )
n

n

k k k k

k k

k k k k

i U V d

nOp d d

i U V d

 
 

   
 
 



 



 (12) 

The distribution of processor specifications in a format 

consistent with relationships (10), (11) and (12) should 

facilitate automated compiler construction for new 

architectures. 

Next, we present a way to model the dynamic aspects of a 

computer‟s architecture. The resources needed to execute 

each instruction, as shown in Fig. 1, are often marshaled 

using a sequence of micro-operations that are ordered by the 

elements of the trigger set T . We introduce a set of 

micro-operations, M , where 

  1 2, , , YM m m m   (13) 

For each instruction, ik, there is a corresponding set of 

micro-operations, Mk, where Mk  M, Each micro-operation, 

mk1, where mk1  Mk, accesses at most two resources, rki1 and  

rki2, for inputs. Each micro-operation places its result in one 

resource, rko, at most. Now, we are able to model Wk, the 

operations of each instruction, ik over the interval Tk, as a 

sequence of triplets shown in (14). Now, 

 
1 1 1 2 2 2

( , , ), ( , , ),

, ( , , )
X X X

w w

k k k k k k

k w

k k k

m R t m R t
W

m R t

 
 
 
 

 (14) 

where 

1 2
( , , )

i i i o

w

k k k kR r r r  

A. Example of the Simple Model 

In this section we apply the model to the k85, which is a 

simple 8-bit microprocessor that is binary-compatible with 

the Intel 8085. The architecture diagram of the k85 is shown 

in Fig. 4. We assume that the Control Unit for our processor 

is hardwired and not microprogrammed. At the top-level we 

describe the processor model as 

 85 85 85 85( , , )k k k kCM I R D  (15) 

where 

  85 , , , ,kI ANDA MOV CALL XHL   (16) 

using instruction mnemonics, or using opcode templates 

 
85k

10100XXX,01XXXXXX
I

11001101, ,11100011

 
  
 

 (17) 

The processor has 59 types of instructions, that is: 

 
85 59kM I   (18) 

The width of the data bus is 8 bits; we will use that as the 

default size of each resource. Any resource with a different 

size will be shown with its size in parenthesis next to the 

resource name. Using Fig. 4, we can put together 85kR  as 

  85 , ,kR ALU ControlUnit Register File,   (19) 

where Register File is a macro for an array of all the registers 

in the processor, that is 

 A,B,C,D,E,Flags,H,L,IR,
Register File =

PC(16),SP(16),Temp,W,Z

 (20) 

Some registers or combinations of registers are directly 

available to 85kI  and these represent data types. In the case of 

our processor REG  is the set of available 8-bit registers, 

while 16REG  consists of overlapping register pairs or other 

16-bit registers that are available to 85kI . 

  , , , , , ,REG A B C D E H L  (21) 

and 

  16 , , , (16)REG BC DE HL PC  (22) 

Now we can put together the data types for our processor.  

 
 85

16

(16), , (16),
k

REG REG
D

address data data port

 
  (23) 

where data and port are any 8-bit numbers representing data 

or a port respectively. While, data(16) and address(16) are 

any 16-bit numbers representing data or a memory address 

respectively.  

Next the relations S  and T  are specified. Let us consider 

the ANDA instruction group, that is, k ANDA  in (6) and 

(9). The ANDA instruction has two options: 
 

ANDA 

register 

- the register is ANDed with the 

A  register and the result is stored in 

A . 

ANDA M - the data in the memory location 

pointed to by the contents of the HL  
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register is ANDed with the A  

register and the result is stored in A . 
 

In RTL, the actions performed by the ANDA instruction 

are described as follows: 

 

Fig. 4. The k85 processor architecture diagram. 

1:

1

1

1

0

3 3

A A registertANDA register 

S

P

C

A A register

 









 

 

where register  is replaced by M  for the second option and 

the number between each angled bracket represents a bit 

position. A , C , P , S  and Z  represent the individual flags 

in the Flags  register. We can now model how this 

instruction operates as  

 
( , ), ( , ),

( , ), ( , ),

( , ), ( , )

ANDA

ANDA ALU ANDA REG

U ANDA HL ANDA ControlUnit

ANDA IR ANDA DecoderUnit

 
 

  
 
 

 (24) 

 
( , ), ( , ), ( , ),

( , (16)), ( , ),

( ,

ANDA

ALU REG ALU data ALU Flags

V PC address ControlUnit REG

DecoderUnit data

 
 

  
 
 

 (25) 

 

 

 

 

1

1

1

, ( , , ), ,

, (1, , ), ,
.

, ( 3 , 3 , ),

ANDA

A register A t

Z t
W

A register A t

  
 
 

  
 
  


 (26) 

 

IV. THE GENERAL MODEL 

We generalize our model by transforming (1) into a 

recursive formalism. Our simple model may be viewed as a 

computing object consisting of three related components: the 

program or ordered set of instructions that direct some 

computing resources to act on some data. The computing 

object can be represented by the triplet: 

 ( , , )computing object instructions resources data  (27) 

In the general model, parts of I , R  and D  from (1) may 

be replaced by models for computing objects that each have a 

format corresponding to (27). We represent the general 

model of the computing machine using the following triplet: 

  ( 1) ( 1) ( 1), ,level level level level

architecure architecture architecture architectureCM I R D    (28) 

and the relations as: 

 
( 1) ( 1)andlevel level

architecture architectureU V 
 (29) 

The implementation reference level (IRL) is defined as 

0level  , as shown in Fig. 5. The IRL can be set arbitrarily, 

however, it is preferable to set the IRL close to the primary 

computing device being modeled. In this way the 

components of the device being modeled will appear at 

0level   and any aggregates structures or networks using the 

device will appear at 0level  .  

A. Example of the General Model 

 

 

The ALU can now be modeled as 

 

3

2 3

85

3

,

,

MUX

k MUX

MUX

OpSelLUT

ALU OpModules

ControlSignals

 
 

  
 
 

 (30) 

where 3

MUX OpSelLUT  is the set of codes used to direct the 

MUX to select the appropriate function circuit, and 

 3
, , ,

, , ,
MUX

Adder Shifter AND
OpModules

OR NOT XOR MUX

 
  
 

 (31) 

 
0 1 1 1

85 85 85 85( , , )k k k kCM I R D  (32) 
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Let us consider the ALU from our previous example as an 

assembly of a multiplexor together with six 8-bit circuits that 

implement the Adder, Shifter, AND, OR, XOR and NOT

functions, as shown in Fig. 6. The MUX along with its input 

and output signals forms the processor‟s control plane, while 

the 8-bit circuits along with their data input and output form 

the processor‟s datapath. 

The 3

MUX ControlSignals emanate from the Control Unit 

shown in Fig. 4. We can now rewrite (28) as 



  

where 

  1 2 2

85 85 85, ,k k kR ALU ControlUnit   (33) 

 

Fig. 5. Tree-based representation of the generic model. 

 

Fig. 6. The arithmetic logic unit (ALU). 

 
 

V. APPLICATIONS 

Our proposed model can be used to either: 

1) Describe the architecture of an entire computing 

machine, as the virtualization application example below 

shows; or to 

2) Describe an optimized part of an existing machine, as 

demonstrated by the microprogramming application 

example below. 

An existing lower (numerical) level model may be 

extended by „plugging‟ into it the model of a new higher level 

component, as shown in Fig. 5. 

In general the proposed model can be used in the following 

manner. Firstly, identify a potential processor application or 

optimization scheme. Next, generate a triplet covering the 

whole application area. If required, interface this new model 

to an existing higher- or lower-level model. Finally, define 

the relationships between the triplet components. 

A. Microprogramming 

While hard-wired processors, such as the one in our 

microprocessor example above, may offer a performance 

advantage over their microprogrammed counterparts, many 

commercial microprocessors today are microprogrammed. 

Microprogramming offers the following advantages when 

compared to hardwired architectures: ease of development 

and maintenance, flexibility, and lower costs [11].  

A microprogram is a sequence of microinstructions that 

are not directly accessible to the programs running on the 

machine. Each microinstruction corresponds to a primitive 

operation that the machine can perform, often referred to as a 

micro-operation. The microinstructions are often described 

using register-transfer level. A processor‟s 

programmer-visible instruction can then be described by a 

microprogram, as the example of the LHL instruction from 

the k85 architecture shows. 

 

1

2

3

4

: [ ]

[ ]

[ ]

[ ]

tLHL addr Z M PC

PC

t W M PC

PC

t L M WZ

WZ

H M WZt











 



 (34) 

The microprogrammed control unit can be implemented 

using control memory, a control address register and a next 

address generator unit [12], as shown in Fig. 7. Each 

microinstruction is stored as a word in the control memory. 

We model the microprogrammed control unit as the triplet:  

 
 

 

3 3 3

2

2 3 2

, , ,

, ,

n a m

i n o

I R R
ControlUnit

D D D

 
 
 
 

 (35) 

where 2

iD  and 2

oD  map one-to-one with the Control Unit 

input and output signals from Fig. 4, respectively. 3

nI  is a 

hardware circuit that generates the next address to be latched 

into 3

aR  based on 2

iD  and 3

nD . Now, model (35) can be 

substituted into model (33).  

 
Fig. 7. The arithmetic logic unit (ALU). 

The discussion above, as well as the model (35), can be 

applied to co-designed virtual machines. By way of contrast, 

Chen et al. provide state machine-based model [8] of such 

machines. In a co-designed virtual machine the source 

architecture, that is the one visible to the binary applications 

running on the machine, is emulated on a target architecture. 

One of the most well-known co-designed virtual machines is 

the Transmeta Crusoe processor [13], which uses a „code 
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morphing‟ (CMS) layer [14] to transparently run Intel 

IA-32-based software (source architecture) on an underlying 

VLIW (Very Long Instruction Word) architecture (target 

architecture). Using our model, this CMS layer can be 

implemented in 3

nI , in order to maximize performance or it 

can be implemented in 3

mR , in order to maximize design 

flexibility and postproduction maintenance. 

B. Virtualization 

Virtualization is formally described as a one-one 

homomorphism between a „real‟ system and a „virtual‟ 

system, with respect to all the operators in an instruction 

sequence set [15]. That is, for any state transformation in the 

„real‟ system an equivalent transformation can be performed 

in the „virtual‟ system. One realization of virtualization is 

through virtual machines (VM). A VM is a software layer 

that emulates a desired machine‟s architecture [7]. The VM 

executes (runs) on a real machine whose architecture may or 

may not be the same as that emulated by the VM.  

We will model the generic virtual machine as  

 , ,soft

architecture architecture architecture architectureVM I R D      (36) 

while, the physical or „real machine is modeled as  

 , ,architecture architecture architecture architecturePM I R D       (37) 

where 
soft

architecture R  is a set of programs that emulate 

corresponding elements of architecture R in model (37). Note 

that there are no physical components in architecture VM. 

The model for a physical machine that is hosting a VM is  

  _1 _1 _1 _ 2, ,arch arch arch archCM VMM PM VM   (38) 

where VMM  is the virtual machine monitor or hypervisor.  

Traditionally, if arch_1arch_2 the host machine model 

above is said to represent a simulation, else, the model 

represents virtualization.  

The host machine model presented above allows us to 

more easily propose and describe extensions to existing 

virtualization technologies. An example is a multi-tenancy 

hypervisor that can support multiple virtual machines with 

different architectures. Such a system can be modeled by 

replacing arch_2vm in (38) with  _1 _, ,arch arch nVM VM . 

In this case we can have, say, an x86 hypervisor that supports 

ARM, PowerPC and x86 virtual machines modeled as  

 
 

86 86

86

86

, ,

, ,

x x

x

ARM PowerPC x

VMM PM
CM

VM VM VM

 
   
 

 (39) 

We note that all the elements of the model triplet can be 

implemented as hardware or software, depending on the 

purpose of the model. For example, the I  triplet-component 

in the microprogramming example (35) is implemented in 

hardware, while the I , R  and D  triplet components in the 

virtualization example (36) are all implemented in software.  

 

VI. CONCLUSION 

In this paper, we have developed a formal model of 

computer architecture. We have also shown how the model 

can be used to describe hard-wired processors, 

microprogramming and virtualization. The triplet 

components of the model can be used to represent programs, 

hardware/resources and the data of the system under design 

to an arbitrary level of detail as required by the designer. The 

model requires an understanding of some basic set theory and 

Boolean logic operators, both of which are almost universally 

accessible to computer architects and other digital designers. 

The level notation combined with the recursive nature of the 

formalism allows the model to be extended by including 

detailed sub-component triplets or by adding the primary 

models triplet into that of a larger superstructure. We believe 

that this model combined with the quantitative computer 

architecture tools mentioned in the introduction, can help 

take the design of new computer architectures from an art 

into a science.  
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