
 

Abstract—Recent advances in computational studies of fluid 

flows with structural interactions suggest that significant 

contributions have been made towards reliable solutions to the 

problem. Achieving accurate solutions however remains a 

considerable task since enormous amount of computer time and 

memory are usually needed. This applies particularly to a 

partitioned approach in which structure and fluid are solved 

separately. This paper attempts to solve fluid-structure 

interaction (FSI) problems with an hp-adaptive finite element 

method (hp-FEM). The FSI problem is formulated based on a 

partitioned approach and Arbitrary Lagrangian-Eulerian 

(ALE) descriptions for the incompressible fluid and structure 

domains. The hp-adaptivity is implemented with an a posteriori 

error estimator and adaptation to minimize error in energy 

norm. The automatic mesh adaptation over the triangular mesh 

is achieved with red-green-blue refinement technique. A 

strategy for mesh refinement to occur at prescribed key points 

is used for effective mesh adaptivity. The hp-adaptive approach 

is assessed with traditional uniform mesh refinement and also 

an h-adaptive method on a benchmark test case. From the error 

convergence, the hp-adaptive method is shown to be a viable 

approach in acquiring accurate solution of a partitioned-based 

FSI analysis without significant compromise in computational 

time and memory. It is also found that the convergence of 

solution in fluid and structure domains is considerably sensitive 

to the aspect ratios of triangular elements. 

 
Index Terms—Fluid structure interaction, finite element 

analysis, hp-FEM, a posteriori error estimates. 

 

I. INTRODUCTION 

Analysis of fluid flows that are being impeded by an elastic 

structure poses a particularly challenging task as it is a 

complex multiphysics problem in which fluid and structure 

are mutually coupled along a shared boundary. The past few 

years have seen growing interests in the analysis of 

fluid-structure interaction (FSI) problems that arise in 

interdisciplinary fields spanning from biomechanical to 

microsystems applications [1], [2]. Hence, accurate tools that 

provide deep understanding of the phenomenon are always of 

significant interests. Despite considerable advances in the 

computational analysis of the FSI problems, achieving 

reasonable accuracy of the solution without excessive 

computational resources remains an open challenge. This 

paper attempts to solve the fluid-structure interaction 

problem with an hp-adaptive finite element method 

(hp-FEM), in which a careful decision in local mesh 

refinement (h) combined with increase in polynomial order 
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(p) based on an error indicator is expected to result in highly 

accurate solution. In theory, hp-FEM is commonly accepted 

to yield fastest convergence in a given error norm [3].   

To the best of the knowledge of the authors, efforts at using 

an adaptive FEM approach, particularly hp-FEM, in FSI 

problems are still rather sparse. Substantial early progress in 

this respect is arguably made by Dunne and Rannacher and 

Richter and Wick who proposed h-adaptive methods with 

goal-oriented error estimators [4]. Of particular interest is 

more recent effort by van der Zee et al. The authors have 

implemented an hp-adaptive method for FSI problem which 

is also based on a goal-oriented error estimator. Their 

numerical analysis is performed rigorously on a fluid domain 

with elastic boundary rather than elastic domain [5]. Unlike 

in the aforementioned works, our approach is however more 

direct: Firstly, the hp-adaptivity is implemented on top of a 

usual partitioned-based FSI formulation with arbitrary 

Lagrangian-Eulerian (ALE) description of the fluid and 

structure domains. It is expected that an iterative solver used 

is more stable since the resulting equations are smaller and 

generally better conditioned [6]. The partitioned approach 

involves separate solutions for fluid and structure domains, 

together with iterations for each solution to converge to a 

specified stopping criterion that satisfies both domains as 

well as the interface conditions. Secondly, the adaptivity is 

driven to converge in the global errors in energy norm 

separately for the fluid and structure domains. A posteriori 

error indicator is used based on a residual estimator of each 

element. Thirdly, a simple algorithm to decide between the h- 

and p-adaptivity is constructed using prescribed key points at 

certain locations in the domain of the problem following the 

approach in [7]. Finally, since the domain is to be discretized 

with triangular elements, a red-green-blue refinement 

technique is used for mesh adaptivity. 

  

II. FSI FORMULATION 

In modelling the equations for FSI, the usual Newtonian 

incompressible fluid governed by the conservation of 

momentum and mass is used. The structure domain is 

modelled using St. Venant Kirchoff (STVK) material model 

[8]. Since structure usually resides in Lagrangian framework 

while fluid in Eulerian framework, the conventional ALE 

framework to describe both structure and fluid formulation in 

one common framework is used [9]. The ALE framework 

allows the node of the elements to move in normal 

Lagrangian framework or held fixed in Eulerian manner. It is 

commonly accepted to combine the best feature of pure 

Lagrangian framework to track the free surface and pure 

Eulerian framework to handle large distortion in a mesh. The 

combined FSI formulations are described by the following 
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equations based on the formulations in [9]. Let Ωf be the fluid 

domain bounded by the boundary ∂Ωf, then velocity vector of 

fluid v and scalar field pressure in fluid p are given by: 
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The velocity field is defined as vs = ∂tu
s with us being the 

displacement vector of the structure. The Cauchy stress 

tensor, σs  is given by 

 

,))(tr(2= Iελ+με sss  

 

where μ and λ are the Lamé constants. The Green-Lagrange 

strain tensor of structure εs is expressed in terms of 

deformation gradient F as 
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where F is the deformation gradient. 

At the interface of fluid and structure, the mesh update 

equation is required for mapping of the computational mesh 

to the altered geometry. The deformation of the altered 

geometry as a result of FSI can be expressed as 

 

( : ( ) ) = 0
s

sC ε u ,ψ                             (4) 

 

C:{∙} denotes deformation based on the STVK material 

model 
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where parameters μ, λ, εs , F are as described before.  

 

III. A POSTERIORI ERROR ESTIMATE 

The a posteriori error estimate is based on locally 

evaluated residuals. For each element K in Ωi bounded by 

either internal edge Γi or boundary edge Γ, the residual of the 

element ηK is given by [10]  
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where qh is the computed flux vector in either fluid or 

structure domain denotes the jump across e, with ne being a 

unit normal to the edge. We denote hK as the size of the 

element while he the size of the edge. The last term represents 

residual with respect to the boundary condition.  We note that 

(4) is applicable to both fluid and structure domains. The first 

term on the right hand side of (5) measures the local residual 

of fluid based on Navier-Stokes equation (1) and (2) for fluid 

domain. For structure domain the residual comes from the 

Lagrangian STVK formulation of (3). The second term 

measures discontinuity of the computed flux inside Ω while 

the third term is for the boundary Γ.  

The global error indicator η is as usual the sum of ηK over 

all the elements 

2 2

K

K

η = η                                  (6) 

 

IV. HP-ADAPTIVE STRATEGY 

The approach for adaptivity taken in this work follows the 

one presented in [7]. It is well known that h-adaptivity is 

better suited in a class of problem where the smoothness of 

solution is compromised. In practice, this occurs when 

geometric singularities are present the domain. In FSI 

problems, the fluid domain in the vicinity of fluid-structure 

interface is assumed to not have sufficiently smooth solution 

due to the mesh interface so that h-adaptivity is preferred.  To 

enforce h-adaptivity, “key points” are introduced at 

predetermined nodes in the mesh. Hence, h-adaptivity is 

prescribed around the key points while p-adaptivity 

anywhere else. The following describes in detail the 

hp-adaptive strategy: 

1) Sort the error indicator ηK in decreasing value. 

2) For top 5% of ηK, check if the element node exist at 

keypoints 

  • IF YES 

– mark longest edge of element for Green refinement 

and maintain current p 

  • ELSE 

   – increase p while leaving the element patch  

unchanged 

3) Find first and second level neighbours of h-marked 

element and compute arc angle of the neighbours that lie 

opposite to the marked edge. 

  • IF arc angle < 50◦, 

   – Mark all edges for Red refinement 

  • ELSE IF arc angle > 50  
   – Mark two out of three edges for Blue refinement 
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where w is mesh velocity, ρ is fluid density, ∂t denotes time 

derivative, ψ is the basis function, and g1 and f1 denote the 

source terms for the boundary and domain, respectively. σf is 

Cauchy stress tensor of the fluid domain with νf being

dynamic viscosity of fluid. Equations (1) and (2) denote the 

conservation of mass and momentum for fluid cast in ALE 

description. For the structural problem, letting Ωs be the 

structure domain, the deformation may be then expressed 

with stress tensor σs:



V. TEST CASE: ELASTIC DRIVEN CAVITY 

The effectiveness of the hp-adaptive implementation is 

investigated on a simple stationary test case problem, namely 

the modified version of the classical lid driven cavity 

problem as used in [4]. Fig. 1 shows the domain described as 

follows:  

 

Ω = (0, 1)2 ⊂ R2 

 

is split into the lower solid part  

 

Ωs = (0, 1) × (0, 1/4) 

 

and the upper fluid part 

 

Ωf = (0, 1) × (1/4, 1). 

 

A smooth Dirichlet inflow x-directional velocity is 

prescribed at the top part of the boundary with vx= 4x(1 − x). 

For ease of computation, all other boundaries of Ω are given 

homogenous Dirichlet boundary conditions for velocity. 

Incompressible fluid with density ρf =1kgm-1 and dynamic 

viscosity νs = 0.01kgm-1 s-1 is prescribed. The structure part is 

of density ρs = 1kgm-1, Poisson ratio 0.3 and Lamé parameter 

μ = 0.05. 

 

Fig. 1. Elastic driven cavity test case. 

 

VI. DISCUSSIONS 

Fig. 2 demonstrates first and second levels of hp-adaptivity. 

In the second adaptive level, mesh refinement occured at the 

FSI interface where the key points are prescribed whereas 

other elements further from them experienced increased in 

polynomial orders. Beyond the second adaptivity level, no 

elements had the nodes coinciding with key points and 

having largest error. Thus strictly p-adaptation took place for 

elements with highest errors. To see the effect of key points, 

an extra set of key points was added in the middle of FSI 

mesh. These extra key points were prescribed given the fact 

that elements with highest error indicator were present near 

the fluid-structure interface and the top boundary as depicted 

in Fig. 2(a). To compare the efficiency of hp-adaptive 

keypoint strategy, Fig. 3 shows the plots of the normalized 

global error against number of DOF for different adaptive 

methods.  

As expected, considerably faster convergence rate is 

observed for hp-adaptive strategy on the fluid domain 

compared to other methods as seen in Fig. 3(a). However, the 

h-adaptive method has reached the lowest estimated error 

suggesting better stability of the iterative solver and 

preconditioner used, namely Biconjugate Gradient-Stabilized 

and Incomplete LU (BiCGS-ILU). The hp-adaptive strategy 

however shows a better potential to achieve the lowest error 

with smallest number of DOF if the stability of the solver can 

be improved. 

 
(a) First level hp-adaption. Higher order elements (p=2) are correctly 

introduced in the region of high velocity. 

 
(b)  Second level hp-adaption.  Elements near FSI interface at the 

keypoint are refined as expected. 

Fig. 2. First two levels of hp-adaption.  Second order elements are labeled as 

“p2”; the rest are first order elements. 

For the structure domain, the potential for the hp-adaptive 

strategy to yield substantial improvement is even higher as 

seen in Fig. 3(b). Error is reduced swiftly within first and 

second level hp-refinement although the stability of the 

solver seemed to be affected for the subsequent levels, 

resulting in deteriorating convergence. On the other hand, the 

other methods apparently are more unstable as suggested by 

the lack in convergence. Even though the hp-adaptive key 

point strategy is shown as the most promising, its 

effectiveness is in some cases dependent on the choice of 

prescribed key points. Increasing the number of key points 

especially at the region of fluid structure interface or at the 

point of load applications is deemed to enhance the 

convergence rate even further. Fig. 4 shows the improvement 

in mesh refinement with three additional keypoints.  In terms 

of elements distortion, the hp-adaptive method as depicted in 

Fig. 4 managed to maintain all triangular elements within 

acceptable aspect ratios which in turn assisted both structure 

and fluid solver for better convergence and stability of 

numerical computations as previously shown in Fig. 3.  
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(a) Fluid domain. 

 
(b) Structure domain. 

Fig. 3. Comparison of the convergence rates for structure and fluid domains  

between h-, hp-adaptive and uniform refinements (structured and 

unstructured). 

 

Fig. 4. Sixth level hp-adaptive with extra key points denoted with the circles. 

Three extra key points are added in the middle of the region. 

 

Fig. 5. Sixth level h-adaptive with some indication of mesh deterioration in 

the structure domain. 

 

Fig. 6. Absolute velocity vector distributions across fluid domain depicting 

relatively high absolute velocity at the top the fluid domain. 

 

Fig. 7. Absolute velocity distribution across cavity after 12 hp-adaptive 

levels. 

 

(a) First level hp-adaption showing second order elements (p2).  The rest are 

linear elements. 

 

(b) Third level hp-adapt with extra keypoints. 

Fig. 8. hp-adaption with unstructured mesh. 
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In contrast, increasing number of element as a result of 

h-refinement of element means higher probability of 

triangular elements to distort. Fig. 5 shows the occurence of a 

few highly distorted elements at the vicinity of fluid structure 

interface. Fig. 6 illustrates the velocity vector distribution 

while Fig. 7 illustrates its corresponding magnitudes for the 

cavity FSI problem. Of significance is both figures show the 

displacement distributions at the interface of FSI as a result of 



information transfer between fluid and structure.  Fig. 8 

depicts the hp-adaptive method on an unstructured mesh. 

Apparently, increasing the number of key points as 

introduced in Fig. 4 did not improve the convergence rate of 

error compared to the structured mesh. Nevertheless, 

unstructured mesh could reach lower estimated residual error 

compared to structured mesh in the fluid domain. This could 

be due to the applied horizontal velocity at the top boundary 

that resulted in rotating motion of the fluid which was better 

captured by unstructured mesh. In terms of degeneration of 

elements, the unstructured mesh was found to have less 

degenerated elements and more elements with better aspect 

ratios compared to structured mesh. This attribute makes it 

better suited for application on more geometrically complex 

domains. Comparing the structured and unstructured 

triangular meshes, it is quite apparent that the adaptive 

method for the FSI problem is rather highly sensitive to the 

quality of the mesh. 

 

VII. CONCLUSIONS 

This paper has demonstrated a potential approach for an 

efficient and cost-effective hp-adaptive method for solving 

partitioned-based FSI problems. The hp-adaptive method has 

been shown to yield good performance in terms of its 

convergence rate compared to other adaptive method. 

Furthermore, the hp-adaptive method achieves its lowest 

estimated relative error with the smallest number of DOFs 

which suggests considerable saving in computation time. 

Despite increasing mesh number near key points, some 

efforts have been made to retain all the triangular elements 

within an acceptable aspect ratio. This contributed to a better 

convergence especially when solving with the partitioned 

approach that seems to be highly sensitive to mesh distortion. 

The hp-adaptive key point strategy shows effectiveness in 

handling solution in the vicinity of the fluid-structure 

interface. In comparison of both cases of uniform refinement, 

unstructured mesh shows a better convergence rate than 

structured mesh.   
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