

Abstract—Traditional accurate 3D reconstruction can be

roughly divided into two categories according to types of sensor.

One is through expensive laser scanner, and the other is by

photogrammetry, which perform the reconstruction using

photos taken from different angles. However, in recent years,

the rapid development of depth camera has threw some new

light upon the field. In this paper, we present a 3D

reconstruction plan for indoor scenes using a very low-cost

depth camera, the Microsoft Kinect sensor. Our system include

four steps: data preprocessing, pose estimation of the sensor,

fusion of the depth data, 3D surface extraction. Firstly, we

project each frame of depth data back into the space to obtain

the point-cloud. Secondly, estimate the sensor pose using ICP

algorithm. Thirdly, fuse all of the depth data using a volumetric

method, and finally extract 3D surface from the global model.

Index Terms—3D reconstruction, 3D registration, depth

camera, kinect sensor, volumetric representation.

I. INTRODUCTION

In this paper, we begin with the introduction of Microsoft

Kinect Sensor, then describe the 3D reconstruction route we

adopted. Kinect Sensor reaches a depth measurement

accuracy of 4 millimeters at a relatively wide range from 0.8

to 3.5 meters, and can generates the depth image at a rate of

30 frames per second. With all these characteristics and a

market price lower than $200($250 for the new Windows

version), Kinect Sensor suddenly become a consumer-level

product, making it possible for almost everyone to afford and

doing researches.

II. BACKGROUND

A. Methods for 3D Reconstruction

According to the equipment used, traditional methods for

acquiring dense point-cloud of object can be categorized into

two main streams. i.e. the multi-view stereo route and the 3D

laser scanner route. However, gradually developed in the

recent ten years, depth camera has become one of the popular

3D measurement equipment with advantages of its small size

and ability to perform real-time data acquisition.

1) Multi-view stereo

Stereo matching is the process of taking two or more

images of the same object from different views with a certain

degree of overlap, finding corresponding points within the

overlapping region to estimate the relative position of the

cameras and reconstructing the 3D coordinate of the object.

Its principle is shown in Fig. 1. This method has been widely

used in photogrammetry since the analytical photogrammetry

became popular in the 1980s[1]. The basic workflow of

Manuscript received October 9, 2012; revised December 18, 2012.

The authors are with the School of Remote Sensing and Information

Engineering, Wuhan University, Wuhan, Hubei, China.

stereo matching is of two steps. The first step is to estimate

the 3D pose of the camera, which is also known as relative

orientation. Following that, with certain control information,

such as control points, we acquire 3D spatial coordinate of

the measured point using space intersection.

As a matter of fact, many sorts of factors influence the final

accuracy [2], which can be classified on the basis of

processing procedure as follows: First, the quality of the

image point coordinate, such as the performance of the

camera and the accuracy of the calibration. Second, shooting

condition, method and way of control, such as the length of

the baseline and the distribution of the control points. Third,

the performance of the image processing and

photogrammetry processing software and hardware based.

Fig. 1. Principles of multi-view stereo.

2) Laser scanner

Basic structures of a laser scanner includes laser light

source that can beam laser, sensor that measures the distance

to the surface, control unit and so on. Almost all types of laser

scanner measure the distance by timing the round-trip time of

a pulse of light, which is called the time of flight method as

shown in Fig. 2. i.e., a laser is used to emit a pulse of light and

the amount of time before the reflected light is seen by a

detector is timed. Since light travels too fast, thus the

requirement for measurement of the time must be extremely

strict, which lead to the high price of laser scanner, ranging

from $10,000 to $10,000,000. However, the accuracy of laser

scanner is very attractive, ranging from millimeter level to

micron or even sub-micron level. Limited by its price and

principle, laser scanner usually serves in industrial

measurement and large enterprises.

Fig. 2. Principles of laser scanner.

3) Depth camera

Depth camera can collect video the same as a general RGB

camera, the only difference lies in the pixel of the image

taken by the depth camera: rather than the color of objects, it

takes down the distance (depth) between the object and the

3D Surface Reconstruction Based on Kinect Sensor

Song Tiangang, Lyu Zhou, Ding Xinyang, and Wan Yi

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

567DOI: 10.7763/IJCTE.2013.V5.751

camera on the basis of TOF, as is shown in Fig. 3. The most

influential depth camera is perhaps Mesa Imaging

SwissRanger 4000(SR4000), which has a scan range of 5 to 8

meters, 176×144 pixel resolution and can operates up to

54fps. Different from laser scanner, the portability and

real-time response of depth camera bring entirely new

opportunity for the development of Simultaneous

Localization and Mapping (SLAM), and Augmented Reality

(AR), so does other application field[3]. With the arrival of

Microsoft’s Kinect sensor, its low price, only $200, quickly

makes it accessible consumer-level product. In addition, this

year’s new version of Kinect, Kinect for Windows, and the

release of brand new SDK[4] all provide an improved base

for individual study.

Fig. 3. Principles of depth camera.

B. Kinect Sensor

On June 13, 2010, when an event called the "World

Premiere 'Project Natal' for the Xbox 360 Experience" was

held by Microsoft, It was announced that the motion sensing

device serving as the external equipment of Xbox360 was

officially called Kinect. Instead of using a mouse and a

keyboard, or any other remote controller, Kinect drastically

changed the conventional way people interact with computer

by solely depending on capturing the user’s motion, allowing

them to control the computer or Xbox360 using their own

body movements.

As is shown in Fig. 4, Kinect consists of three sensors: an

ordinary RGB camera in the middle, an IR light emitter on

the left that beams infrared light speckle into space, and a

monochrome CMOS sensor on the very right that captures

the reflected light. The depth measurement adopted by Kinect

sensor is a light-coding technique. Unlike conventional TOF

or structure light method, light-coding technique only require

an ordinary CMOS sensor rather than a specially made sensor,

which drastically lower the cost of the device. In fact, the

so-called light-coding technique is still a kind of structure

light technique, which code the target environment by the

light source. Kinect’s IR light emitter can beam a series of

infrared light speckle with the shape of the reflected light

changing on the basis of the distance. i.e., each shape of the

speckle pattern within the environment is unique. All these

recognizing and storage work can be finished in a very short

time, thus making it possible for Kinect to generate depth

map at the rate of 30Hz. Also, its principle of measurement

allow it to work under any ambient light conditions.

In February 2012, Microsoft launched a new version of the

device, Kinect for Windows. Compared with the old version

with Xbox360, the accuracy of depth measurement is

improved, a near-mode is added which allow the sensor to

measure depth from 0.4m to 3m, all of which make it more

suitable for 3D-reconstruction of smaller objects.

Fig. 4. The Microsoft Kinect sensor.

The standard deviation of depth error and the calibration

result of the Kinect (Xbox360 version) are provided by some

previous studies[5]-[6], shown in table 1-3 and Fig. 5 where

𝐾 = 𝑘1, 𝑘2,𝑘3,𝑘4 are the lens distortion parameters.

Fig. 5. Standard deviation of plane fitting residuals at different distances of

the plane to the sensor.

TABLE I: COLOR CAMERA INTERNAL COEFFICIENTS

Color internals

𝑓𝑐𝑥 𝑓𝑐𝑦 𝑢𝑐0 𝑣𝑐0

532.90

0.06

531.39

0.05
318.57

±0.07

262.08

±0.07

𝑘1 𝑘2 𝑘3 𝑘4

0.2447

±0.0004

-0.5744

±0.0017

0.0029

±0.0001

0.0065

±0.0001

TABLE II: DEPTH CAMERA INTERNAL COEFFICIENTS

Depth internals

𝑓𝑑𝑥 𝑓𝑑𝑦 𝑢𝑑0 𝑣𝑑0

593.36

1.81

582.74

2.48

322.69

1.34

231.48

1.59

TABLE III: RELATIVE POSE BETWEEN COLOR AND DEPTH CAMERA

Relative pose (rad, mm)

𝜃𝑟 𝑡𝑟𝑥 𝑡𝑟𝑦 𝑡𝑟𝑧

0.024

0.003

-21.4

1.5

0.7

1.5

1.0

1.9

III. METHODS

In this part, we describe the entire workflow of our

reconstruction system. Fig. 6 provides an overview of our

whole method in block form. It comprise the following four

steps:

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

568

Fig. 6. Overview of the system workflow.

Surface measurement: In this pre-processing stage, first we

obtain the raw depth measurements from the Kinect Sensor.

After doing some pre-process, we project the data back into

the space to generate the dense point-cloud and calculate its

corresponding normal map.

Sensor pose estimation: The sensor pose tracking is

achieved using ICP alignment [7] between current frame and

the previous frame. Then we apply the transform matrix to

the point-cloud to get the global coordinate system.

Global model update: By tracking the sensor pose of each

frame, the surface measurement is integrated into the global

model using a volumetric method describe in[8].

Surface extraction: After fusing all the depth data obtained,

we extract the surface from the global model, save it and

render it to the screen.

A. Surface Measurement

According to our experiments and analysis, we find that

the gross error of depth data of Kinect sensor can be

categorized into two types. The first will appear when the

edges of object surface are scanned, and the second will come

when some objects that are not well reflective are scanned,

e.g. some metal or glass surface. In addition, small Gaussian

noises exist in the depth map, which will make the

reconstructed surface unsmooth if they are not reduced.

Gross error when scanning the edge of object surface:

Same with LIDAR, the infrared light emitted from Kinect

sensor will not be well reflected when encountering some

sharp object or the edge of surface. This will result in an

unreliable data of the edge, e.g. a smooth linear edge appear

to be unsmooth in the depth image obtained from Kinect

sensor. When we perform the registration and fusion of the

depth data, this kind of gross error will severely harm the

result because we cannot assure whether the points near the

edge is behind or in front of the surface.

Gross error when scanning objects that are not well

reflective: When encountering some specular objects such as

metal or glass, e.g. the monitor of computer, Kinect senor can

hardly detect the depth data of these surfaces because these

types of material do not reflect the infrared light, so no

structured-light depth reading was possible. As a result, the

depth image contains numerous holes where the data are

missing.
Facing the challenges described above, we need to do

some pre-process to reduce the noises and eliminate the gross

error every time we obtain a raw depth map. We apply a

bilateral filter[9] to the raw depth map to reduce the Gaussian

noises and eliminate the gross error caused by sharp edges.

As to the holes (missing data areas), we solve this problem in

the fusion part of our system. After the pre-process, we

generate the point-cloud and its corresponding normal map.

1) Bilateral filter

In the bilateral filter, the output pixel value depends on the

weighted combination of neighboring pixel value:

 𝑔 ⅈ, 𝑗 =
𝛴𝑘 ,𝑙𝑓 𝑘 ,𝑙 𝜔 ⅈ,𝑗 ,𝑘 ,𝑙

𝛴𝑘 ,𝑙𝜔 𝑖,𝑗 ,𝑘 ,𝑙
 (1)

The weight in the formula above depends upon the domain

kernel and the data-dependent range kernel. We can yield the

data-dependent bilateral weight function by multiplying the

two kernels:

 𝜔 ⅈ, 𝑗, 𝑘, 𝑙 = exp(−
 𝑖−k 2+ j−l 2

2𝜎𝑑
2 −

 𝑓 𝑖,𝑗 −𝑓(k,l) 2

2𝜎𝑟
2) (2)

In our system, we let the size of window of the filter to be

9-11, 𝜎𝑑 to be 150 and 𝜎𝑟 to be 50.

2) Acquisition of point-cloud and normal

We use a matrix K to represent the camera calibration

matrix of the depth camera. At time k, the raw depth map 𝑅𝑘

provides the depth measurement 𝑅𝑘 𝑢 at each image pixel u.

we also represent the camera pose by a transformation matrix

𝑇𝑔 ,𝑘 where R and t stand for the 3DOF rotation matrix and the

3DOF translation matrix, respectively.

 𝐾 =
𝑓𝑑𝑥 0 𝑢𝑑0

0 𝑓𝑑𝑦 𝑣𝑑0

0 0 1

 (3)

 𝑇𝑔 ,𝑘 =
𝑅𝑔 ,𝑘 𝑡𝑔,𝑘

0 1
 (4)

 𝑢 = 𝑢, 𝑣 𝑇 ,𝑢 = 𝑢𝑇 1 𝑇 (5)

We use 𝑢 to represent the corresponding homogeneous

vector of u. The relation between a point 𝑉𝑘 𝑢 = 𝑥,𝑦, 𝑧 𝑇

in 3D space and its corresponding image pixel 𝐮 is：

𝑉𝑘 𝑢 = 𝑅𝑘 𝑢 𝐾
−1𝑢

Now we back-project the filtered depth values into the

sensor’s scanning space to obtain the point-cloud 𝑉𝑘 . Since

the depth image from the depth sensor is a surface

measurement on a regular grid, we can use a cross product

between neighboring map vertices to compute the

corresponding normal vectors:

 𝑁𝑘 𝑢 = 𝑉𝑘 𝑢 + 1, 𝑣 − 𝑉𝑘 𝑢, 𝑣 × 𝑉𝑘 𝑢, 𝑣 + 1 −

𝑉𝑘𝑢,𝑣 (6)

Then normalize the vector:

 𝑁𝑘 𝑢 = 𝑁𝑘 𝑢 / 𝑁𝑘 𝑢 2 (7)

Another option to obtain the point-cloud directly is to use

the OpenNI[10] Library, which can deals with the Microsoft

Kinect sensor.

B. Sensor Pose Estimation

After we generate the point-cloud, the next step in

processing is the registration of partial 3D surface models, i.e.

we need to estimate the 3D rigid transformation matrix of the

sensor pose and transform the point-cloud into the global

system coordinate[11]. Since iteration is needed in the

traditional ICP algorithm, which is commonly used in

accurate registration, we usually use a feature based

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

569

registration algorithm to get the initial rough value. For

example, optical flow estimation in RGB frame can be used

to track point features between two neighboring frames, then

the initial relative transformation matrix can be obtained by a

RANSAC[12] based alignment, after which the ICP

alignment is used to get the accurate sensor pose.

In our system, we utilize the high frame rate of the depth

data stream, which result in a high overlap between

neighboring frames. So in practice, we simply let the initial

matrix to be the identity matrix and perform the frame to

frame ICP alignment. After we get the transformation matrix

between two neighboring frames, which is called the relative

orientation, we compute the global transformation of frame k

by multiplying the global transformation 𝑇𝑔 ,𝑘−1 of frame k-1

and the relative transformation 𝑇𝑟 ,𝑘 between frame k and k-1.

Thus the global coordinate of point-cloud generated from

frame k can be get.

 𝑉𝑔 ,𝑘 = 𝑇𝑔 ,𝑘 ∙ 𝑉𝑘 (8)

 𝑇𝑔 ,𝑘 = 𝑇𝑔 ,𝑘−1 ∙ 𝑇𝑟 ,𝑘 (9)

1) ICP algorithm

The basic principle of ICP algorithm [7] is to find the

rotation and translation parameters between two point-clouds

or surfaces during iterations.

The rotation parameters is represent by the unit quaternion,

which is a four vector as follows:

 𝑞𝑅
→

= [𝑞0,𝑞1,𝑞2,𝑞3] (10)

𝑅

=

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞2

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 + 𝑞2

2 − 𝑞1
2 − 𝑞2

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 + 𝑞3

2 − 𝑞1
2 − 𝑞2

2

 (11)

The translation parameters is:

 𝑞𝑇
→

= 𝑞4,𝑞5,𝑞6 (12)

Thus, the complete registration state vector 𝑞
→

 is:

 𝑞
→

= [𝑞𝑅
→

|𝑞𝑇
→

]𝑇 (13)

During the registration, let 𝑃 = {𝑝𝑖 } be a measured data

point set to be aligned with a model point set 𝑋 = {𝑥𝑖 }, 𝑁𝑥 be

the model points amount and 𝑁𝑝 be the measured points

amount, where 𝑁𝑥 = 𝑁𝑝 and where each point 𝑝𝑖

corresponds to the point 𝑥𝑖 with the same index. The mean

square objective function to be minimized is:

 𝑓 𝑞 =
1

𝑁𝑝
 𝑥𝑖 − 𝑅 𝑞𝑅 𝑝𝑖 − 𝑞𝑇

2𝑁𝑝
𝑖=1

 (14)

The “center mass” 𝜇 𝑝 of the measured point set 𝑃 is given

by the average value of all of the measured points 𝑝𝑖 , so is the

“center mass” 𝜇 𝑥 of the model point set 𝑋 . The

cross-covariance matrix of the sets 𝑃 and 𝑋 is given by:

𝛴𝑝𝑥 =
1

𝑁𝑝
 𝑝𝑖 − 𝜇 𝑝 (𝑥𝑖 − 𝜇 𝑥)𝑇
𝑁𝑝
𝑖=1

=
1

𝑁𝑝
 𝑝𝑖 𝑥𝑖

𝑇

𝑁𝑝
𝑖=1

−

𝜇 𝑝𝜇 𝑥
𝑇
 (15)

The cyclic components of the anti-symmetric matrix 𝐴𝑖,𝑗

are used to form the column vector 𝛥 = 𝐴2,3 𝐴3,1 𝐴1,2 ,
this vector is then used to form the symmetric 4 × 4 matrix

𝑄 𝛴𝑝𝑥 :

 𝑄 𝛴𝑝𝑥 =
𝑡𝑟(𝛴𝑝𝑥) 𝛥𝑇

𝛥 𝛴𝑝𝑥 + 𝛴𝑝𝑥
𝑇 − 𝑡𝑟(𝛴𝑝𝑥)𝐼3

 (16)

Next, we apply the transformation to the measured point

data set and compute the mean square distance 𝑓 𝑞 . The

whole steps described above is repeated until the

mean-square error falls below a preset threshold.

2) Global optimization

Accumulation of errors in the frame to frame alignment

can be gradually noticeable when the camera has moved a

relatively long distance from its original place. This will

result in a reconstruction that has two representation in the

same area in different locations. We need to solve this

problem by a global optimization.

Suppose we have n aligned depth frame, first, we detect the

loop closure automatically through point features matching.

Then the global transformation is optimized using a

least-square function:

 𝐹 = 𝑉𝑇𝑃𝑉 (17)

𝑉 = 𝐷1 𝐷2 ⋯ 𝐷𝑛

𝐷𝑘 = 𝐷𝑘 ,1 𝐷𝑘 ,2 ⋯ 𝐷𝑘 ,𝑝

𝐷𝑘 ,𝑖 = 𝑇𝑔 ,𝑘𝑅𝑘 ,𝑖 − 𝑇𝑔 ,𝑘−1𝑅𝑘−1,𝑖 2

 (18)

C. Global Model Update

With the sensor pose estimated, each consecutive depth

frame is fused incrementally into one single surface model

using a volumetric method called truncated signed distance

function[8]. Utilizing the high frame rate of the depth data

stream, we can make use of all of the depth data, so the

system can gradually fill the holes cause by some materials

that does not reflect infrared light well.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

570

where 𝐼3 is the 3 × 3 identity matrix. The unit eigenvector

𝑞𝑅
→

= [𝑞0,𝑞1,𝑞2, 𝑞3] corresponding to the maximum

eigenvalue of the matrix above is selected as the optimal

rotation parameters. Then the translation vector is given by:

𝑞
𝑇

→
= 𝜇

𝑥
− 𝑅 𝑞

𝑅
 𝜇

𝑝
, after which we can get the complete

registration state vector 𝑞
→

.

where 𝑅𝑘 ,𝑖 and 𝑅𝑘−1,𝑖 are the corresponding points in the kth

and k-1th depth frame obtained in the ICP alignment. For the

first frame, the Euclidean distance is computed between the

first and last frame, i.e. 𝐷1,𝑖 = 𝑇𝑔 ,1𝑅1,𝑖 − 𝑇𝑔 ,𝑛𝑅𝑛 ,𝑖 2
. By

minimizing 𝐹 , the distance between corresponding points

will become minimal.

where 𝑞0 ≥ 0 and 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1 . The 3 × 3
rotation matrix can be generated by a unit quaternion as

follows:

1) Volumetric representation

A voxel (volumetric pixel) is a volume element,

representing a value on a regular grid in 3D space. This is

analogous to a pixel, which represents 2D image data in a

digital picture. As with pixels in a digital picture, voxels only

have the relative position based upon other voxels’ position.

In contrast, points or polygons are often explicitly

represented by the coordinates of their vertices.

Shown in Fig. 7, a voxel represents a data point in 3D

space. This data point can contain a single piece of data, such

as color, as well as multiple piece of data, such as opacity,

color and normal vector. Depending on the application area

and the intended use for the data, the value of a voxel may

represent various property. Also, value of points among

voxels can be get via interpolation.

Fig. 7. Volumetric representation of 3D space.

With a resolution of 500×500×500, we choose 2mm as the

side of length of each voxel in our system due to the size of

reconstructed object, i.e. the whole space is 1m3.

2) Truncated signed distance function

Article[8] present a weighted signed distance function

D 𝑥 as follows:

 𝐷 𝑥 =
 𝑤 𝑖 𝑥 𝑑𝑖 𝑥

 𝑤 𝑖 𝑥
 (19)

 𝑊 𝑥 = 𝑤𝑖 𝑥 (20)

where x represent a point in 3D space, 𝑑𝑖 𝑥 is the signed

distance function from the ith range image and 𝑤𝑖 𝑥 is the

weight function. The signed distance mentioned above is the

distance of each point x to the nearest range surface along the

line of sight to the sensor. Combining the two functions 𝑑𝑖 𝑥
and 𝑤𝑖 𝑥 , we can construct the weighted signed distance

function, which gives us each voxel a cumulative signed

distance function, 𝐷 𝑥 , and a cumulative weight 𝑊 𝑥 . For

example, in our system, each voxel value contains a distance

and weight, i.e. the distance to the nearest surface and its

corresponding weight. We can extract the 3D surface model

by solving 𝐷 𝑥 = 0.

Fig. 8 illustrates the principle of unweighted signed

distance function. A range sensor looking down the x-axis

observes a range image. Following one line of sight down the

x-axis, the space in front of the surface has a negative

distance while the behind has a positive distance. Note that

when the weight is 1, the resulting surface would be the

surface created by averaging the two range surfaces along the

sensor’s lines of sight. In general, the weights should be

specific to the range sensor, e.g. we can make the weight

depend on the dot product between each vertex normal and

the viewing direction for some range sensor[8].

Fig. 8. Principle of unweighted signed distance function.

For each depth frame with the absolute orientation

estimated, we fuse them incrementally following the rules as

follows:

 𝐷𝑖+1 𝑥 =
𝑊𝑖 𝑥 𝐷𝑖 𝑥 +𝑤𝑖+1 𝑥 𝑑𝑖+1 𝑥

𝑊𝑖 𝑥 +𝑤𝑖+1 𝑥
 (21)

 𝑊𝑖+1 𝑥 = 𝑊𝑖 𝑥 + 𝑤𝑖+1 𝑥 (22)

where 𝐷𝑖 𝑥 and 𝑊𝑖 𝑥 are the cumulative signed distance

functions and weight functions after fusing the ith range

image. In principle, the distance and weighting functions

should extend indefinitely in either direction. However, to

prevent surfaces on opposite sides of the object from

interfering with each other, we force the weight to taper off

behind the surface. i.e. the distance functions should be

truncated at a certain distance, e.g. the half the maximum

uncertainty interval of the range measurements as described

in [8]. In practice, we also just let 𝑊𝑅𝑘
 𝑥 = 1, which can

provides a good results in the experiments.

When computing the signed distance, we use a projective

truncated signed distance function[13] that is trivially

parallelizable, which can boost our system efficiently in the

future if we take advantages of GPU programming. For a raw

depth map 𝑅𝑘 , the signed distance at point p is computed as

follows:

 𝐹𝑅𝑘 𝑝 = 𝜓 𝜆−1 𝑡𝑔 ,k − p 2 − 𝑅𝑘 x (23)

 λ = 𝐾−1𝑥 2 (24)

 x = ⌊π K𝑇𝑔 ,k
−1p ⌋ (25)

 𝜓 𝜂 =
𝑚𝑖𝑛 1,

𝜂

𝜇
 𝑠𝑔𝑛 𝜂 , 𝜂 ≥ −μ

null, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 (26)

where 𝐾 is the depth camera calibration matrix, 𝑇 is the

camera pose matrix, 𝑅𝑘 is the depth image at time k, 𝜋(𝑥)

performs perspective projection of 𝑥, 𝜆−1 converts the ray

distance to 𝑝 to a depth and 𝜓 𝜂 performs the SDF

truncation. In order to prevent smearing of measurements at

depth discontinuities, we use the nearest neighbor lookup ⌊x⌋
instead of interpolating the depth value[13].

Now we summarize the whole algorithm used in our

system as follows: First, we apply the inverse of global

transformation matrix of frame k to the volumetric grid to

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

571

transform its coordinate to current frame coordinate. Next,

we project each voxel p onto the image plane of the depth

sensor to get its corresponding image pixel x using the nearest

neighbor lookup method. Then, we compute signed distance

by calculating the difference between the depth of each voxel

p and the depth 𝑅𝑘 x of its corresponding image pixel x.

Finally, we perform the truncation of the signed distance.

D. Surface Extraction

It is obvious that the distance between the point on the

surface and the surface is zero. So we can extract the surface

by finding the points that satisfy 𝐹 𝑥 = 0. Given the SDF

representation, two main approaches to obtaining the surface

have been extensively studied within the graphics community.

One is the marching cubes algorithm[14]. Alternatively, the

surface can be directly raycast using the algorithm described

in[15]. Advantage of the former option is that we can obtain

the whole 3D reconstruction result of the scanning scene,

which is useful if we want to build a real 3D model of the

objects, such as a human head. On the other hand, the latter

option can avoid the need to visit areas of the function that are

outside the desired view frustum. This is necessary in the

sensor pose estimation part of the reconstruction workflow if

we want to perform the frame to global registration.

In our system, we use an option different from the

approaches described above to obtain the surface. Every time

we update the global TSDF, each voxel is projected onto the

image plane of the depth sensor to get its corresponding

image pixel 𝐱 = ⌊π K𝑇𝑔,k
−1p ⌋ then the signed distance is

computed. At the same time, with the normal map computed

in the pre-process stage, we use the normal of x to represent

the normal of the projected voxel using the similar formula as

follows:

 𝑁 𝑥 =
𝑊𝑖 𝑥 𝑁𝑖 𝑥 +𝑤 𝑖+1 𝑥 𝑛𝑖+1 𝑥

𝑊𝑖 𝑥 +𝑤 𝑖+1 𝑥
 (27)

For a voxel representing point p, the surface it contains is:

 𝑆 𝑝 = 𝑝 + 𝑁 𝑝 ∙ F 𝑝 (28)

 However, if the surface extracted is outside the voxel, we

do not accept it.

IV. EXPERIMENT

Kinect for Windows SDK[4], OpenCV library[16] and

Point Cloud Library[17] is used for implementing the

algorithm described in this paper. First, we obtain the raw

depth map from Kinect sensor using Kinect SDK, then apply

the bilateral filter function in OpenCV to the raw depth map,

next we generate the point-cloud and normal map from the

filtered depth map as shown in Fig. 9-10.

Fig. 9. Raw depth map and color image

Fig. 10. Point-cloud obtained from raw depth map

Next we perform the registration between neighboring

frames using ICP algorithm. Then, with the camera pose of

each frame estimated, we fuse the depth data using TSDF.

Fig. 11 presents the comparison between the point-cloud

generated from raw depth map and from the fused model.

Fig. 11. Point-clouds generated from raw depth map(right) and from fused

model(left)

It is apparent that the fused model is much smoother than

the original one.

Finally, the complete rendered model is presented as

follows:

Fig. 12. The complete model.

V. CONCLUSION

With the arrival of Microsoft Kinect sensor, its huge

market potential will open up many new possibilities for

augmented reality, human-computer-interaction and other

field. In this paper, we present a workflow to reconstruct

small 3D objects. Four major steps in our system are: 1>Data

acquisition from Kinect sensor and pre-process;

2>Registration of the point-cloud to get the camera pose;

3>Integration of the depth data using a volumetric method;

4>3D surface extraction.

There are several ways in which our system could be

improved.

A. Frame-Model Registration

The frame to frame registration strategy used in our system

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

572

will result in a rapid accumulation of errors and a poor 3D

reconstruction quality, because the accuracy of pose

estimation is affected by the pose of previous frame. Thus a

circular trajectory of the sensor is needed and we detect the

loop closure to perform a global optimization[18].

However, the frame to model registration strategy[13]

does not require explicit global optimization since the loop is

closed between mapping and localization by tracking the live

depth frame against the global TSDF model. Utilizing the ray

cast method[15], we can provide a dense surface prediction

against which the live depth map is aligned.

B. Parallel Processing

Currently, research on simultaneous localization and

mapping (SLAM) has focused more on real-time tracking

and reconstruction. Parallelizing the process is the essential

ideal for real-time reconstruction. Taking advantage of

GPGPU processing hardware, we can easily parallelize the

algorithms used in our system, such the registration and

fusion part. For example, A GPU-Accelerated nearest

neighbor search method[19] can be used in our ICP

alignment algorithm. Moreover, NVIDIA’s CUDA[20] and

the GPU version function of OpenCV[16] are also helpful in

enhancing the performance of our system.

C. Large-Scale Reconstruction

The current system only works well for reconstructing

small size objects with volumes of < 5m3. Several

challenging problems exist if we want to reconstruct

large-scaled models such as the interior scene of a building.

One is that the current volumetric representation would

require too much computer memory. The other is how to

perform automatic relocalization when the tracking has

failed.

ACKNOWLEDGMENT

Thanks to our roommates for your help in our experiment.

Thanks to Wuhan University for offering us a good

environment for study and experiment. Thanks to the

Microsoft for developing such a revolutionary product.

REFERENCES

[1] Z. Zhang, “Digital photogrammetry and computer vision,” Geomatics

and Information Science of Wuhan University, vol. 29, no. 12, pp.

1035-1039, 2004.

[2] Y. Feng. Close Range Photogrammetry. Wuhan: Wuhan University,

2002, pp. 7-8.

[3] M. Liao, Q. Zhang, H. Wang, R. Yang, and M. Gong, “Modeling

deformable objects from a single depth camera,” in Proceedings of the

International Conference on Computer Vision, 2009.

[4] Kinect for Windows SDK Documentation (2012). [Online]. Available:

http://msdn.microsoft.com/en-us/library/hh855347.aspx/

[5] C. D. Herrera, J. Kannala, and J. Heikkila, “Accurate and practical

calibration of a depth and color camera pair,” in Proceedings of

Computer Analysis of Images and Patterns, 2011.

[6] K. Khoshelham, “Accuracy analysis of kinect depth data,” in

Proceedings of ISPRS Workshop Laser Scanning, 2011.

[7] P. J. Besl and H. D. M. Kay, “A method for registration of 3-D shapes,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

14, no. 2, pp. 239 - 256, 1992.

[8] B. Curless and M. Levoy, “A volumetric method for building complex

models from range images,” in Proceedings of the Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH),

1996.

[9] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color

images,” in Proceedings of International Conference on Computer

Vision, 1998.

[10] OpenNI (Open Natural Interaction) Programmer Guide. [Online].

Available: http://openni.org/Documentation/ProgrammerGuide.html,

2012.

[11] R. Szeliski, Computer Vision: Algorithms and Applications. Springer,

2010, pp. 588-589.

[12] M. A. Fischler and R. C. Bolles, “Random sample consensus: A

paradigm for model fitting with applications to image analysis and

automated cartography,” Communications of the ACM, vol. 24, no. 6,

pp. 381-395, 1981.

[13] R. A. Newcombe, S. Izadi, O. Hilliges et al., “Kinect fusion: Real-time

dense surface mapping and tracking,” in Proceedings of the

International Symposium on Mixed and Augmented Reality (ISMAR),

2011.

[14] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution

3D surface construction algorithm,” in Proceedings of the Annual

Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH), 1987.

[15] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan, “Interactive

ray tracing for isosurface rendering,” in Proceedings of the Conference

on Visualization, 1998.

[16] G. Bradski. The OpenCV Library. Dr. Dobbs Journal of Software

Tools, Nov 2000, pp. 120–126.

[17] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in

Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA ’11), Shanghai, China, May 2011.

[18] P. Henry, M. Krainin, E. Herbst et al., “RGB-D mapping: Using depth

cameras for dense 3D modeling of indoor environments,” in

Proceedings of the International Symposium on Experimental Robotics,

2010.

[19] D. Qiu, S. May, and A. Nüchter, “GPU-accelerated nearest neighbor

search for 3D registration,” in Proceedings of the International

Conference on Computer Vision Systems, 2009.

[20] NVIDIA CUDA (Compute Unified Device Architecture).

Programming Guide. [Online]. Available:

http://docs.nvidia.com/cuda/index.html, 2012.

T. Song was born in Nanjing, at December 9, 1990. He will get a Bachelor of

Engineering degree in Photogrammetry at Wuhan University in June, 2013.

He is now with the School of Remote Sensing and Information Engineering,

Wuhan University, Wuhan, Hubei 430070 China. His area of interests are

Computer Programming, Close-Range Photogrammetry, Image Processing,

Computer Vision and Software Engineering.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

573

