
  

 

Abstract—Traditional accurate 3D reconstruction can be 

roughly divided into two categories according to types of sensor. 

One is through expensive laser scanner, and the other is by 

photogrammetry, which perform the reconstruction using 

photos taken from different angles. However, in recent years, 

the rapid development of depth camera has threw some new 

light upon the field.  In this paper, we present a 3D 

reconstruction plan for indoor scenes using a very low-cost 

depth camera, the Microsoft Kinect sensor. Our system include 

four steps: data preprocessing, pose estimation of the sensor, 

fusion of the depth data, 3D surface extraction. Firstly, we 

project each frame of depth data back into the space to obtain 

the point-cloud. Secondly, estimate the sensor pose using ICP 

algorithm. Thirdly, fuse all of the depth data using a volumetric 

method, and finally extract 3D surface from the global model. 

 
Index Terms—3D reconstruction, 3D registration, depth 

camera, kinect sensor, volumetric representation. 

 

I. INTRODUCTION 

In this paper, we begin with the introduction of Microsoft 

Kinect Sensor, then describe the 3D reconstruction route we 

adopted. Kinect Sensor reaches a depth measurement 

accuracy of 4 millimeters at a relatively wide range from 0.8 

to 3.5 meters, and can generates the depth image at a rate of 

30 frames per second. With all these characteristics and a 

market price lower than $200($250 for the new Windows 

version), Kinect Sensor suddenly become a consumer-level 

product, making it possible for almost everyone to afford and 

doing researches. 

 

II. BACKGROUND 

A. Methods for 3D Reconstruction 

According to the equipment used, traditional methods for 

acquiring dense point-cloud of object can be categorized into 

two main streams. i.e. the multi-view stereo route and the 3D 

laser scanner route. However, gradually developed in the 

recent ten years, depth camera has become one of the popular 

3D measurement equipment with advantages of its small size 

and ability to perform real-time data acquisition. 

1) Multi-view stereo 

Stereo matching is the process of taking two or more 

images of the same object from different views with a certain 

degree of overlap, finding corresponding points within the 

overlapping region to estimate the relative position of the 

cameras and reconstructing the 3D coordinate of the object.  

Its principle is shown in Fig. 1. This method has been widely 

used in photogrammetry since the analytical photogrammetry 

became popular in the 1980s[1]. The basic workflow of 
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stereo matching is of two steps. The first step is to estimate 

the 3D pose of the camera, which is also known as relative 

orientation. Following that, with certain control information, 

such as control points, we acquire 3D spatial coordinate of 

the measured point using space intersection. 

As a matter of fact, many sorts of factors influence the final 

accuracy [2], which can be classified on the basis of 

processing procedure as follows: First, the quality of the 

image point coordinate, such as the performance of the 

camera and the accuracy of the calibration. Second, shooting 

condition, method and way of control, such as the length of 

the baseline and the distribution of the control points. Third, 

the performance of the image processing and 

photogrammetry processing software and hardware based. 

 

Fig. 1. Principles of multi-view stereo. 

2) Laser scanner 

Basic structures of a laser scanner includes laser light 

source that can beam laser, sensor that measures the distance 

to the surface, control unit and so on. Almost all types of laser 

scanner measure the distance by timing the round-trip time of 

a pulse of light, which is called the time of flight method as 

shown in Fig. 2. i.e., a laser is used to emit a pulse of light and 

the amount of time before the reflected light is seen by a 

detector is timed. Since light travels too fast, thus the 

requirement for measurement of the time must be extremely 

strict, which lead to the high price of laser scanner, ranging 

from $10,000 to $10,000,000. However, the accuracy of laser 

scanner is very attractive, ranging from millimeter level to 

micron or even sub-micron level.  Limited by its price and 

principle, laser scanner usually serves in industrial 

measurement and large enterprises. 

 

Fig. 2. Principles of laser scanner. 

3) Depth camera 

Depth camera can collect video the same as a general RGB 

camera, the only difference lies in the pixel of the image 

taken by the depth camera: rather than the color of objects, it 

takes down the distance (depth) between the object and the 
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camera on the basis of TOF, as is shown in Fig. 3. The most 

influential depth camera is perhaps Mesa Imaging 

SwissRanger 4000(SR4000), which has a scan range of 5 to 8 

meters, 176×144 pixel resolution and can operates up to 

54fps.  Different from laser scanner, the portability and 

real-time response of depth camera bring entirely new 

opportunity for the development of Simultaneous 

Localization and Mapping (SLAM), and Augmented Reality 

(AR), so does other application field[3]. With the arrival of 

Microsoft’s Kinect sensor, its low price, only $200, quickly 

makes it accessible consumer-level product. In addition, this 

year’s new version of Kinect, Kinect for Windows, and the 

release of brand new SDK[4] all provide an improved base 

for individual study. 

 

Fig. 3. Principles of depth camera. 

B. Kinect Sensor 

On June 13, 2010, when an event called the "World 

Premiere 'Project Natal' for the Xbox 360 Experience" was 

held by Microsoft, It was announced that the motion sensing 

device serving as the external equipment of Xbox360 was 

officially called Kinect. Instead of using a mouse and a 

keyboard, or any other remote controller, Kinect drastically 

changed the conventional way people interact with computer 

by solely depending on capturing the user’s motion, allowing 

them to control the computer or Xbox360 using their own 

body movements. 

As is shown in Fig. 4, Kinect consists of three sensors: an 

ordinary RGB camera in the middle, an IR light emitter on 

the left that beams infrared light speckle into space, and a 

monochrome CMOS sensor on the very right that captures 

the reflected light. The depth measurement adopted by Kinect 

sensor is a light-coding technique. Unlike conventional TOF 

or structure light method, light-coding technique only require 

an ordinary CMOS sensor rather than a specially made sensor, 

which drastically lower the cost of the device. In fact, the 

so-called light-coding technique is still a kind of structure 

light technique, which code the target environment by the 

light source. Kinect’s IR light emitter can beam a series of 

infrared light speckle with the shape of the reflected light 

changing on the basis of the distance. i.e., each shape of the 

speckle pattern within the environment is unique. All these 

recognizing and storage work can be finished in a very short 

time, thus making it possible for Kinect to generate depth 

map at the rate of 30Hz. Also, its principle of measurement 

allow it to work under any ambient light conditions. 

In February 2012, Microsoft launched a new version of the 

device, Kinect for Windows. Compared with the old version 

with Xbox360, the accuracy of depth measurement is 

improved, a near-mode is added which allow the sensor to 

measure depth from 0.4m to 3m, all of which make it more 

suitable for 3D-reconstruction of smaller objects. 

 

Fig. 4. The Microsoft Kinect sensor. 

The standard deviation of depth error and the calibration 

result of the Kinect (Xbox360 version) are provided by some 

previous studies[5]-[6], shown in table 1-3 and Fig. 5 where 

𝐾 =  𝑘1, 𝑘2,𝑘3,𝑘4  are the lens distortion parameters. 

 

Fig. 5. Standard deviation of plane fitting residuals at different distances of 

the plane to the sensor. 

 

TABLE I: COLOR CAMERA INTERNAL COEFFICIENTS 

Color internals 

𝑓𝑐𝑥  𝑓𝑐𝑦  𝑢𝑐0 𝑣𝑐0 

532.90 

0.06 

531.39 

0.05 
318.57 

±0.07 

262.08 

±0.07 

𝑘1 𝑘2 𝑘3 𝑘4 

0.2447 

±0.0004 

-0.5744 

±0.0017 

0.0029 

±0.0001 

0.0065 

±0.0001 

 

TABLE II: DEPTH CAMERA INTERNAL COEFFICIENTS 

Depth internals 

𝑓𝑑𝑥  𝑓𝑑𝑦  𝑢𝑑0 𝑣𝑑0 

593.36 

1.81 

582.74 

2.48 

322.69 

1.34 

231.48 

1.59 

 

TABLE III: RELATIVE POSE BETWEEN COLOR AND DEPTH CAMERA 

Relative pose (rad, mm) 

𝜃𝑟  𝑡𝑟𝑥  𝑡𝑟𝑦  𝑡𝑟𝑧  

0.024 

0.003 

-21.4 

1.5 

0.7 

1.5 

1.0 

1.9 

 

III. METHODS 

In this part, we describe the entire workflow of our 

reconstruction system. Fig. 6 provides an overview of our 

whole method in block form. It comprise the following four 

steps: 
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Fig. 6. Overview of the system workflow. 

 

Surface measurement: In this pre-processing stage, first we 

obtain the raw depth measurements from the Kinect Sensor. 

After doing some pre-process, we project the data back into 

the space to generate the dense point-cloud and calculate its 

corresponding normal map. 

Sensor pose estimation: The sensor pose tracking is 

achieved using ICP alignment [7] between current frame and 

the previous frame. Then we apply the transform matrix to 

the point-cloud to get the global coordinate system. 

Global model update: By tracking the sensor pose of each 

frame, the surface measurement is integrated into the global 

model using a volumetric method describe in[8]. 

Surface extraction: After fusing all the depth data obtained, 

we extract the surface from the global model, save it and 

render it to the screen. 

A. Surface Measurement 

According to our experiments and analysis, we find that 

the gross error of depth data of Kinect sensor can be 

categorized into two types. The first will appear when the 

edges of object surface are scanned, and the second will come 

when some objects that are not well reflective are scanned, 

e.g. some metal or glass surface. In addition, small Gaussian 

noises exist in the depth map, which will make the 

reconstructed surface unsmooth if they are not reduced.  

Gross error when scanning the edge of object surface: 

Same with LIDAR, the infrared light emitted from Kinect 

sensor will not be well reflected when encountering some 

sharp object or the edge of surface. This will result in an 

unreliable data of the edge, e.g. a smooth linear edge appear 

to be unsmooth in the depth image obtained from Kinect 

sensor. When we perform the registration and fusion of the 

depth data, this kind of gross error will severely harm the 

result because we cannot assure whether the points near the 

edge is behind or in front of the surface. 

Gross error when scanning objects that are not well 

reflective: When encountering some specular objects such as 

metal or glass, e.g. the monitor of computer, Kinect senor can 

hardly detect the depth data of these surfaces because these 

types of material do not reflect the infrared light, so no 

structured-light depth reading was possible. As a result, the 

depth image contains numerous holes where the data are 

missing. 
Facing the challenges described above, we need to do 

some pre-process to reduce the noises and eliminate the gross 

error every time we obtain a raw depth map. We apply a 

bilateral filter[9] to the raw depth map to reduce the Gaussian 

noises and eliminate the gross error caused by sharp edges. 

As to the holes (missing data areas), we solve this problem in 

the fusion part of our system. After the pre-process, we 

generate the point-cloud and its corresponding normal map. 

1) Bilateral filter 

In the bilateral filter, the output pixel value depends on the 

weighted combination of neighboring pixel value:  

 𝑔 ⅈ, 𝑗 =
𝛴𝑘 ,𝑙𝑓 𝑘 ,𝑙 𝜔 ⅈ,𝑗 ,𝑘 ,𝑙 

𝛴𝑘 ,𝑙𝜔 𝑖,𝑗 ,𝑘 ,𝑙 
 (1) 

The weight in the formula above depends upon the domain 

kernel and the data-dependent range kernel. We can yield the 

data-dependent bilateral weight function by multiplying the 

two kernels:  

 𝜔 ⅈ, 𝑗, 𝑘, 𝑙 = exp(−
 𝑖−k 2+ j−l 2

2𝜎𝑑
2 −

 𝑓 𝑖,𝑗  −𝑓(k,l) 2

2𝜎𝑟
2 )  (2) 

In our system, we let the size of window of the filter to be 

9-11, 𝜎𝑑  to be 150 and 𝜎𝑟  to be 50. 

2) Acquisition of point-cloud and normal 

We use a matrix K to represent the camera calibration 

matrix of the depth camera. At time k, the raw depth map 𝑅𝑘  

provides the depth measurement 𝑅𝑘 𝑢  at each image pixel u. 

we also represent the camera pose by a transformation matrix 

𝑇𝑔 ,𝑘  where R and t stand for the 3DOF rotation matrix and the 

3DOF translation matrix, respectively.  

 𝐾 =  
𝑓𝑑𝑥 0 𝑢𝑑0

0 𝑓𝑑𝑦 𝑣𝑑0

0 0 1

    (3) 

 𝑇𝑔 ,𝑘 =  
𝑅𝑔 ,𝑘 𝑡𝑔,𝑘

0 1
                    (4) 

 𝑢 =  𝑢, 𝑣 𝑇 ,𝑢 =  𝑢𝑇 1 𝑇 (5) 

We use 𝑢  to represent the corresponding homogeneous 

vector of u. The relation between a point 𝑉𝑘 𝑢 =  𝑥,𝑦, 𝑧 𝑇 

in 3D space and its corresponding image pixel 𝐮  is： 

𝑉𝑘 𝑢 = 𝑅𝑘 𝑢 𝐾
−1𝑢  

Now we back-project the filtered depth values into the 

sensor’s scanning space to obtain the point-cloud 𝑉𝑘 . Since 

the depth image from the depth sensor is a surface 

measurement on a regular grid, we can use a cross product 

between neighboring map vertices to compute the 

corresponding normal vectors:  

 𝑁𝑘 𝑢 =  𝑉𝑘 𝑢 + 1, 𝑣 − 𝑉𝑘 𝑢, 𝑣  ×  𝑉𝑘 𝑢, 𝑣 + 1 −

𝑉𝑘𝑢,𝑣  (6) 

Then normalize the vector: 

 𝑁𝑘 𝑢 = 𝑁𝑘 𝑢 / 𝑁𝑘 𝑢  2 (7) 

Another option to obtain the point-cloud directly is to use 

the OpenNI[10] Library, which can deals with the Microsoft 

Kinect sensor. 

B. Sensor Pose Estimation 

After we generate the point-cloud, the next step in 

processing is the registration of partial 3D surface models, i.e. 

we need to estimate the 3D rigid transformation matrix of the 

sensor pose and transform the point-cloud into the global 

system coordinate[11]. Since iteration is needed in the 

traditional ICP algorithm, which is commonly used in 

accurate registration, we usually use a feature based 
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registration algorithm to get the initial rough value. For 

example, optical flow estimation in RGB frame can be used 

to track point features between two neighboring frames, then 

the initial relative transformation matrix can be obtained by a 

RANSAC[12] based alignment, after which the ICP 

alignment is used to get the accurate sensor pose.  

In our system, we utilize the high frame rate of the depth 

data stream, which result in a high overlap between 

neighboring frames. So in practice, we simply let the initial 

matrix to be the identity matrix and perform the frame to 

frame ICP alignment. After we get the transformation matrix 

between two neighboring frames, which is called the relative 

orientation, we compute the global transformation of frame k 

by multiplying the global transformation 𝑇𝑔 ,𝑘−1 of frame k-1 

and the relative transformation 𝑇𝑟 ,𝑘  between frame k and k-1. 

Thus the global coordinate of point-cloud generated from 

frame k can be get. 

 𝑉𝑔 ,𝑘 = 𝑇𝑔 ,𝑘 ∙ 𝑉𝑘     (8) 

 𝑇𝑔 ,𝑘 = 𝑇𝑔 ,𝑘−1 ∙ 𝑇𝑟 ,𝑘  (9) 

1) ICP algorithm 

The basic principle of ICP algorithm [7] is to find the 

rotation and translation parameters between two point-clouds 

or surfaces during iterations.  

The rotation parameters is represent by the unit quaternion, 

which is a four vector as follows:  

 𝑞𝑅
→

= [𝑞0,𝑞1,𝑞2,𝑞3] (10) 

 

 

𝑅

=  

𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞2

2 2(𝑞1𝑞2 − 𝑞0𝑞3) 2(𝑞1𝑞3 + 𝑞0𝑞2)

2(𝑞1𝑞2 + 𝑞0𝑞3) 𝑞0
2 + 𝑞2

2 − 𝑞1
2 − 𝑞2

2 2(𝑞2𝑞3 − 𝑞0𝑞1)

2(𝑞1𝑞3 − 𝑞0𝑞2) 2(𝑞2𝑞3 + 𝑞0𝑞1) 𝑞0
2 + 𝑞3

2 − 𝑞1
2 − 𝑞2

2

  

  (11) 

The translation parameters is: 

 𝑞𝑇
→

=  𝑞4,𝑞5,𝑞6  (12) 

Thus, the complete registration state vector 𝑞
→

 is: 

 𝑞
→

= [𝑞𝑅
→

|𝑞𝑇
→

]𝑇 (13) 

During the registration, let 𝑃 = {𝑝𝑖    } be a measured data 

point set to be aligned with a model point set 𝑋 = {𝑥𝑖    }, 𝑁𝑥  be 

the model points amount and 𝑁𝑝  be the measured points 

amount, where 𝑁𝑥 = 𝑁𝑝  and where each point 𝑝𝑖     

corresponds to the point 𝑥𝑖     with the same index. The mean 

square objective function to be minimized is: 

 𝑓 𝑞  =
1

𝑁𝑝
  𝑥𝑖    − 𝑅 𝑞𝑅      𝑝𝑖    − 𝑞𝑇      

2𝑁𝑝
𝑖=1

 (14) 

The “center mass” 𝜇 𝑝  of the measured point set 𝑃 is given 

by the average value of all of the measured points 𝑝𝑖 , so is the 

“center mass” 𝜇 𝑥  of the model point set 𝑋 . The 

cross-covariance matrix of the sets 𝑃 and 𝑋 is given by: 

𝛴𝑝𝑥 =
1

𝑁𝑝
   𝑝𝑖    − 𝜇 𝑝 (𝑥𝑖    − 𝜇 𝑥)𝑇 
𝑁𝑝
𝑖=1

=
1

𝑁𝑝
  𝑝𝑖    𝑥𝑖    

𝑇
 

𝑁𝑝
𝑖=1

−

𝜇 𝑝𝜇 𝑥
𝑇
  (15) 

The cyclic components of the anti-symmetric matrix 𝐴𝑖,𝑗  

are used to form the column vector 𝛥 =  𝐴2,3 𝐴3,1 𝐴1,2 , 
this vector is then used to form the symmetric 4 × 4 matrix 

𝑄 𝛴𝑝𝑥  :  

 𝑄 𝛴𝑝𝑥  =  
𝑡𝑟(𝛴𝑝𝑥 ) 𝛥𝑇

𝛥 𝛴𝑝𝑥 + 𝛴𝑝𝑥
𝑇 − 𝑡𝑟(𝛴𝑝𝑥)𝐼3

  (16) 

 

 

Next, we apply the transformation to the measured point 

data set and compute the mean square distance 𝑓 𝑞  . The 

whole steps described above is repeated until the 

mean-square error falls below a preset threshold. 

2) Global optimization 

Accumulation of errors in the frame to frame alignment 

can be gradually noticeable when the camera has moved a 

relatively long distance from its original place. This will 

result in a reconstruction that has two representation in the 

same area in different locations. We need to solve this 

problem by a global optimization. 

Suppose we have n aligned depth frame, first, we detect the 

loop closure automatically through point features matching. 

Then the global transformation is optimized using a 

least-square function: 

 𝐹 = 𝑉𝑇𝑃𝑉 (17) 

  

𝑉 =  𝐷1 𝐷2 ⋯ 𝐷𝑛  

𝐷𝑘 =  𝐷𝑘 ,1 𝐷𝑘 ,2 ⋯ 𝐷𝑘 ,𝑝 

𝐷𝑘 ,𝑖 =  𝑇𝑔 ,𝑘𝑅𝑘 ,𝑖 − 𝑇𝑔 ,𝑘−1𝑅𝑘−1,𝑖 2

  (18) 

C. Global Model Update 

With the sensor pose estimated, each consecutive depth 

frame is fused incrementally into one single surface model 

using a volumetric method called truncated signed distance 

function[8]. Utilizing the high frame rate of the depth data 

stream, we can make use of all of the depth data, so the 

system can gradually fill the holes cause by some materials 

that does not reflect infrared light well. 
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where 𝐼3 is the 3 × 3 identity matrix. The unit eigenvector 

𝑞𝑅
→

= [𝑞0,𝑞1,𝑞2, 𝑞3] corresponding to the maximum 

eigenvalue of the matrix above is selected as the optimal 

rotation parameters. Then the translation vector is given by: 

𝑞
𝑇

→
= 𝜇  

𝑥
− 𝑅 𝑞

𝑅
     𝜇  

𝑝
, after which we can get the complete 

registration state vector 𝑞
→

. 

where 𝑅𝑘 ,𝑖 and 𝑅𝑘−1,𝑖 are the corresponding points in the kth 

and k-1th depth frame obtained in the ICP alignment. For the 

first frame, the Euclidean distance is computed between the 

first and last frame, i.e. 𝐷1,𝑖 =  𝑇𝑔 ,1𝑅1,𝑖 − 𝑇𝑔 ,𝑛𝑅𝑛 ,𝑖 2
. By 

minimizing 𝐹 , the distance between corresponding points 

will become minimal.

where 𝑞0 ≥ 0 and 𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1 . The 3 × 3
rotation matrix can be generated by a unit quaternion as 

follows:



  

1) Volumetric representation 

A voxel (volumetric pixel) is a volume element, 

representing a value on a regular grid in 3D space. This is 

analogous to a pixel, which represents 2D image data in a 

digital picture. As with pixels in a digital picture, voxels only 

have the relative position based upon other voxels’ position. 

In contrast, points or polygons are often explicitly 

represented by the coordinates of their vertices. 

Shown in Fig. 7, a voxel represents a data point in 3D 

space. This data point can contain a single piece of data, such 

as color, as well as multiple piece of data, such as opacity, 

color and normal vector. Depending on the application area 

and the intended use for the data, the value of a voxel may 

represent various property. Also, value of points among 

voxels can be get via interpolation. 

 

Fig. 7. Volumetric representation of 3D space. 

 

With a resolution of 500×500×500, we choose 2mm as the 

side of length of each voxel in our system due to the size of 

reconstructed object, i.e. the whole space is 1m3. 

2) Truncated signed distance function 

Article[8] present a weighted signed distance function 

D 𝑥  as follows:  

 𝐷 𝑥 =
 𝑤 𝑖 𝑥 𝑑𝑖 𝑥 

 𝑤 𝑖 𝑥 
                        (19) 

 𝑊 𝑥 =  𝑤𝑖 𝑥                              (20) 

where x represent a point in 3D space, 𝑑𝑖 𝑥  is the signed 

distance function from the ith range image and 𝑤𝑖 𝑥  is the 

weight function. The signed distance mentioned above is the 

distance of each point x to the nearest range surface along the 

line of sight to the sensor. Combining the two functions 𝑑𝑖 𝑥  
and 𝑤𝑖 𝑥 , we can construct the weighted signed distance 

function, which gives us each voxel a cumulative signed 

distance function, 𝐷 𝑥 , and a cumulative weight 𝑊 𝑥 . For 

example, in our system, each voxel value contains a distance 

and weight, i.e. the distance to the nearest surface and its 

corresponding weight. We can extract the 3D surface model 

by solving 𝐷 𝑥 = 0. 

Fig. 8 illustrates the principle of unweighted signed 

distance function. A range sensor looking down the x-axis 

observes a range image. Following one line of sight down the 

x-axis, the space in front of the surface has a negative 

distance while the behind has a positive distance. Note that 

when the weight is 1, the resulting surface would be the 

surface created by averaging the two range surfaces along the 

sensor’s lines of sight. In general, the weights should be 

specific to the range sensor, e.g. we can make the weight 

depend on the dot product between each vertex normal and 

the viewing direction for some range sensor[8]. 

 

Fig. 8. Principle of unweighted signed distance function. 

 

For each depth frame with the absolute orientation 

estimated, we fuse them incrementally following the rules as 

follows: 

 𝐷𝑖+1 𝑥 =
𝑊𝑖 𝑥 𝐷𝑖 𝑥 +𝑤𝑖+1 𝑥 𝑑𝑖+1 𝑥 

𝑊𝑖 𝑥 +𝑤𝑖+1 𝑥 
             (21) 

 𝑊𝑖+1 𝑥 = 𝑊𝑖 𝑥 + 𝑤𝑖+1 𝑥                    (22) 

where 𝐷𝑖 𝑥  and 𝑊𝑖 𝑥  are the cumulative signed distance 

functions and weight functions after fusing the ith range 

image. In principle, the distance and weighting functions 

should extend indefinitely in either direction. However, to 

prevent surfaces on opposite sides of the object from 

interfering with each other, we force the weight to taper off 

behind the surface. i.e. the distance functions should be 

truncated at a certain distance, e.g. the half the maximum 

uncertainty interval of the range measurements as described 

in [8]. In practice, we also just let 𝑊𝑅𝑘
 𝑥 = 1, which can 

provides a good results in the experiments. 

When computing the signed distance, we use a projective 

truncated signed distance function[13] that is trivially 

parallelizable, which can boost our system efficiently in the 

future if we take advantages of GPU programming. For a raw 

depth map 𝑅𝑘 , the signed distance at point p is computed as 

follows: 

 𝐹𝑅𝑘  𝑝 = 𝜓 𝜆−1  𝑡𝑔 ,k − p  2 − 𝑅𝑘 x   (23) 

 λ =  𝐾−1𝑥  2 (24) 

 x = ⌊π K𝑇𝑔 ,k
−1p ⌋ (25) 

 𝜓 𝜂 =  
𝑚𝑖𝑛  1,

𝜂

𝜇
 𝑠𝑔𝑛 𝜂 , 𝜂 ≥ −μ

null, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (26) 

where 𝐾  is the depth camera calibration matrix, 𝑇  is the 

camera pose matrix,  𝑅𝑘  is the depth image at time k, 𝜋(𝑥) 

performs perspective projection of 𝑥, 𝜆−1  converts the ray 

distance to 𝑝  to a depth and 𝜓 𝜂  performs the SDF 

truncation. In order to prevent smearing of measurements at 

depth discontinuities, we use the nearest neighbor lookup ⌊x⌋ 
instead of interpolating the depth value[13]. 

Now we summarize the whole algorithm used in our 

system as follows: First, we apply the inverse of global 

transformation matrix of frame k to the volumetric grid to 
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transform its coordinate to current frame coordinate. Next, 

we project each voxel p onto the image plane of the depth 

sensor to get its corresponding image pixel x using the nearest 

neighbor lookup method. Then, we compute signed distance 

by calculating the difference between the depth of each voxel 

p and the depth 𝑅𝑘 x  of its corresponding image pixel x. 

Finally, we perform the truncation of the signed distance. 

D. Surface Extraction 

It is obvious that the distance between the point on the 

surface and the surface is zero. So we can extract the surface 

by finding the points that satisfy 𝐹 𝑥 = 0. Given the SDF 

representation, two main approaches to obtaining the surface 

have been extensively studied within the graphics community. 

One is the marching cubes algorithm[14]. Alternatively, the 

surface can be directly raycast using the algorithm described 

in[15]. Advantage of the former option is that we can obtain 

the whole 3D reconstruction result of the scanning scene, 

which is useful if we want to build a real 3D model of the 

objects, such as a human head. On the other hand, the latter 

option can avoid the need to visit areas of the function that are 

outside the desired view frustum. This is necessary in the 

sensor pose estimation part of the reconstruction workflow if 

we want to perform the frame to global registration. 

In our system, we use an option different from the 

approaches described above to obtain the surface. Every time 

we update the global TSDF, each voxel is projected onto the 

image plane of the depth sensor to get its corresponding 

image pixel 𝐱 = ⌊π K𝑇𝑔,k
−1p ⌋  then the signed distance is 

computed. At the same time, with the normal map computed 

in the pre-process stage, we use the normal of x to represent 

the normal of the projected voxel using the similar formula as 

follows: 

 𝑁 𝑥 =
𝑊𝑖 𝑥 𝑁𝑖 𝑥 +𝑤 𝑖+1 𝑥 𝑛𝑖+1 𝑥 

𝑊𝑖 𝑥 +𝑤 𝑖+1 𝑥 
 (27) 

For a voxel representing point p, the surface it contains is: 

 𝑆 𝑝 = 𝑝 + 𝑁 𝑝 ∙ F 𝑝  (28) 

 However, if the surface extracted is outside the voxel, we 

do not accept it. 

 

IV. EXPERIMENT 

Kinect for Windows SDK[4], OpenCV library[16] and 

Point Cloud Library[17] is used for implementing the 

algorithm described in this paper. First, we obtain the raw 

depth map from Kinect sensor using Kinect SDK, then apply 

the bilateral filter function in OpenCV to the raw depth map, 

next we generate the point-cloud and normal map from the 

filtered depth map as shown in Fig. 9-10. 

 

Fig. 9. Raw depth map and color image 

 

Fig. 10. Point-cloud obtained from raw depth map 

Next we perform the registration between neighboring 

frames using ICP algorithm. Then, with the camera pose of 

each frame estimated, we fuse the depth data using TSDF. 

Fig. 11 presents the comparison between the point-cloud 

generated from raw depth map and from the fused model. 

 

Fig. 11. Point-clouds generated from raw depth map(right) and from fused 

model(left) 

It is apparent that the fused model is much smoother than 

the original one. 

Finally, the complete rendered model is presented as 

follows: 

 

Fig. 12. The complete model. 

 

V. CONCLUSION 

With the arrival of Microsoft Kinect sensor, its huge 

market potential will open up many new possibilities for 

augmented reality, human-computer-interaction and other 

field. In this paper, we present a workflow to reconstruct 

small 3D objects. Four major steps in our system are: 1>Data 

acquisition from Kinect sensor and pre-process; 

2>Registration of the point-cloud to get the camera pose; 

3>Integration of the depth data using a volumetric method; 

4>3D surface extraction. 

There are several ways in which our system could be 

improved. 

A. Frame-Model Registration 

The frame to frame registration strategy used in our system 
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will result in a rapid accumulation of errors and a poor 3D 

reconstruction quality, because the accuracy of pose 

estimation is affected by the pose of previous frame. Thus a 

circular trajectory of the sensor is needed and we detect the 

loop closure to perform a global optimization[18]. 

However, the frame to model registration strategy[13] 

does not require explicit global optimization since the loop is 

closed between mapping and localization by tracking the live 

depth frame against the global TSDF model. Utilizing the ray 

cast method[15], we can provide a dense surface prediction 

against which the live depth map is aligned. 

B. Parallel Processing 

Currently, research on simultaneous localization and 

mapping (SLAM) has focused more on real-time tracking 

and reconstruction. Parallelizing the process is the essential 

ideal for real-time reconstruction. Taking advantage of 

GPGPU processing hardware, we can easily parallelize the 

algorithms used in our system, such the registration and 

fusion part. For example, A GPU-Accelerated nearest 

neighbor search method[19] can be used in our ICP 

alignment algorithm. Moreover, NVIDIA’s CUDA[20] and 

the GPU version function of OpenCV[16] are also helpful in 

enhancing the performance of our system. 

C. Large-Scale Reconstruction 

The current system only works well for reconstructing 

small size objects with volumes of < 5m3. Several 

challenging problems exist if we want to reconstruct 

large-scaled models such as the interior scene of a building. 

One is that the current volumetric representation would 

require too much computer memory. The other is how to 

perform automatic relocalization when the tracking has 

failed. 
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