
  

 

Abstract—Multi-threading pipelined processor design 

enables high performance of a single processor core by 

exploiting both thread-level and instruction-level parallelism. 

However, when it is applied to embedded systems, its 

demanding for large register file, hence high resource overhead 

and energy consumption, becomes a big issue. In this paper, we 

propose a customization approach to reduce register file by 

maximally utilizing each of the registers used. The experiments 

on several applications demonstrate that with our approach, the 

register file for a single thread can be reduced by about 50%, 

based on which the multi-threading processor can achieve high 

performance while at low energy consumption - with 17-28% 

throughput improvement and 20% energy reduction when 

compared to the single-threading processor design. 

 

Index Terms—Register file customization, multithread 

pipeline, energy-aware design.  

 

I. INTRODUCTION 

Pipelined processor design is an effective solution to 

exploit instruction-level parallelism. However, the pipelined 

processor usually cannot operate at its full speed due to 

instruction dependency in the pipeline. When a hazard 

happens, the pipeline has to be stalled until the dependency is 

resolved, which degrade the performance. Multi-threading 

processor design [1] improves the execution efficiency of the 

processor pipeline by exploiting thread level parallelism, and 

has been applied to high-end network processor systems. 

With the multi-threading design, the threads are executed 

by the pipeline in an interleaved fashion. For each clock, the 

switching unit controls to fetch an instruction from a different 

thread. When the next instruction in a thread is executed, its 

preceding instruction has completed and exited from the 

pipeline. Therefore, there is no hazard, hence no pipeline stall 

is incurred and the maximum throughput (i.e., one instruction 

per clock cycle) can be achieved.  

One issue with the design, however, is that the register file 

should be enlarged and must be big enough to hold the data 

for different threads, leading to high hardware cost and 

energy consumption, which may nullify or outweigh the gain 

from the multi-thread processing.  

In this paper, we propose two customization techniques to 

reduce the register file size required by the multiple threading 

designs. The rest of the paper is organized as follows. Section 

2 reviews existing works related to register file customization. 

Our customization techniques to reduce register file are 

explained in Section 3. Section 4 presents the experimental 

 
Manuscript received October 9, 2012; revised December 18, 2012. 

The authors are with the School of Computer Science and Engineering, 

The University of New South Wales, Sydney, Australia (e-mail: {ranz, huig, 

shivam.garg}@cse.unsw.edu.au). 

setup and simulation results. Finally, Section 5 draws a 

conclusion on the proposed approach. 

 

II. RELATED WORK 

A majority of the existing works on register file design are 

related to power/energy reduction. 

Hu et al. [2] found that most register accesses occurred 

within a few cycles after the value was first produced. Based 

on this observation, they used a Value Aging Buffer (VAB) 

to store short-lived register values between Functional Units 

and Register File. When a functional unit reads a register, it 

first searches VAB; only when this register value is not in 

VAB, does it then access the register file. This exploitation of 

the short lived values, to reduce register accesses, can also be 

found in [3]-[4].  

Rixner et al [5] investigated a set of different register 

architectures for media application processing, where a large 

number of arithmetic units are used to achieve high parallel 

operations. The architecture is formed by partitioning a 

conventional central register, based on the data/instruction 

level parallelism and memory hierarchy designs. The 

partitioned register architecture reduces the register file area, 

delay and power consumption with a small performance 

degradation, as compared to the centralized global register 

file where the area, delay and power dissipation are 

exponentially proportional to the number of arithmetic units. 

Gonzalez et al. [6] proposed a content aware integer 

register file structure, where a traditional register file is 

partitioned into three small bit-portions. Their design is based 

on the belief that the access to register file has high temporal 

locality and the accessed data exhibit a high degree of 

similarity in their high-bit values. They utilized such data 

patterns in the register file design so that each register access 

only activates as small register portion as possible, hence the 

register file power consumption is reduced.  Similarly, 

Nalluri et al. [7] proposed multi-bank register file 

architecture. They found that most of the register accesses 

occurred to the smaller bank. As the smaller bank has a 

relatively smaller bit-line switching capacitance, a significant 

reduction in the overall power consumption can be achieved.  

Guan and Fei [8] partition the register file into two regions. 

The most frequently used registers are in one region, and the 

rarely accessed registers are in another region. They use a 

partitioning algorithm and register renaming to enhance the 

usage of the partitioned register file to reduce the register file 

power consumption. 

In [9], authors looked into the issue of uneven power 

density distribution issue in the processor. They proposed a 

compiler-based register reassignment methodology to break 

Register File Customization for Embedded 

Multi-Threaded Pipelined Processors 

Ran Zhang, Hui Guo, and Shivam Garg                                                                                                                                                                         

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

551DOI: 10.7763/IJCTE.2013.V5.748



  

such clusters and to uniformly distribute the accesses to the 

register file. 

In terms of register file reduction, a few approaches exist. 

One related approach is based on register sharing [10]-[11]. 

Balakrishnan et al [10] found that a considerable number of 

register accesses were reading and writing some common 

values such as 1 and 0. They use a set of registers to store 

such common constant values. When a result of instruction is 

generated, it is compared with the values in the shared 

registers. If the result equals one of the common values, the 

destination logical register is re-mapped (on a hardware level) 

to the common value register. 

The method in [12] reduces the register file size through 

instruction pre-execution and the register value prediction. 

The approach proposed in [13] enhances register utilization 

for the superscalar processors by allocating registers later and 

releasing them earlier than conventional schemes.  

 

III. REGISTER FILE CUSTOMIZATION 

For a given thread (application), its register usage can be 

profiled. Based on the profiling information, we can build a 

time diagram to represent the engagement of each register, as 

shown in Fig. 1(a). The time diagram consists of a sequence 

of used sections during which the register is used. Each used 

section begins with a write operation (writing a value to the 

register) and ends with the last read operation for the register 

value. Some registers may be highly used, while others may 

be less used. Here, we define the usage of a register as the 

ratio of its total used sections over the whole execution time. 

The registers with zero usage are unused and can be removed 

from the register file. 

Our approach to reducing the register file size is to merge 

registers so that each used register is maximally utilized and 

the registers required can be abated, which is detailed below. 

A. Register Merge 

Register merge reduces registers by shifting out the 

used-sections of less used registers to other registers, and 

renaming the original registers used in the code (instruction 

memory) to the target registers. 

The used sections of different registers can be overlapped. 

Take Fig. 1 as an example. There are four registers R1-R4. 

Their used sections are given in Fig. 1(a). Between these 

registers, there exist overlapped used sections, as highlighted 

by the shaded areas. For example, the first shaded area shows 

the period during which both registers R1 and R2 are used. 

There is a largest register set where all registers have at least 

one common used-section. We call such register set, 

maximum overlapped register set. With the example given in 

Fig. 1(a), the maximum overlapped register set is {R1, R3, 

and R4}.  

The overlapping of used sections prevents the merge of 

related registers. Therefore, we have the low bound for the 

number of required registers: the minimum number of 

registers required must not be less than the size of the 

maximum overlapped register set. For the given example, 

since the size of the maximum overlapped register set is three, 

at most one register can be reduced. 

We want to reduce the less used registers by eliminating 

their used sections, which leads to our first register reduction 

method specified in Algorithm 1. 

 

 

Fig. 1. Example of register file reduction. 

The algorithm first finds the lower bound of the registers 

required and recursively reduce the less used registers. In the 

algorithm, set S holds the sorted registers generated from 

function Sort Reg1, which sorts the registers in S according to 

their usage U. The not-used-registers with no used sections in 

S are removed from S and stored in S0 by function Not Used 

Regs (S). Function get Max Over Lapped Reg Set (T1, S) 

finds the maximum overlapped register set in S and returns 

the size of the overlapped register set, and function Most 

Used Regs (S, m) gets the m most used registers in register set 

S. Function Register Renaming (r, S1, tempT) attempts to 

shift all used sections of register r to registers in S1. For a 

used section shifted from register r to register q, the register r 

in the related instructions will be renamed as register q, 

which also leads to the change to the transcript temp T. 

Continue with the example shown Fig. 1(a). With 

Algorithm 1, the four registers can be reduced to three 

registers as shown in Fig. 1(b), where the used section of 

register R3 are shifted to R2 as shown in dashed blocks and 

R3 is renamed as R2 in the program code. 

B. Enhancement with Memory Replacement 

We can further reduce registers by saving infrequently 

accessed register data in memory rather than leaving the data 

''sleeping" in registers. For example, R4 holds a value that is 

read after a long period. The value can be transferred to the 

memory right after it is generated by the processor. The value 

is fetched back to the register only when it is used. The 

register is therefore can be freed for most of the time, as 

shown in Fig. 1(c). The reduced used-sections of register R4 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

552

Zhou et al. in [14] proposed a hardware-level register file 

customization approach, where profiling is used to detect the 

unused registers and those unused registers are removed. The 

hardware customization is transparent to the software code.

The Register File Reduction process provided in this paper 

can be applied on top of the existing customization 

approaches to push the register usage for a thread execution 

to a minimum so that the growing register file size for 

multi-threading processor can be tamed.



  

can now be shifted to registers R1. The four registers are, 

therefore, reduced to two, as shown in Fig. 1(d). 

 
Algorithm 1 Register Reduction by Register Merge 

/*RegMerging(R, T): merging registers by register renaming.  

Input:  R, register set in the register file, and  

T, the register usage transcript. 

Output: R1, the reduced register set, and 

           T1, the usage transcript of all registers in R1. */ 

 /* calculating the usage of each register, U; */ 

for (each register, r∈R)} do 

     U(r)=getUsage(T,r) 

end for 

S = R; /* register set to be reduced */ 

S = SortReg1(S, U); /* registers in R are sorted based on usage. */ 

/* put the registers that are not used to S0; */ 

S0 = NotUsedRegs(S); 

S=S-S0; /* All registers initially used. */ 

n=|S|; /* the number of registers in S */ 

/* Get the usage transcript for registers in S from T. */ 

tempT=getUsageTranscript(T, S); 

/* find the size of the maximum overlapped register set in S, m */ 

m=getMaxOverlappedRegSet(tempT, S); 

/* put m most used registers in S1, */ 

S1 = MostUsedRegs(S, m); 

/* Those registers are part of the resulting register set retained */ 

R1 = S1; 

/* Reduce the rest registers as much as possible */ 

while (m != n) do 

/* put the less used registers in S to S2. */ 

S2 = S-S1; 

for (each register, r, r∈S2, from the least used register) do 

/* try to shift its used sections to registers in $S1$ by register renaming 

*/ 

RegisterRenaming(r, S1, tempT); 

/* and recalculate its usage. */ 

U(r) = getUsage(tempT, r); 

/* If all its used sections are removed, the register is freed */ 

   if (U(r)==0) then 

/* the register is removed from S2 and put into S0. */ 

S0 <= {r}; 

S2 = S2 - {r}; 

   end if; 

      end for; 

/* next round reduction for registers in S2*/ 

S = S2; 

     n=|S|; 

S=SortReg1(S, U); 

m=getMaxOverLappedRegSet(tempT, S); 

S1 = MostUsedRegs(S, m); 

R1 <= S1; /* registers in S1 are added to the final register set */ 

end while 

R1 <= S2; 

T1 = getUsageTranscript(tempt, R1); 

 

 

However, using memory to save the register usage will 

incur overhead on instruction memory size and performance. 

With the memory replacement, for each register read/write, 

one memory read/write instruction should be inserted. For a 

used section, if there are k instructions accessing the register, 

k memory-access instructions should be inserted in the 

execution, thus increasing the instruction memory size and 

execution time. Take Fig. 2(a) as an example. There are one 

register write and two register read instructions, hence three 

memory access instructions will be inserted, as demonstrated 

in Fig. 2(b).  

Moreover, since memory access instructions may take 

longer time than register-access instructions, the pipeline will 

often stall waiting for the memory data available, namely, 

there is a load delay. For the example shown in Fig. 2(c), if 

memory access takes two extra clock cycles, the performance 

overhead is seven clock cycles. 

To reduce the overhead of the memory replacement, we 

save the less frequently-assessed register value in the on-chip 

scratchpad memory. For each scratch memory access, there is 

a small and fixed latency. 

To further minimize the impact of the memory latency on 

the overall execution performance, we want to schedule the 

load instruction (load from the scratchpad memory) in such a 

way that the memory value arrives to the processor right 

before it is used. Assume the scratchpad memory access 

latency is d clock cycles and each instruction takes one clock 

cycle to finish (i.e., the throughput of the pipeline). To avoid 

the processor stall due to the memory access, we want the 

load instruction to be placed d instructions ahead of the 

instruction that uses the memory data. 

An example of inserting load instruction is given in Fig. 3. 

The Fig shows a code section with three basic blocks: B(i), 

B(j), B(k). (A basic block contains a sequence of instructions. 

If one instruction in the basic block is executed, all its other 

instructions in the block should be also executed.) In B(i), 

instruction I1 calculates a+b and the result c is saved in 

register r3 which will be used by instruction I4 in block B(k). 

To reduce the usage of register r3, its value is saved to 

memory by instruction I2 after it is generated and is fetched 

back from the memory by instruction I3 before instruction I4. 

Assume each instruction takes one clock cycle to execute. If 

memory access latency is d clock cycles, we want ideally to 

place the load instruction d instructions earlier so that the 

long memory access time can be hidden. But the location 

where the load instruction to be inserted can fall into a 

conditional block, like B(j), which is not always executed. 
 

 

Fig. 2. Memory replacement: (a) initial used section (b) after memory 

replacement (c) after memory replacement (with extra access time) 

Therefore, we only consider scheduling for the load 

instruction in the same block it is used; namely, both the load 

and the related register-read instructions are in the same basic 

block. Assume after scheduling, the distance of the two 

instructions is ζ. The performance overhead of the memory 

delay is d - ζ (ζ<=d). The register merge enhanced with the 

memory replacement is specified in Algorithm 2. 

In Algorithm 2, the access rate of a register is its access 

times over the total number of instructions executed. 

Function lessAccessedRegs(S1, α) finds a set of less accessed 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

553



  

registers from the sorted register set S1 such that the sum of 

access rates of the less accessed registers is close to but not 

larger than the parameter α. The value of α can be tuned for a 

better tradeoff between the register saving and the overhead 

on performance and instruction memory. Larger α value 

allows for more chances of register reduction but possibly 

incurs more instruction memory and performance overhead. 

I1: add r1, r2, r3 ;a+bàc

I2: store r3, (c) ;càMEM

I3: load (c), r3 ;MEM à c

B(i)

B(j)

B(k)

I4: sub r3, r4, r5  ;c-dàe

 

Fig. 3. Load instruction insertion example 

 

Algorithm 2 Register Reduction with Memory Replacement 

/*RegRedWithMemoryReplacement(S1,T1):Reducing registers in S1 by 

memory replacement.*/ 

Input: S1, used-register set to be applied by memory replacement 

T1, the register usage transcript of S1 

d, memory access time (load stall)  

α, the threshold of register access rate. 

Output: S2: the reduced register set, 

T2: the usage transcript of registers in S2 

InstructionMemOH: the memory overhead, and  

PerfOH: the performance overhead.  

/*Initialization:*/ 

InstructionMemOH=0; 

PerfOH=0; 

/* calculate the access rate of each register, A */ 

for (each register, r ∈S1) do 

A(r)=getAccessRate(T1,r) 

end for; 

S2 = SortReg2(S1, A); /* registers in S1 are sorted based 

on access rate */ 

/* Put less accessed registers in S3 */ 

S3 = lessAccessedRegs(S2, α); 

 /* using memory replacement for each register in S3 */ 

for (each register, r, r∈S3), from the least accessed register do 

 (I\_load, I\_store, T2) =usedSectionReduction(r,T1,d); 

end for 

/* Merging the registers in S2 by using Algorithm 1 */ 

(S3, T3)=RegMerging(S2, T2); 

/* if there is saving, */ 

if |S3|<|S2| then 

/* scheduling inserted load instructions to reduce load delay*/ 

T4=basicBlockScheduling(T3); 

/* calculate the instruction memory and performance overhead */ 

InstructionMemOH=getMemoryOverhead(T2, T4); 

PerfOH=getPerfOverhead(T2, T4); 

 /* save the result */ 

S2=S3; 

T2=T4; 

end if; 

 

IV. EXPERIMENTAL SETUP AND SIMULATION RESULTS 

Fig. 4 shows the experimental setup. It consists of three 

parts: processor design for single thread execution, processor 

design for multi-thread execution, and the design evaluation. 

All processor designs are based on the PISA instruction set 

architecture. Without loss of generality, for multi-thread 

execution, we simply replicate a given application multiple 

times.  

The experiment starts with the base pipeline processor for 

single thread. The PISA instruction set is implemented into a 

pipeline processor of six stages (two memory access stages). 

In the base processor design, there are 32 registers in the 

register file. ASIPMeister [15] is used to generate the VHDL 

model for the processor. 

Given an application written in C, it is compiled with the 

Simplescalar [16] GCC. The execution of the application on 

the processor model is simulated with Modelsim [17], and its 

results are compared with the Simplescalar simulation results 

for functional verification of the processor design. The 

execution trace of the Modelsim is used in profiling the usage 

of registers for register file reduction, based on which the 

multi-threading processor design, and the related execution 

code are generated. 

ModelSim and Synopsys Design Compiler [18] are used 

for design evaluation, both taking the processor VHDL 

model and execution code as the input. ModelSim provides 

the execution time (in clock cycles); Design Compiler 

estimates the chip area and power consumption of the 

processor. 

ASIPmeister
Simplescalar 

GCC

  processor 
VHDL model

object code

ISA

Profiling

Design 

Compiler

ModelSim

application

Register 

Reduction

exec. time

delay, area, 

power

Thread-Interleaved 

Design

  processor 
VHDL model

object code

Single-thread Execution 

Design

Thread-Interleaved Execution 

Design

VHDLmodel/
code

VHDLmodel/
code

Design Evaluation

 

Fig. 4. Experimental setup 

 

It is worth to point out that the power obtained from the 

Design Compiler is based on the used chip area with an 

assumed fixed clock frequency. Designs with a different 

number of threads may result in different clock frequencies, 

leading to different power consumption, which is, however, 

not covered in the measurement. To avoid the impact of the 

clock frequency change on the energy consumption, we 

introduce energy per instruction (EPI) to evaluate the energy 

consumption of each model. 

Table I shows the results of register reduction for different 

applications, based on Algorithm 1 without memory 

replacement (given in rows 5-7), and Algorithm 2 with 

memory replacement when α = 0.5% (rows 8-13). The 

register file sizes, area, power consumption for the baseline 

design are given in rows 2-4. The relative area and power 

consumption of the two customized designs as compared to 

the baseline design are given in their corresponding data 

sections. For the designs with memory replacement, the 

performance overheads with two different scratchpad 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

554



  

latencies (1 clock cycle and 3 clock cycles, respectively) are 

also provided in the table (rows 11-12), and the increase of 

code size (i.e. instruction memory overhead) is given in the 

last row. The average values for each data group are 

summarized in the last column. From the table, we can see 

that, on average, register merge achieves about 46% register 

file reduction and consumes 54% of the area/power as 

compared to the original design. If memory replacement is 

applied, a further 5% registers can be reduced with a 

performance overhead of 1.68% and 2.2% for the scratchpad 

memory latency of 1cc and 3cc, respectively. In addition, the 

memory replacement also incurs an average of 0.62% more 

instruction memory. 

Table II shows simulation results of the processor designs 

for single-thread execution, two-thread execution, and 

three-thread execution. Each design for a given application is 

evaluated in their CPI (clock cycles per instruction), and 

energy consumption per instruction, EPI. As can be seen, the 

processor designs with multi-threading improve performance 

and energy - on average, 19% of CPI and 20% energy can be 

reduced for the two-thread designs. Further improvements 

(with CPI=1) can be observed for the three-thread designs.  

TABLE I: REGISTER FILE CUSTOMIZATION RESULTS 

  
SHA Quick sort Bitcount Dijkstra String Search AES Bubble Sort AVG 

ori.RF 

RF size 32 32 32 32 32 32 32 32 

area 2251540 2251540 2251540 2251540 2251540 2251540 2251540 2251540 

power(mw) 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 

red.RF 

w.o 

mem 

RF size 21 22 14 17 13 22 12 17 

relative area 65.63% 68.75% 43.75% 53.13% 40.63% 68.75% 37.50% 54.02% 

relative 

power 
65.63% 68.75% 43.75% 53.13% 40.63% 68.75% 37.50% 54.02% 

red.RF 

w.t 

mem 

RF size 21 21 12 14 12 20 11 16 

relative area 65.63% 65.63% 37.50% 43.75% 37.50% 62.50% 34.38% 49.56% 

relative 

power 
65.63% 65.63% 37.50% 43.75% 37.50% 62.50% 34.38% 49.56% 

perfOH(1cc) N/A 1.27% 1.22% 4.12% 2.59% 0.67% 0.22% 1.44% 

perfOH(3cc) N/A 1.43% 1.62% 4.51% 4.95% 0.70% 0.02% 1.89% 

instrMemOH N/A 0.11% 1.47% 1.33% 0.88% 0.32% 0.21% 0.62% 
 

 

TABLE II: MULTI-THREADED PROCESSOR DESIGNS 

  
SHA Quick sort Bitcount Dijkstra String Search AES Bubble Sort avg 

1-thread 
CPI 1.35 1.40 1.48 1.38 1.41 1.40 1.36 1.40 

EPI 2.55 2.65 2.80 2.61 2.66 2.65 2.57 2.64 

2-thread 
CPI 1.16 1.12 1.23 1.11 1.14 1.11 1.08 1.14 

EPI 2.36 2.28 2.14 1.97 1.98 2.22 1.84 2.11 

3-thread 
CPI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

EPI 1.35 1.40 1.48 1.38 1.41 1.40 1.36 1.40 

 

V. CONCLUSIONS 

In this paper, we discussed two techniques to reduce 

register file for multi-threading processor designs: register 

merge and its enhancement with memory replacement. The 

register merge does not incur any instruction memory and 

performance overhead; while memory replacement provides 

a room for trading off the instruction memory and 

performance for more register reduction. 

Experiment results show that the proposed customization 

techniques can greatly reduce registers required by a single 

application (near 50% on average).  With the reduced register 

file requirement, the multi-threading processor can achieve 

high performance while at low energy consumption as 

compared to the single processor design – on average, for the 

two-threading processor, 19% of CPI and 20% energy can be 

reduced. By the three-thread design, the same energy saving 

(20%) as well as the highest pipeline throughput (CPI=1, or 

28% improvement) can be achieved, with a slight cost of area 

and power. It must be pointed that the improvement may 

become less significant when the pipeline goes deeper and 

fewer independent threads are available. The techniques to 

handle such cases will be studied in the future. 

REFERENCES 

[1] T. Ungerer, B. Robic, and J. Silc, “A survey of processors with explicit 

multithreading,” in ACM Comput. Surv., vol. 35, no. 1, pp. 29-63, 

March 2003.  

[2] Z. Hu and M. Martonosi, “Reducing register file power consumption 

by exploiting value lifetime characteristics,” in Workshop on 

Complexity Effective Design (WCED), vol. 1, pp. 1829-1841, 2000.  

[3] J. H. Tseng and K. Asanovic, “Energy-efficient register access,” in 

Proceedings of the 13th Symposium on Integrated Circuits and Systems 

Design, Manaus, pp. 377-382, September 2000. 

[4] S. Park, A. Shrivastava, N. Dutt, A. Nicolau, Y. Peak, and E. Earlie. 

“Register file power reduction using bypass sensitive compiler,” IEEE 

Trans. on Computer-Aided Design of Intergrated Circuits and Systems, 

vol. 27, pp.1155-1159, 2008.  

[5] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi, and J. D. 

Owens, “Register organization for media processing,” in HPCA-6: 

Proceedings of the 16th International Symposium on 

High-Performance Computer Architecture, pp. 375-386, 2000.  

[6] R. Gonzalez, A. Cristal, D. Ortega, A. Veidenbaum, and M. Valero, “A 

content aware integer register file organization,” Proc. 31st Ann. Int’l 

Symp. Computer Architecture, pp. 314-324, June 2004. 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

555



  

[7] R. Nalluri, R. Garg, and P. R. Panda, “Customization of register file 

banking architecture for low power,” in Proceedings of the 20th 

International Conference on VLSI Design, pp. 239-244, 2007.  

[8] X. Guan and Y. Fei, “Reducing power consumption of embedded 

processors through register file partitioning and compiler support,” in 

International Conference on Application-Specific Systems, 

Architectures and Processors, pp. 269-274, 2008.  

[9] X. Zhou, C. Yu, and P. Petrov, “Compiler-driven register reassignment 

for register file power-density and temperature reduction,” in Design 

Automation Conference, pp. 750-753, 2008.  

[10] S. Balakrishnan and G. S. Sohi, “Exploiting value locality in physical 

register files,” in 36th Annual IEEE/ACM International Sympo-sium on 

Microarchitecture, IEEE, pp. 265-276, 2003.  

[11] L. Tran, N. Nelson, F. Ngai, S. Dropsho, and M. Huang, “Dynamically 

reducing pressure on the physical register file through simple register 

sharing,” Proc. IEEE Int'l Symp. Performance Analysis of Systems and 

Software (ISPASS '04), 2004. 

[12] Y. Tanaka and H. Ando, “Reducing register file size through 

instruction pre-execution enhanced by value prediction,” in IEEE 

International Conference on Computer Design, pp. 238-245, 2009.  

[13] T. Monreal, V. Vinals, J. Gonzalez, A. Gonzalez, and M. Valero, “Late 

allocation and early release of physical registers,” IEEE Trans. on 

Computers, vol. 53, no. 10, 2004.  

[14] Y. Zhou, H. Guo, and J. Gu, “Register File customization for low 

power embedded processors,” in 2nd IEEE International Conference 

on Computer Science and Information Technology, pp. 92-96, 2009. 

[15] Asip-Meister. [Online]. Available: 

http://www.eda-meister.org/asip-meister/.  

[16] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for 

computer system modeling,” Computer, vol. 35, no. 2, pp. 12-67, 2002.  

[17] Mentor Graphics Modelsim. [Online]. Available: 

http://www.model.com/.  

[18] Synopsys. Synopsys Design Compiler. [Online]. Available: 

http://www.synopsys.com/.  

 

 

Ran Zhang received BS degree from Beijing 

Information Science and Technology University. He is 

currently a Master candidate in Computer Science and 

Engineering at the University of New South Wales, 

Australia. His research interests include computer 

architecture for high performance and low power 

embedded system design. 

 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

556


