



Abstract—Now the system can be called as system of system.

The system consists of several sub systems. At the same time,

the system has ability that can change their behavior according

to the operational environment or their running state. The

DoDAF is an architecture framework for United States

Department of Defense. It is a challenge for extending the

DoDAF and design the self-adaptive system architecture. This

paper focuses on the self-adaptive theory and self-adaptive

system architecture modeling.

Index Terms—Self-adaptive, modeling, system architecture,

operational environment

I. INTRODUCTION

Now, more and more system is constituted by many small

systems. These systems communicate each other by network.

The department of defense information enterprise system,

intelligent transportation systems and large software systems

are some of networked systems that we are observing in

governments and commercial enterprises. Inevitably we are

increasing dependent on these networks. And these systems

do not only depend on the network, but also depend on the

environment that they are staying. At the same time, these

systems are running for a long time. Maybe environment is

changed, but we hope, our system is also running and not

crush. These systems have an ability the can adjust

themselves and adapt to the environment.

We can call these systems as self-adaptive system. The

self-adaptive system can modify its own behavior in response

to changes in its operating environment or accept the new

sub-system because the old sub-system is replaced by the

new. When the old system is replaced by the new, we need

confirm that the system can adapt to the new, and do not be

disrupted.

When system’s operating environment changes, the

system must adapt itself to complete mission. For example, A

fleet of unmanned air vehicles undertakes a mission to

disable an enemy airfield. Pre-mission intelligence indicates

that the airfield is not defended, and mission planning

proceeds accordingly. While the UAVs are en route to the

target, new intelligence indicates that a mobile surface-to-air

missile launcher now guards the airfield. The UAVs

autonomously re-plan their mission, dividing into two

Manuscript received September 20, 2012; revised December 16, 2012.

This work was supported in part by the National Natural Science Foundation

of China No.90718018, 863 subjects (2007AA010302).

Guanyue Gao is with the Beihang University, Beijing. He is now with the

School of Computer Science and Engineering (e-mail: gaoguanyue@

gmail.com).

Feng Liu was with the Beihang University, Beijing (e-mail:

StevenLiu100@163.com).

groups—a SAM-suppression unit and an airfield-suppression

unit—and proceed to accomplish their objectives. During the

flight, specialized algorithms for detecting and recognizing

SAM launchers automatically upload and are integrated into

the SAM-suppression unit’s software [1].

We can model the system by the tool System Architecture

based on the DoDAF (the Department of Defense

Architecture Framework). DoDAF is an architecture

framework for the United States Department of Defense,

which provides structure for a specific stakeholder concern

through viewpoints organized by various views.

But for the self-adaptive system, the DoDAF doesn’t

define how we can describe the self-adaptive section and

does not give a clear approach to model the self-adaptive

system architecture. For the self-adaptive system, we can

extend the DoDAF, and use the Model-Driven theory to

support the self-adaptive system modeling. Section 2

discusses the DoDAF and system architecture modeling.

Section 3 discusses the model-driven theory and how to

extend the DoDAF to support the self-adaptive system

modeling. Section 4 provides a small example to illustrate

how to support the self-adaptive system modeling.

II. DODAF AND SYSTEM ARCHITECTURE MODELING

The Department of Defense Architecture Framework

(DoDAF) provides a foundational framework for developing

and representing architecture descriptions that ensure a

common denominator for understanding, comparing, and

integrating architectures across organizational, Joint, and

multinational boundaries. It establishes data element

definitions, rules, and relationships and a baseline set of

products for consistent development of systems, integrated,

or federated architectures. These architecture descriptions

may include Families of Systems (FoS), Systems of Systems

(SoS), and net-centric capabilities for interoperating and

interacting in the NCE [2].

Note, where the diagram states TBD, the DoDAF V2.0

was promulgated on May 28, 2009. The first version of the

development DoDAF was developed in the 1990s under the

name C4ISR architectural Architecture Framework. C4ISR

stand for The Command, Control, Communications,

Computers, and Intelligence, Surveillance, and

Reconnaissance. In the same period the reference model

TAFIM, which was initiated in 1986, was further developed.

The first C4ISR Architecture Framework v1.0, released 7

June 1996, was created in response to the passage of the

Clinger-Cohen Act. It addressed the 1995 Deputy Secretary

of Defense directive that a DoD-wide effort be undertaken to

define and develop a better means and process for ensuring

Self-Adaptive System Architecture Modeling Based on

DoDAF

Guanyue Gao and Feng Liu

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

538DOI: 10.7763/IJCTE.2013.V5.745

that C4ISR capabilities were interoperable and met the needs

of the warfighter. Continued development effort resulted in

December 1997 in the second version, C4ISR Architecture

Framework v2.0.

In August 2003 the DoDAF v1.0 was released, which

restructured the C4ISR Framework v2.0 to offer guidance,

product descriptions, and supplementary information in two

volumes and a Desk Book. It broadened the applicability of

architecture tenets and practices to all Mission Areas rather

than just the C4ISR community. This document addressed

usage, integrated architectures, DoD and Federal policies,

value of architectures, architecture measures, DoD decision

support processes, development techniques, analytical

techniques, and the CADM v1.01, and moved towards a

repository-based approach by placing emphasis on

architecture data elements that comprise architecture

products [3].

In February 2004 the documentation of Version 1.0 was

released with volume "I: Definitions and Guidelines", "II:

Product Descriptions" and a "Deskbook". In April 2007 the

Version 1.5 was released with a documentation of

"Definitions and Guidelines", "Product Descriptions" and

"Architecture Data Description".

On May 28, 2009 DoDAF v2.0 was approved by the

Department of Defense. DoDAF V2.0 is published on a

public website.

Other derivative frameworks based on DoDAF include the

NATO Architecture Framework (NAF) and Ministry of

Defense (United Kingdom) Architecture Framework

(MODAF). Like other EA approaches, for example The

Open Group Architecture Framework (TOGAF), DoDAF is

organized around a shared repository to hold work products.

The repository is defined by the Core Architecture Data

Model 2.0 (CADM -- essentially a common database schema)

and the DoD Architecture Registry System (DARS). A key

feature of DoDAF is interoperability, which is organized as a

series of levels, called Levels of Information System

Interoperability (LISI). The developing system must not only

meet its internal data needs but also those of the operational

framework into which it is set.

The DoDAF V1.5 defines a set of products, a view model,

that act as mechanisms for visualizing, understanding, and

assimilating the broad scope and complexities of an

architecture description through graphic, tabular, or textual

means. These products are organized under four views:

 All View (AV)
 Operational View (OV)
 System View (SV)
 Technical Standards View (TV)

Each view depicts certain perspectives of architecture as

described below. Only a subset of the full DoDAF view set is

usually created for each system development. The Fig

represents the information that links the operational view,

systems and services view, and technical standards view. The

three views and their interrelationships – driven by common

architecture data elements – provide the basis for deriving

measures such as interoperability or performance, and for

measuring the impact of the values of these metrics on

operational mission and task effectiveness.

The representation of DoDAF products may be drawn

from many diagramming techniques, including IDEF, UML,

SysML etc. But for the self-adaptive system modeling, we

had better use the meta-model theory and extend the DoDAF

framework to support the self-adaptive system modeling [3]

TABLE I: AV VIEW

Product Description

AV-1 Overview and Summary Information

AV-2 Integrated Dictionary

TABLE II: OV VIEW

Product Description

OV-1 High Level Operational Concept Graphic

OV-2 Operational Node Connectivity Description

OV-3 Operational Information Exchange Matrix

OV-4 Organizational Relationships Chart

OV-5 Operational Activity Model

OV-6a Operational Rules Model

OV-6b Operational State Transition Description

OV-6c Operational Event-Trace Description

OV-7 Logical Data Model

TABLE III: SV VIEW

Product Description

SV-1 Systems/Services Interface Description

SV-2 Systems/Services Communications Description

SV-3 Systems-Systems, Services-Systems,

Services-Services Matrices

SV-4a/b Systems/Services Functionality Description

SV-5a/b/c Operational Activity to Systems Function, Operational

Activity to Systems and Services Traceability Matrices

SV-6 Systems/Services Data Exchange Matrix

SV-7 Systems/Services Performance Parameters Matrix

SV-8 Systems/Services Evolution Description

TABLE IV: TV VIEW

Product Description

TV-1 Technical Standards Profile

TV-2 Technical Standards Forecast

Meta-meta model

Meta model

Model

Data M0

M1

M2

M3

Instances_of

Instances_of

Instances_of

Fig. 1. Four-layer meta-model architecture.

III. MODEL-DRIVEN AND META-MODEL DESIGN

Meta-modeling, or meta-modeling in software engineering

and systems engineering among other disciplines, is the

analysis, construction and development of the frames, rules,

constraints, models and theories applicable and useful for

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

539

modeling a predefined class of problems. As its name implies,

this concept applies the notions of meta and modeling [4].

Not only in software engineering, but also in system

engineering, the use of models is more and more

recommended. This should be contrasted with the classical

code-based development techniques. A model always

conforms to a unique meta-model. One of the currently most

active branches of Model Driven Engineering is the approach

named model-driven architecture proposed by OMG [4].

This approach is based on the utilization of a language to

write meta-models called the Meta Object Facility or MOF.

Typical meta-models proposed by OMG are UML, SysML,

SPEM or CWM. ISO has also published the standard

meta-model ISO/IEC 24744. All the languages presented in

Fig. 1 could be defined as MOF meta-models [5].

The meta-meta model is the infrastructure for a

meta-modeling architecture and defines the language for

specifying meta-models. The meta-model is an instance of a

meta-meta model. The model is an instance of a meta-model

and defines a language to describe an information domain.

The data is an instance of a model, and defines a specific

information domain.

For support the self-adaptive system architecture modeling,

we first design the meta-model according the DoDAF

framework, and at the same time, need to add some views to

describe the self-adaptive view. Second, we need to develop

the modeling tools to modeling a system. At the last, we need

to do an example to validate. But, there are a lot of products

in each view. I just pick the two products in OV(OV-2 and

OV-5) and give an approach how we can give the

self-adaptive modeling.

OV-2:

Product Definition. The OV-2 graphically depicts the

operational nodes (or organizations) with needlines between

those nodes that indicate a need to exchange information. The

graphic includes internal operational nodes (internal to the

architecture) as well as external nodes.

Product Purpose: OV-2 is intended to track the need to

exchange information from specific operational nodes (that

play a key role in the architecture) to others. OV-2 does not

depict the connectivity between the nodes.

Product Detailed Description. The main features of this

product are the operational nodes and the needlines between

them that indicate a need to exchange information. The

product indicates the key players and the interactions

necessary to conduct the corresponding operational activities

of OV-5.

Operational Nodes. An operational node is an element of

the operational architecture that produces, consumes, or

processes information. What constitutes an operational node

can vary among architectures, including, but not limited to,

representing an operational/human role (e.g., Air Operations

Commander), an organization (e.g., Office of the Secretary of

Defense (OSD)) or organization type, i.e., a logical or

functional grouping (e.g., Logistics Node, Intelligence Node),

and so on. The operational node will also vary depending on

the level of detail addressed by the architecture effort [1].

Fig. 2. OV-2 meta-model

TABLE V: OV-2 ELEMENT

Element name Attribution Description

OV2 root Define the OV-2 view

OperationNode Operational

Node

Operational Node in OV2

OperationalActivity Operation

Activity

The attribution of operational node

ExternalNode External

node

The external node in OV2

Needline Need line Define the information exchange

InfomationExchange Information

exchange

The information that needline need

MetaElement Temporary

element

Not be used in OV-2.just simplify the

design of meta model

According to the description about OV2, OV-2 Meta

Model is designed in Fig. 2, and the Table V gives the detail

information about the ov2’s elements:

OV-5:

Product Definition: The OV-5 describes the operations

that are normally conducted in the course of achieving a

mission or a business capability. It describes capabilities,

operational activities (or tasks), input and output (I/O) flows

between activities, and I/O flows to/from activities that are

outside the scope of the architecture. High-level operational

activities should trace to (and are decompositions of) a

Business Area, an Internal Line of Business, and/or a

Business Sub-Function as published in OMB’s Business

Reference Model [OMB, 2003].

Product Purpose. OV-5 can be used to:

 Clearly delineate lines of responsibility for activities when
coupled with OV-2.

 Uncover unnecessary operational activity redundancy.
 Make decisions about streamlining, combining, or

omitting activities.
 Define or flag issues, opportunities, or operational

activities and their interactions (information flows among
the activities) that need to be scrutinized further.

 Provide a necessary foundation for depicting activity
sequencing and timing in OV-6a, OV-6b, and OV-6c.

 Identify critical mission threads and operational
information exchanges by annotating which activities are
critical (i.e., identify the activities in the model that are
critical).

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

540

Product Detailed Description. OV-5 describes capabilities,

operational activities (or tasks), I/O flows between activities,

and I/O flows to/from activities that are outside the scope of

the architecture.

Fig. 3. OV-5 meta-model

TABLE VI: OV-6 ELEMENT

Element name Attribution Description

OV5 Root Define the OV-5 view

OperationalActivity Operation

activity

Complete the operation mission

In Input External input

Out Output Output to external

DataFlow Data flow Information input/output

MetaElement Temporary

element

Not be used in OV-5. Just simplify

the design of meta-model

I/Os of operational activities relate to information elements

of OV-3 and are further characterized by the information

exchange attributes described in OV-3. I/Os that are

produced or consumed by leaf operational activities that

cross operational node boundaries are carried by needlines of

OV-2. Operational activities can be annotated (e.g., via the

mechanism arrow in an IDEF0 diagram) with the

corresponding operational node from OV-2.

According to the description about OV-5, The OV-5

meta-model is designed in Fig. 3 and the Table VI gives the

detail information of OV-5’s elements:

To describe the self-adaptive system, need to define the

different state. Using the different state to represent the

different scene, and represent system architecture response to

the scene. And we must define a language to auto-generate

next system architecture according to one architecture.

We can call the state view as OV-8:

Production Definition: The OV-8 describes the states that

represent the different scene and include all views that is

influenced by different scene. That says a view will be

changed in different scene.

Product Purpose: OV-8 intends to track the different state

about system architecture and to give a clear description of

system architecture. OV-8 does not have the system element

that is composed by system architecture.

According to the description about the OV8, the OV-8

meta-model is designed in Fig. 4:

Fig. 4. OV-8 meta-model.

And the language is needed to define how to modify the

the architecture to represent the different scene. The language

is defined below:

Operator:

Load:

Load the initial system architecture for the system

Syntax:

 Load filename

Example:

 Load example.ov2

Modify:

 Modify a system element according to the system

design.

Syntax:

 Modify element [add or delete]

Example:

 Modify operationalactivity add

If else:

 Judgement statement.

Syntax:

 If (something is true) do

 Else do

Example:

 If (true) modify operationalactivity add

Now we have design the basic element to support the

self-adaptive system.

IV. UAV EXAMPLE

In the chapter, there is an example to describle the example

mentioned in the article beginning.

Following is the OV-2 view that describe what is the UAV

system:

But there is a situation that we mentioned above. It is the

uav must adjust the fight flow to complete. So we can define

the language to support the change.:

Load ov5

Modify needline add fight to UAV control

Then you can auto-generate the next scene system

architecture bellow:

Here we just provide the OV-5 for simplify, and the other

we can get the same result. As we have seen, the method is a

good way to represent the self-adaptive system.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

541

UAV HeadquarterDetectSystem

Enviroment
Information

Airfield Fight

Fight
Feedback Fight CommandScan

Fig. 4. OV-2 view

OV-5 describes how the mission is completed by UAV:

UAV
Headquarter

Transition

UAV
Control

Detect

Fight
Fig. 5. OV-5 view

UAV

Headquarter

Transition

UAV
Control

Detect

Fight

Fig. 6. OV-5 changed View

V. CONCLUSION

Based on the research included in this, we can find this is a

good way to develop the self-adaptive system architecture.

The experiment results that the self-adaptive system

modeling method can reduce the time consumed to design the

different system architecture. And this is a method to how to

extend the DoDAF.

ACKNOWLEDGMENT

This work was partly supported by the National Natural

Science Foundation of China No.90718018, 863

subjects(2007AA010302). The inspiration emerged from

previous work about the system architecture modeling.

REFERENCES

Guanyue Gao was born in Henan Province in 1988.

Between 2006.9 and 2010.7, he was a student of

ZhengZhou University, and he got the bachelor degree

in 2010.7. Now he is a student of Beihang University,

and major in system architecture modeling research as a

master.

Feng Liu was born in 1978. Between 2007.9 and

2010.6, he was a student of Beihang University, and he

got the master degree in 2010.6. he majored in the

software architecture design.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

542

[1] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson, N.

Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf, ―An

architecture-based approach to self-adaptive software,‖ IEEE Intell.

Syst. vol. 14, no. 3, pp. 54-62, 1999.

[2] J. Dowling and V. Cahill, ―The K-component architecture meta-model

for self-adaptive software,‖ in Proceedings of Reflection 2001. Lecture

Notes in Computer Science. Springer-Verlag, Berlin, vol. 2192, pp.

81-88, 2001.

[3] N. Kilicay and C. Dagli, ―Methodologies for understanding behavior of

system of systems,‖ in Proc. of Conference on System Engineering

Research, Hoboken, New Jersey. March 14-16, 2007.

[4] T. Li, ―Model-based self-adaptive embedded programs with temporal

logic specifications,‖ in Proc.6th International Conference on Quality

Software, 2006.

[5] F. Oquendo, ―π-Method: A model-driven formal method for

architecture-centric software engineering,‖ ACM SIGSOFT Software

Engineering Notes vol. 31, no. 3, pp.1-13, 2006.

