
  
Abstract—This paper aims at analyzing empirically the 

quality evolution of an open source software using metrics. We 
used a control flow based metric (Quality Assurance Indicator - 
Qi) which we proposed in a previous work. We wanted to 
investigate if the Qi metric can be used to observe how quality 
evolves along the evolution of the successive released versions of 
the subject software system. We addressed software quality 
from an internal perspective. We performed an empirical 
analysis using historical data on the subject system (Apache 
Tomcat). The collected data cover, in fact, a period of more than 
seven years (thirty-one versions in total). Empirical results 
provide evidence that the Qi metric reflects properly the quality 
evolution of the subject system. 
 

Index Terms—Empirical analysis, metrics, software 
attributes, software evolution, software quality. 
 

I. INTRODUCTION 
Software evolution is the dynamic behavior of 

programming systems as they are maintained and enhanced 
over their lifetimes [1]. Software systems need to continually 
evolve during their life cycle for various reasons: adding new 
features to satisfy user requirements, changing business 
needs, introducing novel technologies, correcting faults, 
improving quality, etc. [2], [3]. The accumulation of changes, 
along the evolution of a software system, can lead to a 
degradation of its quality [4] – [8]. It is, therefore, important 
to monitor how software quality evolves so that quality 
assurance (QA) activities can be properly planned [8]. 
Quality plays, indeed, an important role in a software 
project’s success. 

Software metrics can be used to analyze the evolution of 
software systems quality [9]. Metrics have, in fact, a number 
of interesting characteristics for providing evolution support 
[10]. A large number of metrics have been proposed for 
measuring various properties of object-oriented (OO) 
software systems [11]. Empirical evidence exist showing that 
there exist a relationship between (many of) these metrics and 
software quality [9], [12] – [21]. However, with the growing 
complexity and size of OO software systems, the ability to 
reason about such a major issue using synthetic metrics 
would be more appropriate in practice. 

We proposed in [22] a new metric, called Quality 
Assurance Indicator (Qi), capturing in an integrated way 
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different attributes of OO software systems such as coupling 
(interactions between classes) and complexity (distribution 
of the control flow in a system). The Quality Assurance 
Indicator of a class is based on intrinsic characteristics of the 
class, as well as on the Quality Assurance Indicator of its 
collaborating classes. The metric has, however, no ambition 
to capture the overall quality of OO software systems. 
Moreover, the objective is not to evaluate a design by giving 
absolute values, but more relative values that may be used for 
identifying critical classes on which more QA effort is 
needed to ensure software quality. We explored in [12] the 
relationship between the Qi metric and testability of classes. 
Testability was measured (inversely) by the number of lines 
of test code (JUnit test suites) and the number of assert 
statements in the test code. More recently, we investigated 
the capacity of the Qi metric in predicting the unit testing 
effort of classes using regression analysis techniques [23]. 

In this paper, we wanted to investigate if the Qi metric 
reflects (captures) properly the evolution of software quality 
when software is actively maintained and updated. We focus 
on retrospective analysis of software quality. We consider 
software quality from an internal (structural) perspective. We 
used two well-known OO design metrics, CBO (Coupling 
Between Objects) and WMC (Weighted Methods per Class) 
[24], for measuring the internal quality of a release 
(particularly coupling and complexity, two important 
attributes). The CBO metric counts for a class the number of 
other classes to which it is coupled (and vice versa). The 
WMC metric gives the sum of complexities of the methods of 
a given class, where each method is weighted by its 
cyclomatic complexity. These metrics have received 
considerable attention from researchers and are also being 
increasingly adopted by practitioners. Furthermore, these 
metrics have been incorporated into several development 
tools. We performed an empirical analysis using historical 
data on an open source software system (Apache Tomcat). 
The collected data cover a period of more than seven years. 
Empirical results provide evidence that the Qi metric reflects 
properly the quality (as captured by the selected OO metrics) 
evolution of the subject software system. 

The rest of this paper is organized as follows: Section 2 
gives a survey on related work. The Qi metric is introduced in 
Section 3. Section 4 presents the empirical study we 
performed. Finally, Section 5 concludes the paper. 
 

II. RELATED WORK 
Mens et al. [10] provide an overview of the ways software 

metrics have been (and can be) used to analyze software 
evolution. A distinction is made between using software 
metrics before the evolution has occurred (predictive) and 
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after the evolution has occurred (retrospective). To support 
retrospective analysis, metrics can be used to understand the 
quality evolution of a software system by considering its 
successive releases. In particular, metrics can be used to 
measure whether the quality of a software has improved or 
degraded between two releases. Dagpinar et al. [15] 
investigate the significance of different OO metrics for the 
purpose of predicting maintainability of software. Nagappan 
et al. [25] focus on mining metrics to predict component 
failures. The authors noted that there is no a single set of 
complexity metrics that could be used as a universally best 
defect predictor. Ambu et al. [26] address the evolution of 
quality metrics in an agile/distributed project and investigate 
how the distribution of the development team has impacted 
the code quality. 

Lee et al. [9] provide an overview of open source software 
evolution with software metrics. The authors explored the 
evolution of an open source software system in terms of size, 
coupling and cohesion, and discuss its quality change based 
on the Lehman’s laws of evolution [4], [5], [27]. Jermakovics 
et al. [28] propose an approach to visually identify software 
evolution patterns related to requirements. Mens et al. [29] 
present a metrics-based study of the evolution of Eclipse. The 
authors consider seven major releases and investigate 
whether three of the laws of software evolution (continuing 
change, increasing complexity and continuing growth) were 
supported by the data collected. Xie et al. [3] conduct an 
empirical analysis on the evolution of seven open source 
programs and investigate also Lehman’s evolution laws. 
Murgia et al. [18] address software quality evolution in open 
source projects using agile practices. The authors used a set 
of OO metrics to study software evolution and its relationship 
with bug distribution. According to the achieved results, 
Murgia et al. concluded that there is no a single metric that is 
able to explain the bug distribution during the evolution of 
the analyzed systems. Zhang et al. [8] use c-charts and 
patterns to monitor quality evolution over a long period of 
time. The number of defects was used as a quality indicator. 
Eski et al. [16] present an empirical study on the relationship 
between OO metrics and changes in software. The authors 
analyze modifications in software across the historical 
sequence of open source projects and propose a 
metrics-based approach to predict change-prone classes. Yu 
et al. [30] study the possibility of using the number of bug 
reports as a software quality measure. Using statistical 
methods, the authors analyze the correlation between the 
number of bug reports and software changes. 

 

III. QUALITY ASSURANCE INDICATOR 
We give, in this section, a summary of the definition of the 

Quality Assurance Indicator (Qi) metric. For more details see 
[12], [22], [23]. The Qi metric is based on Control Call 
Graphs (CCG), which are a reduced form of traditional 
Control Flow Graphs (CFG). A CCG is a CFG from which 
the nodes representing instructions (or basic blocs of 
sequential instructions) not containing a call to a method are 
removed. Compared to traditional Call Graphs, CCG are 
much more precise models. They capture the structure of 
calls and related control. The Qi metric is normalized and 
gives values in the interval [0, 1]. A low value of the Qi of a 

class means that the class is a high-risk class and needs a 
(relative) high QA effort to ensure its quality. A high value of 
the Qi of a class indicates that the class is a low-risk class 
(having a relatively low complexity and/or the QA effort 
applied actually on the class is relatively high - proportional 
to its complexity). 

A. Quality Assurance Indicator 
The Qi of a method Mi is defined as a kind of estimation of 

the probability that the control flow will go through the 
method without any failure. The Qi of a method Mi is based 
on intrinsic characteristics of the method (cyclomatic 
complexity, unit testing coverage), as well as on the Qi of the 
methods invoked by the method Mi. There is a kind of 
propagation, depending on the distribution of the control flow 
in a system, which needs to be captured. The Qi of a method 
Mi is given by: 
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with :

𝑄iM i
: QA indicator of method Mi,

𝑄iM i

∗ : intrinsic QA indicator of method Mi,

𝐶j
i: jth path of method Mi,

𝑃 Cj
i : probability of execution of path Cj

i of method Mi,

𝑄iM : QA indicator of method M included in the path 𝐶𝑗
𝑖 ,

𝑛i: number of linear paths of the CCG of method Mi, and 

σj: set of the methods invoked in the path 𝐶j
i.

By applying the previous formula (1) to each method we 

obtain a system of N (number of methods in the program) 

equations. The obtained system is not linear and is composed 

of several multivariate polynomials. We use an iterative 

method (method of successive approximations) to solve it. 

The system is, in fact, reduced to a fixed point problem. 

Furthermore, we define the Qi of a class C (noted 𝑄𝑖𝐶) as the 

product of the Qi of its methods:

𝑄𝑖𝐶 =  𝑄𝑖𝑀𝑀∈𝛿 (2)

where δ is the set of methods of the class C. The calculation 

of the Qi metric is entirely automated by a tool (prototype) 

that we developed for Java software systems.

B. Assigning Probabilities

The CCG of a method can be seen as a set of paths that the 

control flow can pass through (depending on the states of the 

conditions in the control structures). To capture this 

probabilistic characteristic of the control flow, we assign a 

probability to each path C of a control call graph as follows:

𝑃 𝐶 =  𝑃 𝐴 𝐴∈𝜃    (3)

where θ is the set of directed arcs composing the path C and 

P(A) the probability of an arc to be crossed when exiting a 

control structure.

To facilitate our experiments (simplify analysis and 

calculations), we assigned probabilities to the different 

control structures of a (Java) program according to the rules 

given in Table I. These values are assigned automatically 

during the static analysis of the source code of a program 

when generating the Qi models. These values can be adapted 

according to the nature of the applications (for example). As 

an alternative way, the probability values may also be 

assigned by programmers during the development (knowing 
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the code) or obtained by dynamic analysis. Dynamic analysis 

is out of the scope of this paper.

TABLE I: ASSIGNMENT RULES OF THE PROBABILITIES.

Nodes Probability Assignment Rule

(if, else)
0.5 for the exiting arc «condition = true »

0.5 for the exiting arc «condition=false »

while
0.75 for the exiting arc «condition = true »

0.25 for the exiting arc «condition = false »

(do, while)
1 for the arc: (the internal instructions are executed 

at least once)

(switch,case) 1/n for each arc of the n cases.

(?, :)
0.5 for the exiting arc «condition = true »

0.5 for the exiting arc «condition = false »

for
0.75 for entering the loop

0.25 for skipping the loop

(try, catch)
0.75 for the arc of the «try » bloc

0.25 for the arc of the «catch » bloc

Polymorphism 1/n for each of the eventual n calls.

C. Intrinsic Quality Assurance Indicator

The Intrinsic Quality Assurance Indicator of a method Mi, 

noted Qi*
Mi, is given by:

     𝑄𝑖𝑀𝑖

∗ =  1 − 𝐹𝑖 (4)

with:                              𝐹𝑖 =
 1−𝑡𝑐𝑖 𝑐𝑐 𝑖

𝑐𝑐𝑚𝑎𝑥

where:

𝐶𝐶i : cyclomatic complexity of method Mi,

𝑐𝑐𝑚𝑎𝑥 = max1≤𝑖≤𝑁 𝑐𝑐𝑖 ,

𝑡𝑐𝑖: unit testing coverage of the method Mi, 𝑡𝑐𝑖 ∈  0,1 .
Many studies provided empirical evidence that there is a 

significant relationship between cyclomatic complexity and 

fault proneness (e.g., [13], [21], [31]). Testing (as one of the 

most important QA) activities will reduce the risk of a 

complex program and achieve its quality. Moreover, testing 

coverage provide objective measures on the effectiveness of 

a testing process. The testing coverage measures are 

(currently in our approach) affected by programmers based 

on the test suites they performed on the classes of the system.

The testing coverage measures can also be obtained 

automatically (using tools such as Together 

(www.borland.com) or CodePro (developers.google.com))

by analyzing the code of the test suites (JUnit suites for 

example) to determine which parts of the classes that are 

covered by the test suites and those that are not (this issue will 

be considered in our future work).

IV. EMPIRICAL STUDY

We present, in this section, the empirical study we 

conducted in order to investigate if the Qi metric captures the 

evolution of software quality when software is actively 

maintained and updated. We address software quality from 

an internal perspective. We used CBO and WMC metrics. 

We used historical data collected from successive released 

versions of an open source software system. We selected 

Tomcat, which is an open source web server developed by 

Apache Software Foundation. We analysed its 5.5 branch, 

launched in august 2004. The version 5.5.35, the latest to date, 

was launched on November 2011. We used the official 

releases as time captures of this system. The collected data 

cover a period of more than seven years (thirty-one versions). 

Table II gives some characteristics of the used system. Table 

III gives the (average) values of the selected metrics for the 

first and last versions of the subject system.

TABLE II: SOME CHARACTERISTICS OF THE USED SYSTEM.

Time 

frame 

(years)

Releases

First release 

computed

Last release 

computed

Version
Size 

(SLOC)
Version

Size 

(SLOC)

7.2 31 5.5.0 126 927 5.5.35 170 998

TABLE III: VALUES OF THE SELECTED METRICS.

Versions
Total no. of

classes

  

Total   

KLOC

  

   Qi

  

CBO WMC

First 

vers.
            837         126 0.743 8.97 29.8

Last 

vers.
           1108         171 0.735 9.41 30.3

We retrieved the official releases on the 5.5.x branch from 

the official website of Apache. We used the Borland 

Together tool (http://www.borland.com/) to collect data on 

CBO and WMC metrics. For each released version of the 

subject system, we computed the metrics values at the micro 

level (classes) as well as at the macro level (system). We used 

the average as an aggregation method. We collected the Qi 

data using the tool we developed. We computed the Qi value 

for each class of each released version of the subject system. 

Here also, we computed the Qi values at the two levels (micro 

and macro). For our experiments, since we did not have any 

data on the test suites used for testing the subject system and 

knowing that the main purpose of this study is to investigate 

if the Qi metric can be used to observe the quality evolution 

along the evolution of the subject system, the testing 

coverage is set to 0.75 for all methods. As mentioned 

previously, the objective of the Qi metric is not to evaluate a 

design by giving absolute values, but more relative values 

that may be used for identifying the critical classes (in a 

relative way) on which more QA effort is required to ensure 

software quality.

A. Software Quality Evolution

In this section, we investigate the evolution of the Qi 

metric (in parallel with the selected OO metrics) along the 

evolution of the subject system. The objective is to observe 

how the Qi metric behaves relatively to these metrics. We 

also analyze the correlations between the Qi metric and each 

of the OO metrics at the two levels: micro and macro. We 

tested in our study the following hypothesis.

Hypothesis: The evolution of the OO metrics along the 

evolution of the subject system will be reflected (captured) in 

the Qi metric values on both micro and macro levels.

The analysis of the collected data allowed us to observe the 

values of the Qi (and OO metrics) along the period of 

evolution (overall trend) of the studied system. Fig. 1 shows 

the results (in terms of evolution) for the Qi and selected OO 

metrics (shown with the min-max normalization).



 
Fig. 1. Evolution of Qi and OO metrics.  

From Fig. 1, it can be seen various significant variations 
(increase and decrease) along the evolution of Apache. The 
global trend for all the metrics is characterized by a steady 
increase and some fluctuations (peaks). The Qi curve shows a 
slight growth in the first iterations, which becomes however a 
decrease around the iteration 8. This negative growth appears 
relatively continuous. Results, overall, suggest that the Qi 
metric captures (in general) the evolution of OO metrics. In 
order to validate our hypothesis, we analyzed the correlations 
between Qi and selected OO metrics (as indicators of 
software quality from an internal perspective) along the 
evolution of the subject system. We performed statistical 
tests using correlation. We used both Spearman’s and 
Pearson’s correlation coefficients in our study. These 
techniques are widely used for measuring the degree of 
relationship between two variables. Correlation coefficients 
will take a value between -1 and +1. A positive correlation is 
one in which the variables increase together. A negative 
correlation is one in which one variable increases as the other 
variable decreases. A correlation of +1 or -1 will arise if the 
relationship between the variables is exactly linear. A 
correlation close to zero means that there is no linear 
relationship between the variables. We used the XLSTAT 
(http: //www.xlstat.com/) tool to perform the analysis. We 
applied the typical significance threshold (α = 0.05) to decide 
whether the correlations where significant. A significant 
correlation between 0.7 and 1.0 (or -0.7 and -1.0) is 
considered as a strong correlation [9]. 

 
Fig. 2. Evolution of correlations between Qi and OO metrics (micro level). 

TABLE IV: CORRELATION MEAN VALUES BETWEEN QI AND OO METRICS 
(MICRO LEVEL). 

 
OO Metrics Avg. value 

CBO -0.7178 
WMC -0.8260 

 

class) and the values of OO metrics. Fig. 2 shows the 
evolution of the correlation values (Pearson) between the Qi 
and selected OO metrics along the different versions of 
Apache Tomcat. Table IV shows the average value of these 
correlations. 

It can be seen, from Fig. 2 and Table IV, that the obtained 
correlations between Qi and OO metrics are strong, and this 
throughout the evolution of the system. Moreover, they 
remain relatively stable from one iteration to another (Fig. 2), 
aside the slight peak observed for version 5.5.13. Several 
observations on the calculated metrics can explain this 
fluctuation. In comparison with version 5.5.12, the size in 
terms of lines of code of the version 5.5.13 increases (from 
148 900 to 149 500), while the number of classes decreases 
(from 968 to 964), which has the effect of increasing the 
average size (in terms of lines of code) of classes (from 153.8 
to 155.1), decreasing the coupling (CBO from 9.19 to 8.49) 
and increasing the number of operations per class (from 12.9 
to 13.1). Between these two versions, we can still observe a 
stability of Qi. We can therefore explain these observations 
by an amount of added instructions which is concentrated in a 
(relative) small number of classes. 

Moreover, the correlations between Qi and selected OO 
metrics are negative. A negative correlation indicates that one 
variable (Qi metric) decreases as the other variable (OO 
metrics) increases. These results are plausible and not 
surprising. In fact, the more strongly a class is coupled (with 
a high complexity and large size) to other classes, the less the 
quality of the class is likely to be. A low value of the Qi of a 
class (probably a high value of coupling and complexity) 
indicates that the class is a high-risk class and needs a 
relatively high QA effort to ensure its quality. These results 
(and observations) suggest that the Qi metric, at the micro 
level, captures not only the evolution of the selected OO 
metrics but also an important part of the information captured 
by these metrics (given the high correlation values). These 
results support therefore our hypothesis at the micro level. 

TABLE V: CORRELATIONS BETWEEN QI AND OO METRICS (MACRO 
LEVEL). 

Variables CBO WMC 

Qi -0.854 -0.566 

 
For the macro level, we used the average values of the 

metrics for each version. Table V shows the correlations 
values (Spearman) obtained between Qi and OO metrics for 
the system studied. From Table V, it can be seen that 
correlations values between Qi and selected OO metrics are 
significant (in boldface) and relatively high. This suggests 
that the Qi metric captures the evolution of the selected OO 
metrics for an evolving system at the macro level. Such 
observations thus allow us reasonably to validate our 
hypothesis at the macro level. 

B. Threats to Validity 
The study performed in this paper should be replicated 

using many other OO software systems in order to draw more 
general conclusions about the ability of the Qi metric to 
reflect the evolution of the quality of software systems. In 
fact, there are a number of limitations that may affect the 
results of the study or limit their interpretation and 
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For the micro level, we selected the classes present from 

the first version of the system to its latest version. We 

considered that these classes represent in some ways the core 

of the system throughout the period of evolution. We 

calculated correlations between the values of Qi (for each



generalization. The achieved results are based on the data set 
we collected from one open source software system. The 
used system is, however, a relatively large project. The 
collected data cover a period of more than seven years. Even 
if we believe that the analyzed data set is large enough to 
allow obtaining significant results, we do not claim that our 
results can be generalized. It is also possible that facts such as 
the development style used by the developers for developing 
and maintaining the code of the subject system (or other 
related factors) may affect the results or produce different 
results for specific applications. 

 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we investigated the quality evolution of an 

open source Java software system using metrics. Software 
quality was addressed from an internal point of view. We 
wanted to investigate if the Qi metric, which we proposed in a 
previous work, can be used to observe (understand) how 
quality evolves along the evolution of the subject software 
system. We used OO design metrics for measuring the 
internal (structural) quality of a released version (in terms of 
coupling and complexity). We performed an empirical 
analysis using historical data collected from the successive 
released versions of the subject software system. Empirical 
results provide evidence that the Qi metric may be used to 
observe the evolution of software quality along the evolution 
of successive released versions of a software system. The 
achieved results are, however, based on the data set we 
collected from only one system. The findings in this paper 
should be viewed as exploratory and indicative rather than 
conclusive. They show, at least, that the Qi metric, as a 
synthetic metric, offers a promising potential for capturing 
(reflecting) the quality evolution of evolving software 
systems. Further investigations are, however, needed to draw 
more general conclusions. The performed study should be 
replicated using many other OO software systems. As future 
work, we plan to (among others): investigate if the Qi metric 
may be used to observe the evolution of software quality 
from an external point of view (using the number of defects 
as a quality indicator) and replicate the study on other OO 
software systems to be able to give generalized results.  
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