

Abstract—This paper aims at analyzing empirically the

quality evolution of an open source software using metrics. We
used a control flow based metric (Quality Assurance Indicator -
Qi) which we proposed in a previous work. We wanted to
investigate if the Qi metric can be used to observe how quality
evolves along the evolution of the successive released versions of
the subject software system. We addressed software quality
from an internal perspective. We performed an empirical
analysis using historical data on the subject system (Apache
Tomcat). The collected data cover, in fact, a period of more than
seven years (thirty-one versions in total). Empirical results
provide evidence that the Qi metric reflects properly the quality
evolution of the subject system.

Index Terms—Empirical analysis, metrics, software
attributes, software evolution, software quality.

I. INTRODUCTION
Software evolution is the dynamic behavior of

programming systems as they are maintained and enhanced
over their lifetimes [1]. Software systems need to continually
evolve during their life cycle for various reasons: adding new
features to satisfy user requirements, changing business
needs, introducing novel technologies, correcting faults,
improving quality, etc. [2], [3]. The accumulation of changes,
along the evolution of a software system, can lead to a
degradation of its quality [4] – [8]. It is, therefore, important
to monitor how software quality evolves so that quality
assurance (QA) activities can be properly planned [8].
Quality plays, indeed, an important role in a software
project’s success.

Software metrics can be used to analyze the evolution of
software systems quality [9]. Metrics have, in fact, a number
of interesting characteristics for providing evolution support
[10]. A large number of metrics have been proposed for
measuring various properties of object-oriented (OO)
software systems [11]. Empirical evidence exist showing that
there exist a relationship between (many of) these metrics and
software quality [9], [12] – [21]. However, with the growing
complexity and size of OO software systems, the ability to
reason about such a major issue using synthetic metrics
would be more appropriate in practice.

We proposed in [22] a new metric, called Quality
Assurance Indicator (Qi), capturing in an integrated way

Manuscript received September 20, 2012; revised December 17, 2012.

This project was financially supported by NSERC (National Sciences and
Engineering Research Council of Canada) and FRQNT (Fonds de Recherche
du Québec – Nature et Technologies) grants.

The authors are with the Software Engineering Research Laboratory,
Department of Mathematics and Computer Science, University of Quebec,
Trois-Rivières, Québec, Canada (e-mails: nicholas.drouin@uqtr.ca,
mourad.badri@uqtr.ca, fadel.toure@uqtr.ca).

different attributes of OO software systems such as coupling
(interactions between classes) and complexity (distribution
of the control flow in a system). The Quality Assurance
Indicator of a class is based on intrinsic characteristics of the
class, as well as on the Quality Assurance Indicator of its
collaborating classes. The metric has, however, no ambition
to capture the overall quality of OO software systems.
Moreover, the objective is not to evaluate a design by giving
absolute values, but more relative values that may be used for
identifying critical classes on which more QA effort is
needed to ensure software quality. We explored in [12] the
relationship between the Qi metric and testability of classes.
Testability was measured (inversely) by the number of lines
of test code (JUnit test suites) and the number of assert
statements in the test code. More recently, we investigated
the capacity of the Qi metric in predicting the unit testing
effort of classes using regression analysis techniques [23].

In this paper, we wanted to investigate if the Qi metric
reflects (captures) properly the evolution of software quality
when software is actively maintained and updated. We focus
on retrospective analysis of software quality. We consider
software quality from an internal (structural) perspective. We
used two well-known OO design metrics, CBO (Coupling
Between Objects) and WMC (Weighted Methods per Class)
[24], for measuring the internal quality of a release
(particularly coupling and complexity, two important
attributes). The CBO metric counts for a class the number of
other classes to which it is coupled (and vice versa). The
WMC metric gives the sum of complexities of the methods of
a given class, where each method is weighted by its
cyclomatic complexity. These metrics have received
considerable attention from researchers and are also being
increasingly adopted by practitioners. Furthermore, these
metrics have been incorporated into several development
tools. We performed an empirical analysis using historical
data on an open source software system (Apache Tomcat).
The collected data cover a period of more than seven years.
Empirical results provide evidence that the Qi metric reflects
properly the quality (as captured by the selected OO metrics)
evolution of the subject software system.

The rest of this paper is organized as follows: Section 2
gives a survey on related work. The Qi metric is introduced in
Section 3. Section 4 presents the empirical study we
performed. Finally, Section 5 concludes the paper.

II. RELATED WORK
Mens et al. [10] provide an overview of the ways software

metrics have been (and can be) used to analyze software
evolution. A distinction is made between using software
metrics before the evolution has occurred (predictive) and

Metrics and Software Quality Evolution: A Case Study on
Open Source Software

Nicholas Drouin, Mourad Badri, and Fadel Touré

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

523DOI: 10.7763/IJCTE.2013.V5.742

after the evolution has occurred (retrospective). To support
retrospective analysis, metrics can be used to understand the
quality evolution of a software system by considering its
successive releases. In particular, metrics can be used to
measure whether the quality of a software has improved or
degraded between two releases. Dagpinar et al. [15]
investigate the significance of different OO metrics for the
purpose of predicting maintainability of software. Nagappan
et al. [25] focus on mining metrics to predict component
failures. The authors noted that there is no a single set of
complexity metrics that could be used as a universally best
defect predictor. Ambu et al. [26] address the evolution of
quality metrics in an agile/distributed project and investigate
how the distribution of the development team has impacted
the code quality.

Lee et al. [9] provide an overview of open source software
evolution with software metrics. The authors explored the
evolution of an open source software system in terms of size,
coupling and cohesion, and discuss its quality change based
on the Lehman’s laws of evolution [4], [5], [27]. Jermakovics
et al. [28] propose an approach to visually identify software
evolution patterns related to requirements. Mens et al. [29]
present a metrics-based study of the evolution of Eclipse. The
authors consider seven major releases and investigate
whether three of the laws of software evolution (continuing
change, increasing complexity and continuing growth) were
supported by the data collected. Xie et al. [3] conduct an
empirical analysis on the evolution of seven open source
programs and investigate also Lehman’s evolution laws.
Murgia et al. [18] address software quality evolution in open
source projects using agile practices. The authors used a set
of OO metrics to study software evolution and its relationship
with bug distribution. According to the achieved results,
Murgia et al. concluded that there is no a single metric that is
able to explain the bug distribution during the evolution of
the analyzed systems. Zhang et al. [8] use c-charts and
patterns to monitor quality evolution over a long period of
time. The number of defects was used as a quality indicator.
Eski et al. [16] present an empirical study on the relationship
between OO metrics and changes in software. The authors
analyze modifications in software across the historical
sequence of open source projects and propose a
metrics-based approach to predict change-prone classes. Yu
et al. [30] study the possibility of using the number of bug
reports as a software quality measure. Using statistical
methods, the authors analyze the correlation between the
number of bug reports and software changes.

III. QUALITY ASSURANCE INDICATOR
We give, in this section, a summary of the definition of the

Quality Assurance Indicator (Qi) metric. For more details see
[12], [22], [23]. The Qi metric is based on Control Call
Graphs (CCG), which are a reduced form of traditional
Control Flow Graphs (CFG). A CCG is a CFG from which
the nodes representing instructions (or basic blocs of
sequential instructions) not containing a call to a method are
removed. Compared to traditional Call Graphs, CCG are
much more precise models. They capture the structure of
calls and related control. The Qi metric is normalized and
gives values in the interval [0, 1]. A low value of the Qi of a

class means that the class is a high-risk class and needs a
(relative) high QA effort to ensure its quality. A high value of
the Qi of a class indicates that the class is a low-risk class
(having a relatively low complexity and/or the QA effort
applied actually on the class is relatively high - proportional
to its complexity).

A. Quality Assurance Indicator
The Qi of a method Mi is defined as a kind of estimation of

the probability that the control flow will go through the
method without any failure. The Qi of a method Mi is based
on intrinsic characteristics of the method (cyclomatic
complexity, unit testing coverage), as well as on the Qi of the
methods invoked by the method Mi. There is a kind of
propagation, depending on the distribution of the control flow
in a system, which needs to be captured. The Qi of a method
Mi is given by:

 ܳiM ൌ ܳiMכ · ∑ ቂܲ൫C୨୧൯ · ∏ ܳiMMאౠ ቃ୬୨ୀଵ (1)

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

524

with :

𝑄iM i
: QA indicator of method Mi,

𝑄iM i

∗ : intrinsic QA indicator of method Mi,

𝐶j
i: jth path of method Mi,

𝑃 Cj
i : probability of execution of path Cj

i of method Mi,

𝑄iM : QA indicator of method M included in the path 𝐶𝑗
𝑖 ,

𝑛i: number of linear paths of the CCG of method Mi, and

σj: set of the methods invoked in the path 𝐶j
i.

By applying the previous formula (1) to each method we

obtain a system of N (number of methods in the program)

equations. The obtained system is not linear and is composed

of several multivariate polynomials. We use an iterative

method (method of successive approximations) to solve it.

The system is, in fact, reduced to a fixed point problem.

Furthermore, we define the Qi of a class C (noted 𝑄𝑖𝐶) as the

product of the Qi of its methods:

𝑄𝑖𝐶 = 𝑄𝑖𝑀𝑀∈𝛿 (2)

where δ is the set of methods of the class C. The calculation

of the Qi metric is entirely automated by a tool (prototype)

that we developed for Java software systems.

B. Assigning Probabilities

The CCG of a method can be seen as a set of paths that the

control flow can pass through (depending on the states of the

conditions in the control structures). To capture this

probabilistic characteristic of the control flow, we assign a

probability to each path C of a control call graph as follows:

𝑃 𝐶 = 𝑃 𝐴 𝐴∈𝜃 (3)

where θ is the set of directed arcs composing the path C and

P(A) the probability of an arc to be crossed when exiting a

control structure.

To facilitate our experiments (simplify analysis and

calculations), we assigned probabilities to the different

control structures of a (Java) program according to the rules

given in Table I. These values are assigned automatically

during the static analysis of the source code of a program

when generating the Qi models. These values can be adapted

according to the nature of the applications (for example). As

an alternative way, the probability values may also be

assigned by programmers during the development (knowing

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

525

the code) or obtained by dynamic analysis. Dynamic analysis

is out of the scope of this paper.

TABLE I: ASSIGNMENT RULES OF THE PROBABILITIES.

Nodes Probability Assignment Rule

(if, else)
0.5 for the exiting arc «condition = true »

0.5 for the exiting arc «condition=false »

while
0.75 for the exiting arc «condition = true »

0.25 for the exiting arc «condition = false »

(do, while)
1 for the arc: (the internal instructions are executed

at least once)

(switch,case) 1/n for each arc of the n cases.

(?, :)
0.5 for the exiting arc «condition = true »

0.5 for the exiting arc «condition = false »

for
0.75 for entering the loop

0.25 for skipping the loop

(try, catch)
0.75 for the arc of the «try » bloc

0.25 for the arc of the «catch » bloc

Polymorphism 1/n for each of the eventual n calls.

C. Intrinsic Quality Assurance Indicator

The Intrinsic Quality Assurance Indicator of a method Mi,

noted Qi*
Mi, is given by:

 𝑄𝑖𝑀𝑖

∗ = 1 − 𝐹𝑖 (4)

with: 𝐹𝑖 =
 1−𝑡𝑐𝑖 𝑐𝑐 𝑖

𝑐𝑐𝑚𝑎𝑥

where:

𝐶𝐶i : cyclomatic complexity of method Mi,

𝑐𝑐𝑚𝑎𝑥 = max1≤𝑖≤𝑁 𝑐𝑐𝑖 ,

𝑡𝑐𝑖: unit testing coverage of the method Mi, 𝑡𝑐𝑖 ∈ 0,1 .
Many studies provided empirical evidence that there is a

significant relationship between cyclomatic complexity and

fault proneness (e.g., [13], [21], [31]). Testing (as one of the

most important QA) activities will reduce the risk of a

complex program and achieve its quality. Moreover, testing

coverage provide objective measures on the effectiveness of

a testing process. The testing coverage measures are

(currently in our approach) affected by programmers based

on the test suites they performed on the classes of the system.

The testing coverage measures can also be obtained

automatically (using tools such as Together

(www.borland.com) or CodePro (developers.google.com))

by analyzing the code of the test suites (JUnit suites for

example) to determine which parts of the classes that are

covered by the test suites and those that are not (this issue will

be considered in our future work).

IV. EMPIRICAL STUDY

We present, in this section, the empirical study we

conducted in order to investigate if the Qi metric captures the

evolution of software quality when software is actively

maintained and updated. We address software quality from

an internal perspective. We used CBO and WMC metrics.

We used historical data collected from successive released

versions of an open source software system. We selected

Tomcat, which is an open source web server developed by

Apache Software Foundation. We analysed its 5.5 branch,

launched in august 2004. The version 5.5.35, the latest to date,

was launched on November 2011. We used the official

releases as time captures of this system. The collected data

cover a period of more than seven years (thirty-one versions).

Table II gives some characteristics of the used system. Table

III gives the (average) values of the selected metrics for the

first and last versions of the subject system.

TABLE II: SOME CHARACTERISTICS OF THE USED SYSTEM.

Time

frame

(years)

Releases

First release

computed

Last release

computed

Version
Size

(SLOC)
Version

Size

(SLOC)

7.2 31 5.5.0 126 927 5.5.35 170 998

TABLE III: VALUES OF THE SELECTED METRICS.

Versions
Total no. of

classes

Total

KLOC

 Qi

CBO WMC

First

vers.
 837 126 0.743 8.97 29.8

Last

vers.
 1108 171 0.735 9.41 30.3

We retrieved the official releases on the 5.5.x branch from

the official website of Apache. We used the Borland

Together tool (http://www.borland.com/) to collect data on

CBO and WMC metrics. For each released version of the

subject system, we computed the metrics values at the micro

level (classes) as well as at the macro level (system). We used

the average as an aggregation method. We collected the Qi

data using the tool we developed. We computed the Qi value

for each class of each released version of the subject system.

Here also, we computed the Qi values at the two levels (micro

and macro). For our experiments, since we did not have any

data on the test suites used for testing the subject system and

knowing that the main purpose of this study is to investigate

if the Qi metric can be used to observe the quality evolution

along the evolution of the subject system, the testing

coverage is set to 0.75 for all methods. As mentioned

previously, the objective of the Qi metric is not to evaluate a

design by giving absolute values, but more relative values

that may be used for identifying the critical classes (in a

relative way) on which more QA effort is required to ensure

software quality.

A. Software Quality Evolution

In this section, we investigate the evolution of the Qi

metric (in parallel with the selected OO metrics) along the

evolution of the subject system. The objective is to observe

how the Qi metric behaves relatively to these metrics. We

also analyze the correlations between the Qi metric and each

of the OO metrics at the two levels: micro and macro. We

tested in our study the following hypothesis.

Hypothesis: The evolution of the OO metrics along the

evolution of the subject system will be reflected (captured) in

the Qi metric values on both micro and macro levels.

The analysis of the collected data allowed us to observe the

values of the Qi (and OO metrics) along the period of

evolution (overall trend) of the studied system. Fig. 1 shows

the results (in terms of evolution) for the Qi and selected OO

metrics (shown with the min-max normalization).

Fig. 1. Evolution of Qi and OO metrics.

From Fig. 1, it can be seen various significant variations
(increase and decrease) along the evolution of Apache. The
global trend for all the metrics is characterized by a steady
increase and some fluctuations (peaks). The Qi curve shows a
slight growth in the first iterations, which becomes however a
decrease around the iteration 8. This negative growth appears
relatively continuous. Results, overall, suggest that the Qi
metric captures (in general) the evolution of OO metrics. In
order to validate our hypothesis, we analyzed the correlations
between Qi and selected OO metrics (as indicators of
software quality from an internal perspective) along the
evolution of the subject system. We performed statistical
tests using correlation. We used both Spearman’s and
Pearson’s correlation coefficients in our study. These
techniques are widely used for measuring the degree of
relationship between two variables. Correlation coefficients
will take a value between -1 and +1. A positive correlation is
one in which the variables increase together. A negative
correlation is one in which one variable increases as the other
variable decreases. A correlation of +1 or -1 will arise if the
relationship between the variables is exactly linear. A
correlation close to zero means that there is no linear
relationship between the variables. We used the XLSTAT
(http: //www.xlstat.com/) tool to perform the analysis. We
applied the typical significance threshold (α = 0.05) to decide
whether the correlations where significant. A significant
correlation between 0.7 and 1.0 (or -0.7 and -1.0) is
considered as a strong correlation [9].

Fig. 2. Evolution of correlations between Qi and OO metrics (micro level).

TABLE IV: CORRELATION MEAN VALUES BETWEEN QI AND OO METRICS
(MICRO LEVEL).

OO Metrics Avg. value

CBO -0.7178
WMC -0.8260

class) and the values of OO metrics. Fig. 2 shows the
evolution of the correlation values (Pearson) between the Qi
and selected OO metrics along the different versions of
Apache Tomcat. Table IV shows the average value of these
correlations.

It can be seen, from Fig. 2 and Table IV, that the obtained
correlations between Qi and OO metrics are strong, and this
throughout the evolution of the system. Moreover, they
remain relatively stable from one iteration to another (Fig. 2),
aside the slight peak observed for version 5.5.13. Several
observations on the calculated metrics can explain this
fluctuation. In comparison with version 5.5.12, the size in
terms of lines of code of the version 5.5.13 increases (from
148 900 to 149 500), while the number of classes decreases
(from 968 to 964), which has the effect of increasing the
average size (in terms of lines of code) of classes (from 153.8
to 155.1), decreasing the coupling (CBO from 9.19 to 8.49)
and increasing the number of operations per class (from 12.9
to 13.1). Between these two versions, we can still observe a
stability of Qi. We can therefore explain these observations
by an amount of added instructions which is concentrated in a
(relative) small number of classes.

Moreover, the correlations between Qi and selected OO
metrics are negative. A negative correlation indicates that one
variable (Qi metric) decreases as the other variable (OO
metrics) increases. These results are plausible and not
surprising. In fact, the more strongly a class is coupled (with
a high complexity and large size) to other classes, the less the
quality of the class is likely to be. A low value of the Qi of a
class (probably a high value of coupling and complexity)
indicates that the class is a high-risk class and needs a
relatively high QA effort to ensure its quality. These results
(and observations) suggest that the Qi metric, at the micro
level, captures not only the evolution of the selected OO
metrics but also an important part of the information captured
by these metrics (given the high correlation values). These
results support therefore our hypothesis at the micro level.

TABLE V: CORRELATIONS BETWEEN QI AND OO METRICS (MACRO
LEVEL).

Variables CBO WMC

Qi -0.854 -0.566

For the macro level, we used the average values of the

metrics for each version. Table V shows the correlations
values (Spearman) obtained between Qi and OO metrics for
the system studied. From Table V, it can be seen that
correlations values between Qi and selected OO metrics are
significant (in boldface) and relatively high. This suggests
that the Qi metric captures the evolution of the selected OO
metrics for an evolving system at the macro level. Such
observations thus allow us reasonably to validate our
hypothesis at the macro level.

B. Threats to Validity
The study performed in this paper should be replicated

using many other OO software systems in order to draw more
general conclusions about the ability of the Qi metric to
reflect the evolution of the quality of software systems. In
fact, there are a number of limitations that may affect the
results of the study or limit their interpretation and

0

0.2

0.4

0.6

0.8

1

1 7 13 19 25 31

N
or

m
al

iz
ed

 v
al

ue
s

Versions

CBO (N)
WMC (N)

0.73

0.735

0.74

0.745

0.75

0.755

0.76

1 9 17 25

Q
i

Versions

-0.85

-0.75

-0.65

5.5.0 5.5.12 5.5.28

Co
rr

el
at

io
n

Correlations Qi vs OO Metrics

CBO WMC

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

526

For the micro level, we selected the classes present from

the first version of the system to its latest version. We

considered that these classes represent in some ways the core

of the system throughout the period of evolution. We

calculated correlations between the values of Qi (for each

generalization. The achieved results are based on the data set
we collected from one open source software system. The
used system is, however, a relatively large project. The
collected data cover a period of more than seven years. Even
if we believe that the analyzed data set is large enough to
allow obtaining significant results, we do not claim that our
results can be generalized. It is also possible that facts such as
the development style used by the developers for developing
and maintaining the code of the subject system (or other
related factors) may affect the results or produce different
results for specific applications.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the quality evolution of an

open source Java software system using metrics. Software
quality was addressed from an internal point of view. We
wanted to investigate if the Qi metric, which we proposed in a
previous work, can be used to observe (understand) how
quality evolves along the evolution of the subject software
system. We used OO design metrics for measuring the
internal (structural) quality of a released version (in terms of
coupling and complexity). We performed an empirical
analysis using historical data collected from the successive
released versions of the subject software system. Empirical
results provide evidence that the Qi metric may be used to
observe the evolution of software quality along the evolution
of successive released versions of a software system. The
achieved results are, however, based on the data set we
collected from only one system. The findings in this paper
should be viewed as exploratory and indicative rather than
conclusive. They show, at least, that the Qi metric, as a
synthetic metric, offers a promising potential for capturing
(reflecting) the quality evolution of evolving software
systems. Further investigations are, however, needed to draw
more general conclusions. The performed study should be
replicated using many other OO software systems. As future
work, we plan to (among others): investigate if the Qi metric
may be used to observe the evolution of software quality
from an external point of view (using the number of defects
as a quality indicator) and replicate the study on other OO
software systems to be able to give generalized results.

REFERENCES
[1] M. M. Lehman and L. A. Belady, Program Evolution: Processes of

Software Change, Academic Press, 1985.
[2] I. Sommerville, Software Engineering, 9th Edition, Addison Wesley,

2010.
[3] G. Xie, J. Chen, and I. Neamtiu, “Towards a better understanding of

software evolution: An empirical study on open source software,” in
ICSM ’09, pp. 51-60, 2009.

[4] M. M. Lehman, “Laws of software evolution revisited,” in Lecture
Notes in Computer Science, vol. 11, pp. 108-124, 1997.

[5] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Turski, “Metrics and laws of software evolution – The nineties view,”
in Proceedings of the Fourth International Software Metrics
Symposium, pp. 20-32, 1997.

[6] P. L. Parnas, “Software aging,” in Proceedings of the 16th
International Conference on Software Engineering (ICSE ’94), pp.
279-287, 1994.

[7] J. V. Gurp and J. Bosch, “Design erosion: Problems and causes,” in
Journal of Systems and Software, vol. 61, no. 2, pp. 105-119, 2002.

[8] H. Zhang and S. Kim, “Monitoring software quality evolution for
defects,” in IEEE Software, vol. 27, no. 4, pp. 58-64, 2010.

[9] Y. Lee, J. Yang, and K. H. Chang, “Metrics and evolution in open
source software,” in 7th International Conference on Quality Software
(QSIC ’07), pp. 191-197, 2007.

[10] T. Mens and S. Demeyer, “Future trends in software evolution metrics,”
in Proceedings of the 4th International Workshop on Principles of
Software Evolution, pp. 83-86, 2001.

[11] B. H. Sellers, Object-Oriented Metrics-Measures of Complexity,
Prentice Hall, New Jersey, 1996.

[12] M. Badri and F. Touré, “Empirical analysis for investigating the effect
of control flow dependencies on testability of classes,” in 23rd
International Conference on Software Engineering and Knowledge
Engineering, 2011.

[13] V. Basili, L. Briand, and W. L. Melo, “A validation of object oriented
design metrics as quality indicators,” in IEEE Transactions on
Software Engineering, vol. 22, no. 10, 1996.

[14] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Exploring the
relationships between design measures and software quality in
object-oriented systems,” in Journal of Systems and Software 51, pp.
245-273, 2000.

[15] M. Dagpinar and J. H. Jahnke, “Predicting maintainability with
object-oriented metrics - An empirical comparison,” in Proceedings of
the 10th Working Conference on Reverse Engineering (WCRE ‘03), pp.
155-164, 2003.

[16] S. Eski and F. Buzluca, “An empirical study on object-oriented metrics
and software evolution in order to reduce testing costs by predicting
change-prone classes,” in 2011 IEEE Fourth International Conference
on Software Testing, V&V Workshops, pp. 566-571, 2011.

[17] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd Edition, PWS Publishing Company, 1997.

[18] A. Murgia, G. Concas, S. Pinna, R. Tonelli, and I. Turnu, “Empirical
study of software quality evolution in open source projects using agile
practices,” in CoRR, vol. abs/0905.3287, 2009.

[19] Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of
object-oriented metrics for predicting fault proneness models,” in
Software Quality Journal, vol. 18, no. 1, pp. 3-35, 2010.

[20] R. Subramanyan and M. S. Krishnan, “Empirical analysis of CK
metrics for object-oriented design complexity: Implications for
software defects,” in IEEE Transactions on Software Engineering, vol.
29, no. 4, pp. 297-310, 2003.

[21] Y. Zhou and H. Leung, “Empirical analysis of object-oriented design
metrics for predicting high and low severity faults,” in IEEE
Transactions on Software Engineering, vol. 32, no. 10, pp. 771-789,
2006.

[22] M. Badri, L. Badri, and F. Touré, “Empirical analysis of
object-oriented design metrics: Towards a new metric using control
flow paths and probabilities,” in Journal of Object Technology, vol. 8,
no. 6, pp. 123-142, 2009.

[23] M. Badri and F. Touré, “Evaluating the effect of control flow on the
unit testing effort of classes: An empirical analysis,” in Advances in
Software Engineering, vol. 2012.

[24] S. R. Chidamber and C. F. Kemerer, “A metric suite for object-oriented
design,” in IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476-493, 1994.

[25] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceedings of the 28th International
Conference on Software Engineering (ICSE '06). ACM, pp.452-461,
2006.

[26] W. Ambu, G. Concas, M. Marchesi, and S. Pinna, “Studying the
evolution of quality metrics in an agile/distributed project,” in Extreme
Programming and Agile Processes in Software Engineering, pp. 85-93,
2006.

[27] M. M. Lehman, “On understanding laws, evolution, and conservation
in the large-program life cycle,” in Journal of Systems and Software,
vol. 1, no. 3, pp. 213-221, 1980.

[28] A. Jermakovics, M. Scotto, and G. Succi, “Visual identification of
software evolution patterns,” in 9th International Workshop on
Principles of Software Evolution (IWPSE ’07): in Conjunction with the
6th ESEC/FSE Joint Meeting, pp. 27-30, 2007.

[29] T. Mens, J. F. Ramil, and S. Degrandsart, “The evolution of eclipse,” in
IEEE International Conference on Software Maintenance 2008
(ICSM ’08), pp. 386-395, 2008.

[30] L. Yu, S. Ramaswamy, and A. Nail, “Using bug reports as a software
quality measure,” in Proceedings of the 16th International Conference
on Information Quality (ICIQ ’11), pp. 277-286, 2011.

[31] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Lalhotra, “Empirical
analysis for investigating the effect of object-oriented metrics on fault
proneness: A replicated case study,” in Software Process:
Improvement and Practice, vol. 16, no. 1, 2009.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

527

