
  

 

Abstract—Flood fill algorithm has won first places in the 

international micromouse competitions. To save computation 

time, the modified flood fill algorithm is often coded. Yet, the 

literature search reveals the scarcity of the quantitative details 

of the two algorithms. This article attempts to discuss their 

differences and uses Maze-solver simulator to collect and 

tabulate the maze-run statistics for various popular mazes. It 

will discuss these statistics and various aspects of the flood fill 

algorithm modifications. 

 
Index Terms—Flood fill algorithm, maze simulation, 

micromouse competition, modified flood fill algorithm.  

 

I. INTRODUCTION 

Each year since 1972, the micromouse competitions have 

been held in cities and university campuses all around the 

world. The participants, students and engineers, design and 

program their micromice to autonomously find the center of a 

16 by 16 cell maze within 10 minutes. After finding the 

center, the micromouse may map the entire maze to locate the 

shortest route to the center. Using the shortest route, the 

micromouse will attempt to reach the center in a fastest run.  

The maze-solver simulator simulates the mouse run in 

various popular mazes such as the one used in Japan 2011 

competition and other competitions. For each algorithm, the 

simulator tabulates the total cell traverses, number of distance 

updates, number of corner turns, etc. Luke Last, et al. [1] 

codes the Flood Fill algorithm in Java; the author augments 

and revises their Flood Fill algorithm and codes the Modified 

Flood Fill algorithm [2].  

 

II. MAZE SOLVING ALGORITHMS 

Many maze solving algorithms are readily available. With 

less demand for computation speed and with the assurance 

that the best run gives the smallest number of cells travelled, 

the modified flood fill algorithm is, by far, the most 

commonly used one in micromouse competitions. 

A. Flood Fill Algorithm 

The Flood Fill algorithm uses the concept of water always 

flowing from a higher elevation to a lower one [3][4]. It 

applies this concept by assigning each cell in the maze a 

value that represents how far the cell is from the center. The 

 
Manuscript received August 9, 2012; revised December 15, 2012. This 

work was supported in part by the Department of Electrical and Computer 

Engineering, California State University, Northridge and by the IEEE CSUN 

Chapter.  

G. Law is with the California State University, Northridge, CA 91330, 

USA (e-mail: George.law@csun.edu). 

cells with higher values are considered to have higher 

elevations; the ones with lower values are considered to have 

lower elevations. The center cells are assigned zero values 

which are equivalent to the lowest elevations. 

For simplicity in illustration, instead of using a 16×16 cell 

maze, we shall use a 6x6 cell maze as shown in Fig. 1a. The 

concept remains the same except that it applies to a smaller 

region of cells.  

 
Fig. 1a. 6×6 cells sample maze 

We shall use the matrix notation (x, y) for the cell location 

where x is the row value, x = 0 is the bottom row, and x = 5 is 

the top row; y is the column value, y = 0 is left-most column, 

and y = 5 is the right-most column. The micromouse starts at 

cell (0, 0) which is the cell at the lowest left-hand corner. 

Initially, the micromouse is placed at (0, 0) facing upward, as 

shown by the arrow. Before the micromouse starts its 

exploration, the maze is assumed to have no walls and each 

cell is assigned a value based on number of cell distance from 

the center. Fig. 1b shows the initial cells’ distance values for 

a 6x6 cell maze. 

 
Fig. 1b. Initial distance values from center cells 

The maze for any IEEE micromouse competition always 

has the east wall at the starting cell (0, 0) and the first move is 

always upward (north). At cell (0, 0), the cell has only one 

open neighbor (1, 0) which has a smaller distance from the 

center. Hence the micromouse will moves upward (north), 

from a higher elevation to a lower one, as shown in Fig. 1c. 

With the new wall detected north of cell (1, 0) and the old 

wall east of cell (0, 0), the Flood Fill algorithm floods the 

maze with the distances from the center cells as shown in Fig. 

1c. 

Quantitative Comparison of Flood Fill and Modified Flood 

Fill Algorithms 

 George Law 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

503DOI: 10.7763/IJCTE.2013.V5.738



  

 
Fig. 1c. Distance values when micromouse reaches cell (1, 0) 

At cell (1, 0), the micromouse encounters the north wall. 

This cell has two open neighbors (0, 0) and (1, 1). Since the 

open east neighbor (1, 1) has a distance smaller than cell (1, 

0), the micromouse will turn and moves to (1, 1) eastwards, 

again from a higher elevation to a lower one, as shown in Fig. 

1d. With the new wall detected east of cell (1, 1) and the old 

walls north of cell (1, 0) and east of cell (0, 0), the Flood Fill 

algorithm floods the maze with the distances from the center 

cells as shown in Fig. 1d. Refer to Fig. 1a for the other walls 

which are yet to be detected. 

 
Fig. 1d. Distance values when micromouse reaches cell (1, 1) 

At cell (1, 1), the micromouse encounters the east wall. 

This cell has three open neighbors (0, 1), (2, 1) and (1, 0). 

Since the open north neighbor (2, 1) has a distance smaller 

than cell (1, 1), the micromouse will turn and moves to (2, 1) 

northwards, again from a higher elevation to a lower one, as 

shown in Fig. 1e. With the new walls detected north of cell (2, 

1) and east of cell (2, 1), and the old walls east of cell (1, 1), 

north of cell (1, 0), and east of cell (0, 0), the Flood Fill 

algorithm floods the maze with the distances from the center 

cells as shown in Fig. 1e. 

 
Fig. 1e. Distance values when micromouse reaches cell (2, 1) 

 
Fig. 1f. Distance values when micromouse reaches cell (3, 0) 

The maze flooding is done each time the micromouse 

reaches a new cell. Again, when the micromouse reaches cell 

(3, 0), the distance values, as the result of maze flooding, is 

shown in Fig. 1f. 

The same process continues until the micromouse reaches 

the center cell. Overall, to reach the center on the first run for 

this sample maze, the mouse will traverse a total of 24 cells. 

Because the Flood Fill algorithm floods the maze when the 

mouse reaches a new cell, including the starting cell, the total 

number of floodings performed is 24, which translates into a 

total of 24*36 = 864 cell distances updated. Fig. 1g shows the 

first run path which passes through 24 cells to reach the 

center. 

 

Fig. 1g. First run path dotted lines show micromouse’s path to reach the 

center the 1st time 

B.
 

Modified Flood Fill Algorithm 

The modified flood fill algorithm does not flood the maze 

each time a new cell is reached. Instead it updates only the 

relevant neighboring cells using the following revised 

recursive steps: 

1)
 

Push the current cell location (x, y) onto the stack. 

2)
 

Repeat this step while the stack is not empty.  

 

Like the flood fill algorithm, the maze is first initialized 

(flooded) with the distances from the center with the 

assumption that there is no wall in the maze. Since there is no 

distance update until the micromouse reaches cell (2,1), the 

distance values remain unchanged as in Fig. 2a (same as Fig. 

1d).

 

Recall that neighboring cells’ distances are updated only 

if the condition specified in the recursive step 2b is satisfied. 

 
Fig. 2a. Distance values when micromouse reaches cell (2, 1) before distance 

update 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

504

 Pull the cell location (x, y)from the stack.
 If the minimum distance of the neighboring open cells, md, 

is not equal to the present cell’s distance - 1, replace the 
present cell’s distance with md + 1, and push all neighbor 
locations onto the stack. This revised distance update 
algorithm differs from the recursive steps outlined by S.
Benkovic in http://www.micromouseinfo.com/
introduction /mfloodfill.html [5]. The Appendix discusses 
the differences.

http://www.micromouseinfo.com/


  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

505

Since the distance of the current cell (2, 1) – 1 = 0 is not 

equal to the minimum of the open neighbors (2, 0) and (1, 1), 

which is 2, the distance update is necessary. We shall follow 

the revised recursive distance update steps to see how the 

distance values are updated.

3) Push the current cell location (2, 1) onto the stack.

 Pull the cell location (2, 1) from the stack. 

 Since the distance at (2, 1) – 1 = 0 is not equal to md = 2, 

the minimum of its open neighbors (2, 0) and (1, 1), update 

the distance at (2, 1) to md + 1 = 2 + 1 = 3. Push all 

neighbor locations (3, 1), (2, 0) and (1, 1), except the 

center location (2, 2), onto the stack. Fig. 2b shows the 

updated distances and Fig. 2c shows the current stack 

contents.

Fig. 2b. Distance values when micromouse reaches cell (2, 1) after distance 

update at cell (2, 1)

Fig. 2c. Contents of Stack when micromouse reaches cell (2, 1) after distance 

update at cell (2, 1)

 Recursively, since the stack is not empty, pull the cell 

location (1, 1) from the stack.

 Since the distance at (1, 1) – 1 = 1 is not equal to md = 3, 

the minimum of its open neighbors (2, 1), (0, 1) and (1, 0), 

update the distance at (1,1) to md + 1 = 3 + 1 = 4. Push all 

neighbor locations (2, 1), (0, 1), (1, 0), and (1, 2) onto the 

stack. Fig. 2d shows the updated distances and Fig. 2e 

shows the current stack contents.

Fig. 2d. Distance values when micromouse reaches cell (2, 1) after distance 

update at cell (1, 1)

Fig. 2e. Contents of Stack when micromouse reaches cell (2, 1) after distance 

update at cell (1, 1)

 Recursively, since the stack is not empty, pull the cell 

location (1, 2) from the stack.

 Since the distance at (1, 2) – 1 = 0 is equal to md = 0, the 

minimum of its open neighbors (2, 2), (0, 2) and (1, 3), no 

distance update is necessary.

 Recursively, since the stack is not empty, pull the cell 

location (1, 0) from the stack.

 Since the distance at (1, 0) – 1 = 2 is not equal to md = 4, 

the minimum of its open neighbors (0, 0) and (1, 1), update 

the distance at (1, 0) to md + 1 = 4 + 1 = 5. Push all 

neighbor locations (2, 0), (0, 0), and (1, 1) onto the stack. 

Fig. 2f shows the updated distances and Fig. 2g shows the 

current stack contents.

Fig. 2f. Distance values when micromouse reaches cell (2, 1) after distance 

update at cell (1, 0)

Fig. 2g. Contents of Stack when micromouse reaches cell (2, 1) after distance 

update at cell (1, 0)

 Recursively, since the stack is not empty, pull the cell 

location (1, 1) from the stack.

 Since the distance at (1, 1) – 1 = 3 is equal to md = 3, the 

minimum of its open neighbors (1, 0), (2, 1) and (0,1), no 

distance update is necessary.

 Recursively, since the stack is not empty, pull the cell 

location (0, 0) from the stack.

 Since the distance at (0, 0) – 1 = 3 is not equal to md = 5, 

the minimum of its only open neighbor (1, 0), update the 

distance at (0, 0) to md + 1 = 6. Push all neighbor locations 

(1, 0) and (0, 1) onto the stack. Fig. 2h shows the updated

distances and Fig. 2i shows the current stack contents.

Fig. 2h. Distance values when micromouse reaches cell (2, 1) after distance 

update at cell (0, 0)



  

 
Fig. 2i. Contents of Stack when micromouse reaches cell (2, 1) after distance 

update at cell (0, 0) 

We shall not show the similar steps for the remaining cell 

locations in the stack. One can follow the previous steps, to 

obtain the distance values. When the stack is empty, the 

distance map of the maze will look like Fig. 2j. 

 
Fig. 2j. Distance values when micromouse reaches cell (2,1) after all 

neighbor cells’ distances have been updated 

The same process continues until the micromouse reaches 

the center cell. Fig. 2k shows the distance map when the 

micromouse reaches the center cell. Overall, to reach the 

center on the first run for this sample maze, the total number 

of distance updates is 36, which is obtained from the 

maze-solver’s tabulated value. 

 

Fig. 2k. Distance values when micromouse reaches the center cell on the 1st 

run 

TABLE I: TOTAL NUMBER OF DISTANCE UPDATES TO FIND THE 

BEST RUNS 

Maze 

Names 

Total number of cell 

traversed to find 

best run 

Total number of distance 

updates to find best run 

Flood 

Fill 

Modified 

Flood 

Fill 

Flood Fill  
Modified 

Flood Fill 

IEEE 

Region 6 

2012 

530 530 135,936 3197 

Sample 

16×16 cell 

Maze 

179 179 46,080 793 

APEC 2002 322 322 82,688 3307 

Seoul 2002 585 585 150,016 3887 

Minos 2003 246 246 63,232 2643 

III. DISTANCE UPDATE COMPARISON 

We use the Maze-Solver simulator to run the micromouse 

until the best run is found and to determine the total distance 

updates.  For Flood Fill and Modified Flood Fill algorithms, 

Table I shows the total number of cells traversed and the total 

distance updates to find the best run for various mazes used in 

competitions. As could be expected from flooding the maze 

when the micromouse reaches a new cell, the total distance 

updates for Flood Fill algorithm is many fold larger than the 

Modified Flood Fill algorithm. 

 

IV. SIMULATED RUN ON A SAMPLE 16×16 CELL MAZE 

A. First Fast Run to Get to the Center 

When the mouse finds its way to the center for the first 

time, a short path to the center that traces sequentially from 

the highest distance at the starting cell (0,0) to the lower ones 

and ending at the center has been mapped. This mapped path 

is shown in Fig. 3a as the gray path. If this first run mapped 

path is used in the speed run, the micromouse will start at the 

starting cell (0,0) and follow the gray path to get to the center. 

B. Second Fast Run to Get to the Center  

After reaching the center and using the walls and dead 

ends which are already marked on first run, the micromouse 

retraces from the center, following the lower distances and 

updating distances when necessary as it explores, back to the 

starting cell and starts the second run. Based on the newly 

updated cells and walls, the mouse will follow the Modified 

Floodfill algorithm to reach the center. When the mouse finds 

its way to the center for the second time, a second short path 

to the center that traces sequentially from the highest distance 

at the starting cell (0,0) to the lower ones and ending at the 

center has been mapped. This second mapped path is shown 

in Fig. 3b as the gray path. If this second run mapped path is 

used in the speed run, the micromouse will follow the gray 

path to get to the center. 

C. Third Fast Run to Get to the Center  

After reaching the center and using the walls and dead 

ends which are already marked on first and second runs, the 

micromouse retraces from the center, following the lower 

distances and updating distances when necessary as it 

explores, back to the starting cell and starts the third run. 

Similar to the first and second runs, the third run will find a 

third short path to the center that traces sequentially from the 

highest distance at the starting cell (0,0) to the lower ones and 

ending at the center. This third short path is shown in Fig. 3c 

as the gray path. 

The simulation shows that the subsequent runs follow the 

third run’s path, which is an indication that it has found the 

best run. This is confirmed by the smallest number of cells 

traversed on this run. If priority is given to the smaller 

number of turns, the second run will be the best run. When 

the micromouse uses this best run for its speed run, it just 

follows the already mapped distances from the starting cell to 

the center cell, like water flowing from the higher elevation 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

506



  

to the lowest elevation.  

The total number of cells traversed and the total number of 

turns taken for all three fast runs are tabulated in Table II. 

            TABLE II: NUMBER OF CELLS TRAVELED AND TURNS TAKEN 

ALL JAPAN 2011 SIMULATED RUN 

RUN 
NUMBER OF CELLS 

TRAVELLED 

NUMBER OF TURNS 

TAKEN 

1ST 33 17 

2ND 33 15 

3RD 31 19 

 

 
 

 

 
 

V. CONCLUSION 

Compared to the Flood Fill algorithm, the Modified Flood 

Fill algorithm offers a significant reduction in cell distance 

updates (Table I). With a lesser number of distances to update, 

the micromouse which uses the modified flood fill can 

traverse from cell to cell in a higher speed. Furthermore, if 

the dead end cells are marked on the first arrival, these 

marked cells will not be explored in subsequent runs, 

resulting in a reduced total number of cells explored. With 

less demand for computation speed and with the assurance 

that the best run gives the smallest number of cells traversed, 

the Modified Flood Fill algorithm may be the choice for 

micromouse competitions. 

APPENDIX 

   Distance update algorithms comparison 

As it has been pointed out earlier, the revised cell distance 

update algorithm differs from the recursive steps outlined by 

S. Benkovic in pushing all neighbor cell positions instead of 

pushing only the open neighbors, when the current cell 

distance is updated; S. Benkovic’s algorithm pushes only 

open neighbor cell positions. The differences will be 

illustrated by the following micromouse run on a sample 

16×16 cell maze. Fig. 4a, Fig. 4b, and Fig. 4c show only the 

relevant portion of the maze. Fig 4a shows the distance 

values when the micromouse reaches cell (4, 1) where the 

distance update is necessary. Comparing this distance update 

process will reveal the algorithms’ differences. 

When the micromouse reaches cell (4, 1), this cell’s 

distance needs update. The revised distance update algorithm 

will push all neighbors cells (5, 1), (3, 1), (4, 0), and (4, 2) 

onto the stack whereas S. Benkovic’s distance update 

algorithm will push only open neighbor cells (4, 0) and (4, 2). 

As a result, cell (3, 1) distance value will not be updated in his 

algorithm. Fig. 4b shows the revised algorithm’s distance 

values when the micromouse reaches cell (6, 0). Fig. 4c 

First fast run’s path from start 

position to center cell 

Fig. 3a. Micromouse’s first fast run 

 

 

Second fast run from start 

position to center cell 

Fig. 3b. Micromouse’s second fast run 

Fig. 3c. Micromouse’s third fast run 

 

Third fast run from start 

position to center cell 

 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

507



  

shows S. Benkovic’s distance values when the micromouse 

reaches cell (6, 0). Cell (3, 1) distance values are boldfaced to 

emphasize the source of discrepancy. This discrepancy may 

cause the micromouse to take extra steps in reaching the 

center cell. 

 

Fig. 4a. Distance values of a portion of a 16×16 cell maze when the 

micromouse reaches cell (4, 1) before its distance update.    * denotes “start 

position” 

 

Fig. 4b. Revised distance update algorithm: Distance values of a portion of a 

16x16 cell maze when the micromouse reaches cell (6, 0). 

 
Fig. 4c. S. Benkovic’s distance update algorithm: Distance values of a 

portion of a 16x16 cell maze when the micromouse reaches cell (6, 0) 

ACKNOWLEDGMENT 

The author thanks Dr. Ali Amini, Chair of Electrical & 

Computer Engineering, California State University, 

Northridge, for going out of his way to support the project, 

and also thanks the ICCSIT reviewers for their constructive 

suggestions. 

REFERENCES 

[1] L. Last, N. Veun, V. Frey and J. Smith. (2010). Maze-Solver Simulator. 

[Online] Available: 

http://code.google.com/p/maze-solver/downloads/list. 

[2] G. Law. (2012). Augmented and revised maze-solver. [Online] 

Available:  https://github.com/glaw-csun/svn/downloads. 

[3] M. Sharma and K. Robeonics, “Algorithms for Micro-mouse,” in Proc.  

International Conf. on Future Computer and Communication, Kuala 

Lumpur, pp. 581-585, 2009. 

[4] S. Mishra and P. Bande, “Maze solving algorithms for micro mouse,” in 

Proc. IEEE International Conference on Signal Image Technology and 

Internet Based Systems, Bali, 2008, pp. 86-93. 

[5] S. Benkovic. The Modified Flood Algorithm. [Online] Available:   

http://www.micromouseinfo.com/ introduction/mfloodfill.html. 

 

  

 

 

  

 

  

 
 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

508

George Law received his B.S.E.E. degree from 

Georgia Institute of Technology, Atlanta, U.S.A, in 

1981, M.S.E.E. degree from Florida Institute of 

Technology, Melbourne, U.S.A, in 1982, and Ph.D. in 

electrical engineering from University of Alabama, 

Tuscaloosa, U.S.A, in 1987. He is an Associate 

Professor at California State University, Northridge. 

His current research interests include system-on-chip, 

real-time operating system, RFID system, and 

programmable logic.

https://github.com/glaw-csun/svn/downloads
http://www.micromouseinfo.com/

