



Abstract—Points-to analysis is the problem of approximating

run-time values of pointers statically or at compile-time.

Points-to sets are used to store the approximated values of

pointers during points-to analysis. Memory usage and running

time limit the ability of points-to analysis to analyze large

programs.

To our knowledge, works which have implemented a

bit-vector representation of points-to sets so far, allocates bits

for each pointer without considering pointer’s type. By

considering the type, we are able to allocate bits only for a

subset of all abstract objects which are of compatible type with

the pointer’s type and as a consequence improve the memory

usage and running time. To achieve this goal, we number

abstract objects in a way that all the abstract objects of a type

and all of its sub-types are consecutive in order.

Our most efficient implementation uses about 2.5× less

memory than hybrid points-to set (default points-to set in Spark)

and also improves the analysis time for sufficiently large

programs.

Index Terms—Programming languages, points-to analysis,

points-to sets, data structures, bit-vectors, class hierarchy, Java.

I. INTRODUCTION

Points-to analysis is the problem of approximating

run-time values of pointers statically or at compile-time. The

result of this analysis may be used for program optimization,

debugging or understanding. One of the most famous and

widely used algorithms to solve this problem, which we have

used in our implementations, is Andersen style or inclusion

based points-to analysis [1].

Points-to sets are used to store the approximated values of

pointers during the analysis. Previous works have

implemented efficient and compact points-to sets which

make the overall analysis more efficient [2]-[8]. Points-to

sets which are represented based on bit-vectors [4], [5], [9]

and points-to sets which are represented and manipulated

based on BDD relations are shown to be more efficient [2],

[3], [6], [7], [8], [10]. In this paper we utilize bit-vector

representation of points-to sets.

Points-to analysis produces several points-to sets that are

similar in the sense that many of their members are common

[5]. Based on this fact, both BDD based and bit-vector based

methods try to have more efficient representation of points-to

sets by trying to share common members.

In a pure bit-vector implementation of points-to sets, one

bit is allocated for every abstract object (allocation-site) that

is reachable from root methods. Reachability of

allocation-sites can be determined using a conservative

call-graph. This call-graph can be created using either CHA

[11], RTA [12] or VTA [13] methods.

Heintze have implemented a shared bit-vector

representation of points-to sets in order to improve memory

and time efficiency [5]. These sets consist of two parts, a

shared bit-vector (base part) and an overflow list. The base

part is shared among two or more points-to sets and the

overflow lists is maintained to include 20 or fewer members.

This representation benefits from the fact that many points-to

sets are similar. Hirzel also used this implementation of

points-to sets in his work [9]. Lhotak and Hendren [4] used a

variant of this technique. Their set had no mechanism to

share common subsets. Once any set gets larger than some

specified-size (e.g. 16 members), it becomes a pure bit-vector

points-to set.

In strongly typed languages like Java [14] more precise

points-to results and, as a consequence, smaller points-to sets

can be achieved by using type filtering during points-to set

propagation. This method which is known as online type

filtering [15] also makes the analysis faster [4].

Previous works, we have mentioned above, haven’t made

use of types in order to improve size of points-to sets, e.g., in

the pure bit-vector implementation of a points-to set

associated with a variable of type T, one bit is allocated for

every abstract object of the program. By noticing the types,

we are able to allocate bits only for a subset of all the abstract

objects which are of compatible type with the variable (i.e.

abstract objects of type T or its subtypes). To be able to make

use of this fact, we reordered abstract objects of programs,

using class-hierarchy so as to assign abstract objects of

compatible types, successive numbers.

We have a number of implementations and the best of

them employs the above-mentioned idea and also uses

Spark’s hybrid points-to set’s idea to gain more efficiency.

There is also another related work, sparse bitmaps, which

is employed by GCC [16] and LLVM [17] compilers. Every

sparse bitmap consists of a linked list of elements and each

element is a bit-vector of size eight words. No element

isallocated in a sparse bitmap unless it has at least one

non-zero bit set. In order to calculate the memory usage of

sparse bitmaps when it is combined with our desired ordering,

we did not need to implement a combined version of our

method and sparse bitmaps since the memory gain can be

calculated by examining bit-vectors after the propagation and

finding out how many elements could be saved. This

combined version could have some minor memory

Improving Bit-Vector Representation of Points-To Sets

Using Class Hierarchy

Hamid A. Toussi and Ahmed Khademzadeh

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

494

Manuscript received September 25, 2012; revised December 11, 2012.

Hamid A. Toussi is with the Department of Mathematics and Computer

Science, University of Sistan and Baluchestan, Zahedan, Iran (e-mail:

hamid2c@gmail.com).

Ahmed Khademzadeh was with the Department of Computer Engineering,

Islamic Azad University, Mashhad, Iran. He is now a PhD student and

member of the biocomplex lab at Florida Institute of Technology, Florida,

USA (e-mail: akhademzadeh2011@my.fit.edu).

DOI: 10.7763/IJCTE.2013.V5.736

improvement compared to our current implementation, but

considering the cost of linked list manipulation and minor

memory usage improvement, we believe that this memory

gain is not worth it (see section VII).

Some background information comes in Section II. As

stated above, we would first number the abstract objects in

our desired order and then we need to implement a bit-vector

(we call it Ranged Bit Vector) which takes these ranges into

account. An overall picture of the work is given in Section III.

Numbering is explained in Section IV and Ranged Bit Vector

is described in Section V. Section VI concludes our

implementations and we show our experimental results in

Section VII.

II. BACKGROUND

Andersen or inclusion based points-to analysis which is

used in this paper, consists of a set of deduction rules.

Points-to propagation is the process of applying Andersen’s

rules repeatedly until reaching a fix-point where all the

constraints are satisfied, and as a consequence, a safe solution

to the points-to analysis problem is found. This set of

constraints is inferred from the input program and are

represented by Pointer Assignment Graph (PAG) in Spark.

PAG consists of different nodes and edges. Pointers of the

input program are represented by variable nodes. They

represent local variables, method parameters and static fields

which can hold pointer values. Allocation nodes are abstract

objects (i.e. every allocation node abstracts a set of run-time

objects) and every allocation node corresponds to an

allocation-site of the input program.

Edges mainly represent flow of points-to sets. For example

an edge from the variable node v to variable node w shows

the statement w=v and makes the propagator add all allocation

nodes in points to set of v to points-to set of w.

There are other edges and nodes in the PAG (store edges,

load edges, allocation edges, concrete field nodes and field

dereference nodes). See [4], [18] for more details about them.

III. OVERVIEW

Suppose there are 1000 allocation-sites within all the

reachable methods of a program and from these, there are

only 200 allocation-sites of type A (i.e. instantiation or

instantiations of class A at the allocation-site), or one of its

sub-types. If we have a variable v of declared type A, and we

are supposed to allocate a bit-vector representation of

points-to set for it, we can allocate 200 bits (one bit per each

allocation-site of type A or its sub-types) instead of 1000 bits.

To achieve this, we have to number allocation nodes so that

all of the allocation nodes of a declared type, and all of its

sub-types, fall within the same interval and be consecutive in

order (e.g. the interval [201, 400] in the example above).

Recall that for every allocation-site one allocation node is

created.

Every non-interface type is mapped to an interval as

described above. An interface type may be associated with

more than one interval (one interval for every top subclass

that has implemented the interface). Every Ranged Bit Vector

has an interval and is able to handle different operations.

During points-to set propagation, points-to sets for two

kinds of nodes (variable nodes and concrete field nodes. See

[4]) are created. For each of these nodes, a specialized

bit-vector implementation of points-to set is allocated based

on type of the node (i.e. declared type of variables in variable

nodes and fields in concrete field nodes).

To allocate the specialized points-to set, the interval or

intervals associated with the node’s type are required so

allocation node manager (the module we added to Spark to

manipulate intervals and allocation nodes in our desired way)

is queried and type of the node is sent to it as a parameter to

achieve these intervals. Finally, the points-to set for the node

is allocated. This points-to set has a Ranged Bit Vector for

every interval associated with the type. This is the description

of Ranged Points-To Set, another variant of it is also

implemented in this work (Ranged Hybrid Points-To Set).

See Sections VI and V.

IV. NUMBERING

Originally, Spark (the framework we have used to

implement our work) numbers allocation nodes as allocates

them in the PAG, which is not our desired way of numbering.

The procedure in Fig. 1 renumbers the allocation nodes and

associates every reference type with an interval. This does

not include interface types which may be associated with

more than one interval.

The interval’s lower bound indicates the number

associated with the first allocation node of that type, and its

sub-types and interval’s upper bound indicates the number

associated with the last allocation node within the interval.

void dfsVisit(SootClass cl){

 lower = globalCounter + 1;

 for (AllocNode alloc : class2allocs.get(cl)){

 globalCounter = globalCounter + 1;

 globalArray[globalCounter] = alloc;

 }

 // cha is the class hierarchy

 subclasses = cha.getSubClassesOf(cl);

 if (subclasses.isEmpty()){

 // SootClass cl is a leaf in class hierarchy

 type2interval.put(cl.getType(),

 new Interval(lower, globalCounter));

 return;

 }

 for (SootClass c : subclasses)

 dfsVisit(c);

 upper = globalCounter;

 type2interval.put(cl.getType(),

 new Interval(lower, upper));

}

Fig. 1. Procedure to renumber allocation nodes and create intervals.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

495

The procedure is basically a depth first traversal of the

class hierarchy. The index of an allocation node in

theglobalArray represents its corresponding bit in a pure

bit-vector implementation. In fact, the globalArray represents

the universe of all the allocation nodes.

In this procedure two hash-maps are used. Each reference

type is mapped to a linked-list of allocation nodes of that type

through the map class2allocs. The map type2interval gets

filled during this procedure and it maps every type to its

associated interval. Note that globalArray, globalCounter,

class2allocs and type2interval are global (static in term of

Java). The first invocation of this procedure is

dfsVisit(getSootClass("java.lang.Object")). Fig. 2 shows an

example class hierarchy and the intervals associated with

each type as a result of the invocation.

Fig. 2. Each node represents a type in the class hierarchy. The number next

to each node shows the number of allocation nodes of that type in the PAG.

Intervals associated with each type is created in postorder (i.e. B, C, A, D,

Object) and are shown in brackets.

V. RANGED BIT-VECTORS

During the points-to set propagation, many set union

operations are performed. For example, an assignment edge

from variable node w to variable node v make the propagator

add all the members of pt(w) to pt(v) if it is not already

satisfied. Note that pt(v) shows the points-to set of variable

node v. Considering bit-vectors, this set union operation is

implemented using logical or operation.

We have implemented a customized version of bit-vectors

which takes the range associated with each bit-vector into

account so that the logical or operation can be done

efficiently. We have called this implementation of bit-vectors,

Ranged Bit Vector. Using the intervals not only saves

memory needed for points-to sets, but also helps us to do

points-to propagation more efficiently by limiting the size of

bit-vectors.

The set union operation pt(v) = pt(v)  pt(w) is actually

implemented as:

for (RangedBitVector bv : pt(v).bitvectors)

for (RangedBitVector bw : pt(w).bitvectors)

 or(bv, bw);

In previous works each bit-vector is and with a suitable

type mask to enforce type filtering. Type masks are created

before the propagation and are used for type filtering during

the propagation [9]. The suitable type mask is determined

based on type of the points-to set containing the bit-vector. In

fact, each type is associated with one type mask. This means,

to perform on the fly type filtering [15], one and operation for

every set union operation is needed. With our implicit type

filtering mechanism this pass of points-to analysis which was

needed to create type masks is eliminated and also we does

not need the additional and operation either.

Our method performs type filtering implicitly using the

intervals associated with bit-vectors. In another word, an

allocation node an with absolute number index is added to

bit-vector v if index ≥ v.lower and index ≤ v.upper where v.lower

and v.upper are lower and upper bounds of the interval

associated with v. In real implementation of our method this

assumption is relaxed which will be explained later in this

section.

boolean or(RangedBitVector x, RangedBitVector y){

 /* The lower bounds are aligned. For example,

 if we are supposed to allocate a ranged

 bitvector of length 10 for the interval

 [10, 20], assuming chunk size is 8, 2 bytes

 will be allocated and the lower bound is

 aligned to 8. */

 if (y.isSubrangeOf(x)){

 /* x is super-range and y is subrange */

 /* Absolute index of lower chunk of the

 subrange */

 L = indexOf(y.lower);

 /* Absolute index of upper chunk of the

 subrange */

 U = indexOf(y.upper);

 /* Relative index of lower chunk of

 the subrange which always is 0 */

 firstChunkY = 0;

 /* Relative index of upper chunk of the

 subrange */

 lastChunkY = U - L;

 /* Absolute index of lower chunk of the

 super-range */

 int temp = indexOf(x.lower);

 /* Relative index of first common chunk

 within super-range */

 firstChunkX = L - temp;

 /* Relative index of last common chunk

 within super-range */

 lastChunkX = firstChunkX + lastChunkY;

 } else if (x.isSubrangeOf(y)) {

 /* y is super-range and x is subrange */

 /* similar to the previous case ... */

 } else {

 return false;

 }

 ret = false;

 for (int i = firstChunkX, j = firstChunkY;

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

496

 i <= lastChunkX; i++, j++) {

 if (!ret) old = x.bits[i];

 x.bits[i] |= y.bits[j];

 if (!ret)

 if (old != x.bits[i]) ret = true;

 }

 return ret;

}

int indexOf(int index) {

 return index / CHUNK_SIZE;

}

Fig. 3. The procedure to or 2 ranged bit vectors.

Each Ranged Bit Vector consists of an array of chunks.

For example 64-bit chunks (i.e. long[]) or 32-bit chunks (i.e.

int[]) in current JVMs. The or operation is implemented by

oring corresponding chunks of each bit-vector. To implement

Ranged Bit Vector’s or operation, we cannot simply or the ith

chunk of the first bit-vector and ith chunk of the second

bit-vector since each bit in a Ranged Bit Vector must be

interpreted based on its lower bound. Fig. 3 shows Ranged

Bit Vector’s or operation as we have implemented.

Any two intervals created in the procedure shown in Fig. 1

are disjoint, or one of them is subrange of the other one, so

only these cases are handled in Fig. 3. Variable declarations

are omitted for saving space. The constant CHUNK_SIZE

shows the size of each chunk in the implementation of

Ranged Bit Vector.

The overall goal of the procedure shown in Fig. 3 is to add

all the members of Ranged Bit Vector y which fall within the

interval associated with x, to x and return true if x is changed

and false otherwise.

The procedure is conservative in that it aligns the portion

which is common to the intervals associated with Ranged Bit

Vectors x and y so it can do the or operation chunk-by-chunk

(instead of bit-by-bit). This relaxes the assumption we made

earlier in this section and as a consequence reduces the

precision of type filtering compared to the type filtering

performed by using type masking during the propagation. We

found this reduction of precision trivial according to the

experiment we did. See section VII.

VI. RANGED PONTS-TO SET AND HYBRID RANDED

POINTS-TO SET

Mainly, two versions of points-to sets have been added to

Spark. One of them is Ranged Points-To Set which has a

Ranged Bit Vector for every interval that is associated with

its type. Our second major set implementation that is faster

and more memory efficient than the first one is inspired from

Spark’s hybrid points-to set. It contains 16 allocation node

references which are initialized to null, whenever all of them

are filled up and the set is going to get larger than 16

members, it will become a Ranged Points-To Set.

VII. EXPERIMENTAL RESULTS

We have incorporated our techniques into Spark which is a

research framework for points-to analysis. We observed that

our work improves the memory allocated to points-to sets by

a factor of about 2.5 compared to Spark’s hybrid points-to set.

It also improves the propagation time for sufficiently large

programs compared to Spark’s hybrid points-to set which is

the fastest and default points-to set in current version of Soot

(version 2.4.0) [19].

There is an implementation of Heintze’s shared points-to

set in Spark which consumes less memory than hybrid’s

points-to set and our implementation, but it is slower than

both of them. See Table I. The results which are shown for

Heintze’s sets may be smaller than what they really consume

since we calculate the results after the propagation but it may

take more memory at some point during the propagation.

To evaluate our work we chose 4 programs as follows,

jEdit 2.4 (a text editor), JFlex 1.4.3 and SableCC 2.18.2 (both

of them are lexical analyzer generators) and Soot 1.2.5 (a

framework for analyzing and optimizing Java bytecode).

We used JRE 1.3 as the library to analyze the input

programs. All benchmarks are performed on a machine with

2 GB memory (1 GB allocated to JVM) and 2 GHz Intel core

2 Duo CPU running Ubuntu 8.10.

TABLE I: TIME AND SPACE FOR POINTS-TO SET PROPAGATION (SPACE IN

MB AND TIME IN SECONDS). COMPARISON BETWEEN SPARK’S HYBRID, OUR

RANGED-HYBRID AND HEINTZE’S SHARED POINTS-TO SETS. THE COLUMN

RANGE+HYBRID SHOWS OUR IMPLEMENTATION.

program
hybrid range+hybrid heintze

time space time space time space

jedit 12.5 79.5 8.5 31.9 18.6 4.9

soot 10.0 98.4 8.5 34.4 28.1 5.4

jflex 5.0 65.2 5.3 25.9 13.2 4.1

sablecc 1.6 17.2 2.0 8.8 3.1 1.5

Programs jEdit, Soot, JFlex and SableCC consist of 13583,

13741, 11893 and 5299 methods respectively. This shows

that our most efficient points-to set (Hybrid Ranged Points

To Set) makes the analysis of the two larger programs faster

(JEdit and JFlex) and consumes significantly less memory in

all four cases when compared to Spark’s hybrid set (the

fastest and default points-to set of Spark in current version of

Soot).

We also compared our implementation to sparse bitmaps

[16], [17] in term of space that would be saved if our

techniques were combined with the sparse bitmaps (i.e. every

element in a sparse bitmap would be a Ranged Bit Vector of

size 8 × 4 bytes and no element would be allocated unless it

has at least one bit set). Table II shows the results of this

experiment. Considering the results shown in the table and

the cost related to the linked list manipulation of elements in

sparse bit-maps, we believe that sparse bitmaps are not a

really good candidate to be combined with our techniques.

One reason could be that the Ranged Bit Vectors are not

sparse because of the way we numbered allocation nodes.

Since in our ordering, all allocation nodes of compatible

types are consecutive and a points-to set of type T is filled

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

497

only with those of compatible type with T, but in the plain

sparse method, allocation nodes of type T would be scattered

and are not grouped in some interval. Hence the sparse

method combined with our way of numbering has higher

chance to allocate fewer elements.

TABLE II: THIS TABLE SHOWS THE SPACE THAT WOULD BE SAVED IF OUR

TECHNIQUES WERE COMBINED WITH SPARSE BITMAPS. THE COLUMN

RANGE SHOWS RANGED POINTS-TO SET AS DESCRIBED IN SECTION VI AND

THE SECOND COLUMN SHOWS OUR MOST EFFICIENT SET IMPLEMENTATION

AS DESCRIBED IN SECTION VI (TOTAL SET SIZE /SPACE THAT WOULD BE

SAVED IF WAS USED IN COMBINATION WITH SPARSE BITMAPS).

program range range+hybrid

jedit 49.3/6.1 31.9/6.4

soot 44.7/5.9 34.4/5.9

jflex 37.3/4.6 25.9/4.8

sablecc 9.6/1.1 8.8/1.1

To compare the precision of our intrinsic type filtering

with type filtering based on type masking, we considered all

variable nodes which are dereferenced. Table III shows the

percentage of points-to sets with 0, 1, 2, 3 - 10, 11 - 100, 101

- 1000 and more than 1000 elements in their points-to sets.

According to this table, reduction of precision which is

caused by the way we do type filtering (alignment of the

common subrange as described in Section V) is trivial.

TABLE III: PRECISION OF INTRINSIC TYPE FILTERING AND TYPE FILTERING

BASED ON TYPE MASKING - PRECISION: INTRINSIC (RANGED POINTS-TO SET)

/ TYPE MASKING (PURE BIT-VECTOR) (% OF TOTAL).

 jedit jflex soot sablecc

0 5.48/5.48 4.49/4.49 1.41/1.41 6.37/6.37

1 28.99/29.01 31.70/31.72 37.85/37.87 34.99/34.99

2 7.11/7.12 6.89/6.91 17.90/17.90 10.72/10.80

3-10 47.99/48.02 47.00/47.05 36.17/36.19 39.95/39.95

11-100 7.81/7.87 9.47/9.39 5.28/5.28 7.71/7.63

101-1000 2.53/2.42 0.35/0.35 1.29/1.26 0.22/0.22

1000+ 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

VIII. CONCLUSION

In this paper, we presented and evaluated an improvement

to points-to analyses which orders allocation nodes in our

desired way and uses our implementation of points-to set.

This work also combined our methods with Spark’s hybrid

points-to set idea and evaluated the performance gain.

Type filtering is done in our method implicitly (it is done

by means of the Ranged Bit Vectors). In another word, we do

not need the additional logical and operation to enforce type

filtering (type masks). This feature along with having smaller

bit-vectors made our method more efficient than the previous

works. Note that to do the or operation in the units of chunk

some justification is performed as you saw in Fig. 3 which is

an additional overhead compared to previous works. Despite

this overhead, we see an improvement in time for sufficiently

large programs. See Section VII.

We observed that our work consumes 2.5less memory

than hybrid points-to set (default set in Spark). It also

improves points-to propagation time for sufficiently large

programs compared to the same set. We also compared our

set implementation to other state of the art implementations

including Heintze’s shared bit-vectors [5] and sparse bitmaps

[16], [17]. We observed that Heintze’s shared bit-vector sets

use less memory than both our implementation and Spark’s

hybrid sets but it is also slower than both of them. We did not

find sparse bit-maps a good candidate to be combined with

our method and we believe that it is practically less efficient

than our method (see Section VII).

Finally, you can find further details like the way allocation

nodes of array types are handled in our technical report [18].

ACKNOWLEDGMENT

We would like to thank Ondrej Lhotak, Laurie Hendren,

Eric Bodden and other members of Sable research group for

developing Soot and making it available on-line.

We are also grateful to other members of IPLP research

group, Yaser Elmi and Saeed Paktinat, who have helped us in

understanding the points-to analysis problem.

REFERENCES

[1] L. O. Andersen, “Program analysis and specialization for the C

programming language,” PhD thesis, University of Copenhagen, 1994.

[2] M. Berndl, O. Lhotak, F. Qian, L. Hendren, and N. Umanee, “Points-to

analysis using BDDs,” in Proc. of the ACM SIGPLAN 2003

Conference on Programming Language Design and Implementation,

ACM Press, pp. 103-114, 2003.

[3] J. Whaley and M. Lam, “Clonning-based context-sensitive pointer alias

analysis using binary decision diagrams,” in Proc. of the ACM

SIGPLAN 2004 Conference on Programming Language Design and

Implementation. ACM Press, pp. 131-144, 2004.

[4] O. Lhotak and L. Hendren, “Scaling java points-to analysis using

Spark,” in Proc. of the 12th International Conference on Compiler

Construction. Springer-Verlag, pp. 153-169, 2003

[5] N. Heintze, “Analysis of large code bases, the compile-link-analyze

model,” Draft version (unpublished), November 1999.

[6] O. Lhotak, S. Curial, and J. N. Amaral, “Using ZBDDs in points-to

analysis,” Languages and Compilers for Parallel Computing,

Springer-Verlag, 2007, pp. 338-352.

[7] J. Zhu, “Symbolic pointer analysis,” in Proc. of International

Conference on Computer Aided Design (ICCAD), pp. 150-157,

November 2002.

[8] C. Lin and B. Hardekopf, “Semi-sparse flow-sensitive pointer

analysis,” in Proc. of the 36th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pp. 226-238,

2009.

[9] M. Hirzel, D. V. Dincklage, and A. Diwan, “Fast online pointer

analysis,” ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 29, no. 2, April 2007.

[10] O. Lhotak, S. Curial, and J. N. Amaral, “Using XBDDs and ZBDDs in

points-to analysis,” Software, Practice and Experience, vol. 39, no. 2,

pp. 163-188, February 2009.

[11] J. Dean, D. Grove, and C. Chambers, “Optimization of object oriented

programs using static class hierarchy analysis,” in Proc. of the 9th

European Conference on Object-Oriented Programming (ECOOP 95),

August 1995.

[12] D. F. Bacon and P. F. Sweeney, “Fast static analysis of C++ virtual

function calls,” in Proc. of the 11th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications

, pp. 324 - 341, 1996.

[13] V. Sundaresan, L. J. Hendren, C. Razafimahefa, R. V. Rai, P. Lam, E.

Gagnon, and C. Godin, “Practical virtual method call resolution for

Java,” in Proc. of the 15th ACM SIGPLAN Conference on

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

498

Object-Oriented Programming, Systems, Languages, and Applications,

pp. 264-280, 2000.

[15] B. Ryder, “Dimensions of precision in reference analysis of object

oriented languages,” in Proc. of International Conference on Compiler

Construction (CC), 2003.

[16] GCC, the GNU Compiler Collection. [Online]. Available:

http://gcc.gnu.org

[17] LLVM, the LLVM Compiler Infrastructure Project. [Online].

Available: http://llvm.org

[18] H. A. Toussi and A. Khademzadeh, “IPLP resesrch group technical

report: Improving bit-vector representation of points-to sets using class

hierarchy analysis,” Islamic Azad University of Mashhad, July 2010.

[19] V. Sundaresan, P. Lam, E. Gagnon, R. V. Rai, L. Hendren, and P. Co,

“Soot - a Java optimization framework,” in Proc. of CASCON 1999, pp.

125-135, 1999.

Hamid Alavi Toussi was born in Iran (October

1985). He received his BSc. degree in Computer

Engineering from Islamic Azad University,

Mashhad, Iran in January 2009 and received his

MSc. degree in Computer Science from Univesity of

Sistan and Baluchestan, Zahedan, Iran in August

2011. His research interests includes Compilers and

Programming Languages, Operating Systems and

Computer Architecture.

Ahmed Khademzadeh received his BSc. degree in

Computer Engineering from Ferdowsi University,

Mashhad, Iran in March 2001 and received his MSc.

degree in Software Engineering from Iran

University of Science and Technology, Tehran, Iran

in March 2004. He is currently a PhD. student at

Florida Institute of Technology, Florida, USA. His

current research involves large-scale machine

learning and data mining.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

499

[14] J. Gosling, B. Joy, and G. Bracha, The Java Language Specification,

third edition, 2005.

