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Abstract—Points-to analysis is the problem of approximating 

run-time values of pointers statically or at compile-time. 

Points-to sets are used to store the approximated values of 

pointers during points-to analysis. Memory usage and running 

time limit the ability of points-to analysis to analyze large 

programs. 

To our knowledge, works which have implemented a 

bit-vector representation of points-to sets so far, allocates bits 

for each pointer without considering pointer’s type. By 

considering the type, we are able to allocate bits only for a 

subset of all abstract objects which are of compatible type with 

the pointer’s type and as a consequence improve the memory 

usage and running time. To achieve this goal, we number 

abstract objects in a way that all the abstract objects of a type 

and all of its sub-types are consecutive in order. 

Our most efficient implementation uses about 2.5× less 

memory than hybrid points-to set (default points-to set in Spark) 

and also improves the analysis time for sufficiently large 

programs. 

 
Index Terms—Programming languages, points-to analysis, 

points-to sets, data structures, bit-vectors, class hierarchy, Java.  

 

I. INTRODUCTION 

Points-to analysis is the problem of approximating 

run-time values of pointers statically or at compile-time. The 

result of this analysis may be used for program optimization, 

debugging or understanding. One of the most famous and 

widely used algorithms to solve this problem, which we have 

used in our implementations, is Andersen style or inclusion 

based points-to analysis [1]. 

Points-to sets are used to store the approximated values of 

pointers during the analysis. Previous works have 

implemented efficient and compact points-to sets which 

make the overall analysis more efficient [2]-[8]. Points-to 

sets which are represented based on bit-vectors [4], [5], [9] 

and points-to sets which are represented and manipulated 

based on BDD relations are shown to be more efficient [2], 

[3], [6], [7], [8], [10]. In this paper we utilize bit-vector 

representation of points-to sets. 

Points-to analysis produces several points-to sets that are 

similar in the sense that many of their members are common 

[5]. Based on this fact, both BDD based and bit-vector based 

methods try to have more efficient representation of points-to 

 

  

sets by trying to share common members. 

In a pure bit-vector implementation of points-to sets, one 

bit is allocated for every abstract object (allocation-site) that 

is reachable from root methods. Reachability of 

allocation-sites can be determined using a conservative 

call-graph. This call-graph can be created using either CHA 

[11], RTA [12] or VTA [13] methods. 

Heintze have implemented a shared bit-vector 

representation of points-to sets in order to improve memory 

and time efficiency [5]. These sets consist of two parts, a 

shared bit-vector (base part) and an overflow list. The base 

part is shared among two or more points-to sets and the 

overflow lists is maintained to include 20 or fewer members. 

This representation benefits from the fact that many points-to 

sets are similar. Hirzel also used this implementation of 

points-to sets in his work [9]. Lhotak and Hendren [4] used a 

variant of this technique. Their set had no mechanism to 

share common subsets. Once any set gets larger than some 

specified-size (e.g. 16 members), it becomes a pure bit-vector 

points-to set. 

In strongly typed languages like Java [14] more precise 

points-to results and, as a consequence, smaller points-to sets 

can be achieved by using type filtering during points-to set 

propagation. This method which is known as online type 

filtering [15] also makes the analysis faster [4]. 

Previous works, we have mentioned above, haven’t made 

use of types in order to improve size of points-to sets, e.g., in 

the pure bit-vector implementation of a points-to set 

associated with a variable of type T, one bit is allocated for 

every abstract object of the program. By noticing the types, 

we are able to allocate bits only for a subset of all the abstract 

objects which are of compatible type with the variable (i.e. 

abstract objects of type T or its subtypes). To be able to make 

use of this fact, we reordered abstract objects of programs, 

using class-hierarchy so as to assign abstract objects of 

compatible types, successive numbers. 

We have a number of implementations and the best of 

them employs the above-mentioned idea and also uses 

Spark’s hybrid points-to set’s idea to gain more efficiency. 

There is also another related work, sparse bitmaps, which 

is employed by GCC [16] and LLVM [17] compilers. Every 

sparse bitmap consists of a linked list of elements and each 

element is a bit-vector of size eight words. No element 

isallocated in a sparse bitmap unless it has at least one 

non-zero bit set. In order to calculate the memory usage of 

sparse bitmaps when it is combined with our desired ordering, 

we did not need to implement a combined version of our 

method and sparse bitmaps since the memory gain can be 

calculated by examining bit-vectors after the propagation and 

finding out how many elements could be saved. This 

combined version could have some minor memory 
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improvement compared to our current implementation, but 

considering the cost of linked list manipulation and minor 

memory usage improvement, we believe that this memory 

gain is not worth it (see section VII). 

Some background information comes in Section II. As 

stated above, we would first number the abstract objects in 

our desired order and then we need to implement a bit-vector 

(we call it Ranged Bit Vector) which takes these ranges into 

account. An overall picture of the work is given in Section III. 

Numbering is explained in Section IV and Ranged Bit Vector 

is described in Section V. Section VI concludes our 

implementations and we show our experimental results in 

Section VII. 

 

II. BACKGROUND 

Andersen or inclusion based points-to analysis which is 

used in this paper, consists of a set of deduction rules. 

Points-to propagation is the process of applying Andersen’s 

rules repeatedly until reaching a fix-point where all the 

constraints are satisfied, and as a consequence, a safe solution 

to the points-to analysis problem is found. This set of 

constraints is inferred from the input program and are 

represented by Pointer Assignment Graph (PAG) in Spark. 

PAG consists of different nodes and edges. Pointers of the 

input program are represented by variable nodes. They 

represent local variables, method parameters and static fields 

which can hold pointer values. Allocation nodes are abstract 

objects (i.e. every allocation node abstracts a set of run-time 

objects) and every allocation node corresponds to an 

allocation-site of the input program. 

Edges mainly represent flow of points-to sets. For example 

an edge from the variable node v to variable node w shows 

the statement w=v and makes the propagator add all allocation 

nodes in points to set of v to points-to set of w. 

There are other edges and nodes in the PAG (store edges, 

load edges, allocation edges, concrete field nodes and field 

dereference nodes). See [4], [18] for more details about them. 

 

III. OVERVIEW 

Suppose there are 1000 allocation-sites within all the 

reachable methods of a program and from these, there are 

only 200 allocation-sites of type A (i.e. instantiation or 

instantiations of class A at the allocation-site), or one of its 

sub-types. If we have a variable v of declared type A, and we 

are supposed to allocate a bit-vector representation of 

points-to set for it, we can allocate 200 bits (one bit per each 

allocation-site of type A or its sub-types) instead of 1000 bits. 

To achieve this, we have to number allocation nodes so that 

all of the allocation nodes of a declared type, and all of its 

sub-types, fall within the same interval and be consecutive in 

order (e.g. the interval [201, 400] in the example above). 

Recall that for every allocation-site one allocation node is 

created. 

Every non-interface type is mapped to an interval as 

described above. An interface type may be associated with 

more than one interval (one interval for every top subclass 

that has implemented the interface). Every Ranged Bit Vector 

has an interval and is able to handle different operations. 

During points-to set propagation, points-to sets for two 

kinds of nodes (variable nodes and concrete field nodes. See 

[4]) are created. For each of these nodes, a specialized 

bit-vector implementation of points-to set is allocated based 

on type of the node (i.e. declared type of variables in variable 

nodes and fields in concrete field nodes). 

To allocate the specialized points-to set, the interval or 

intervals associated with the node’s type are required so 

allocation node manager (the module we added to Spark to 

manipulate intervals and allocation nodes in our desired way) 

is queried and type of the node is sent to it as a parameter to 

achieve these intervals. Finally, the points-to set for the node 

is allocated. This points-to set has a Ranged Bit Vector for 

every interval associated with the type. This is the description 

of Ranged Points-To Set, another variant of it is also 

implemented in this work (Ranged Hybrid Points-To Set). 

See Sections VI and V. 

 

IV. NUMBERING 

Originally, Spark (the framework we have used to 

implement our work) numbers allocation nodes as allocates 

them in the PAG, which is not our desired way of numbering. 

The procedure in Fig. 1 renumbers the allocation nodes and 

associates every reference type with an interval. This does 

not include interface types which may be associated with 

more than one interval. 

The interval’s lower bound indicates the number 

associated with the first allocation node of that type, and its 

sub-types and interval’s upper bound indicates the number 

associated with the last allocation node within the interval. 
 

void dfsVisit(SootClass cl){ 

  lower = globalCounter + 1; 

  for (AllocNode alloc : class2allocs.get(cl)){ 

    globalCounter = globalCounter + 1; 

    globalArray[globalCounter] = alloc; 

  } 

  // cha is the class hierarchy 

  subclasses = cha.getSubClassesOf(cl); 

  if (subclasses.isEmpty()){ 

    // SootClass cl is a leaf in class hierarchy 

    type2interval.put(cl.getType(), 

  new Interval(lower, globalCounter)); 

    return; 

  } 

  for (SootClass c : subclasses) 

    dfsVisit(c); 

  upper = globalCounter; 

  type2interval.put(cl.getType(), 

       new Interval(lower, upper)); 

} 

Fig. 1. Procedure to renumber allocation nodes and create intervals. 
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The procedure is basically a depth first traversal of the 

class hierarchy. The index of an allocation node in 

theglobalArray represents its corresponding bit in a pure 

bit-vector implementation. In fact, the globalArray represents 

the universe of all the allocation nodes. 

In this procedure two hash-maps are used. Each reference 

type is mapped to a linked-list of allocation nodes of that type 

through the map class2allocs. The map type2interval gets 

filled during this procedure and it maps every type to its 

associated interval. Note that globalArray, globalCounter, 

class2allocs and type2interval are global (static in term of 

Java). The first invocation of this procedure is 

dfsVisit(getSootClass("java.lang.Object")). Fig. 2 shows an 

example class hierarchy and the intervals associated with 

each type as a result of the invocation. 

 

Fig. 2. Each node represents a type in the class hierarchy. The number next 

to each node shows the number of allocation nodes of that type in the PAG. 

Intervals associated with each type is created in postorder (i.e. B, C, A, D, 

Object) and are shown in brackets. 

 

V. RANGED BIT-VECTORS 

During the points-to set propagation, many set union 

operations are performed. For example, an assignment edge 

from variable node w to variable node v make the propagator 

add all the members of pt(w) to pt(v) if it is not already 

satisfied. Note that pt(v) shows the points-to set of variable 

node v. Considering bit-vectors, this set union operation is 

implemented using logical or operation. 

We have implemented a customized version of bit-vectors 

which takes the range associated with each bit-vector into 

account so that the logical or operation can be done 

efficiently. We have called this implementation of bit-vectors, 

Ranged Bit Vector. Using the intervals not only saves 

memory needed for points-to sets, but also helps us to do 

points-to propagation more efficiently by limiting the size of 

bit-vectors. 

The set union operation pt(v) = pt(v)  pt(w) is actually 

implemented as:  

for (RangedBitVector bv : pt(v).bitvectors) 

for (RangedBitVector bw : pt(w).bitvectors) 

 or(bv, bw); 

In previous works each bit-vector is and with a suitable 

type mask to enforce type filtering. Type masks are created 

before the propagation and are used for type filtering during 

the propagation [9]. The suitable type mask is determined 

based on type of the points-to set containing the bit-vector. In 

fact, each type is associated with one type mask. This means, 

to perform on the fly type filtering [15], one and operation for 

every set union operation is needed. With our implicit type 

filtering mechanism this pass of points-to analysis which was 

needed to create type masks is eliminated and also we does 

not need the additional and operation either. 

Our method performs type filtering implicitly using the 

intervals associated with bit-vectors. In another word, an 

allocation node an with absolute number index is added to 

bit-vector v if index ≥ v.lower and index ≤ v.upper where v.lower 

and v.upper are lower and upper bounds of the interval 

associated with v. In real implementation of our method this 

assumption is relaxed which will be explained later in this 

section. 

 
boolean or(RangedBitVector x, RangedBitVector y){ 

  /* The lower bounds are aligned. For example, 

     if we are supposed to allocate a ranged 

     bitvector of length 10 for the interval 

     [10, 20], assuming chunk size is 8, 2 bytes 

     will be allocated and the lower bound is 

     aligned to 8. */ 

  if (y.isSubrangeOf(x)){ 

    /* x is super-range and y is subrange */ 

    /* Absolute index of lower chunk of the 

       subrange */ 

    L = indexOf(y.lower); 

    /* Absolute index of upper chunk of the 

       subrange */ 

    U = indexOf(y.upper); 

    /* Relative index of lower chunk of 

       the subrange which always is 0 */ 

    firstChunkY = 0; 

    /* Relative index of upper chunk of the 

       subrange */ 

    lastChunkY = U - L; 

    /* Absolute index of lower chunk of the 

       super-range */ 

    int temp = indexOf(x.lower); 

    /* Relative index of first common chunk 

       within super-range */ 

    firstChunkX = L - temp; 

    /* Relative index of last common chunk 

       within super-range */ 

    lastChunkX = firstChunkX + lastChunkY; 

  } else if (x.isSubrangeOf(y)) { 

    /* y is super-range and x is subrange */ 

    /* similar to the previous case ... */ 

  } else { 

    return false; 

  } 

  ret = false; 

  for (int i = firstChunkX, j = firstChunkY; 
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    i <= lastChunkX; i++, j++) { 

      if (!ret) old = x.bits[i]; 

      x.bits[i] |= y.bits[j]; 

      if (!ret) 

        if (old != x.bits[i]) ret = true; 

  } 

  return ret; 

} 

 

int indexOf(int index) { 

  return index / CHUNK_SIZE; 

} 

Fig. 3. The procedure to or 2 ranged bit vectors. 

Each Ranged Bit Vector consists of an array of chunks. 

For example 64-bit chunks (i.e. long[]) or 32-bit chunks (i.e. 

int[]) in current JVMs. The or operation is implemented by 

oring corresponding chunks of each bit-vector. To implement 

Ranged Bit Vector’s or operation, we cannot simply or the ith 

chunk of the first bit-vector and ith chunk of the second 

bit-vector since each bit in a Ranged Bit Vector must be 

interpreted based on its lower bound. Fig. 3 shows Ranged 

Bit Vector’s or operation as we have implemented. 

Any two intervals created in the procedure shown in Fig. 1 

are disjoint, or one of them is subrange of the other one, so 

only these cases are handled in Fig. 3. Variable declarations 

are omitted for saving space. The constant CHUNK_SIZE 

shows the size of each chunk in the implementation of 

Ranged Bit Vector. 

The overall goal of the procedure shown in Fig. 3 is to add 

all the members of Ranged Bit Vector y which fall within the 

interval associated with x, to x and return true if x is changed 

and false otherwise. 

The procedure is conservative in that it aligns the portion 

which is common to the intervals associated with Ranged Bit 

Vectors x and y so it can do the or operation chunk-by-chunk 

(instead of bit-by-bit). This relaxes the assumption we made 

earlier in this section and as a consequence reduces the 

precision of type filtering compared to the type filtering 

performed by using type masking during the propagation. We 

found this reduction of precision trivial according to the 

experiment we did. See section VII. 

 

VI. RANGED PONTS-TO SET AND HYBRID RANDED 

POINTS-TO SET  

Mainly, two versions of points-to sets have been added to 

Spark. One of them is Ranged Points-To Set which has a 

Ranged Bit Vector for every interval that is associated with 

its type. Our second major set implementation that is faster 

and more memory efficient than the first one is inspired from 

Spark’s hybrid points-to set. It contains 16 allocation node 

references which are initialized to null, whenever all of them 

are filled up and the set is going to get larger than 16 

members, it will become a Ranged Points-To Set. 

VII. EXPERIMENTAL RESULTS 

We have incorporated our techniques into Spark which is a 

research framework for points-to analysis. We observed that 

our work improves the memory allocated to points-to sets by 

a factor of about 2.5 compared to Spark’s hybrid points-to set. 

It also improves the propagation time for sufficiently large 

programs compared to Spark’s hybrid points-to set which is 

the fastest and default points-to set in current version of Soot 

(version 2.4.0) [19]. 

There is an implementation of Heintze’s shared points-to 

set in Spark which consumes less memory than hybrid’s 

points-to set and our implementation, but it is slower than 

both of them. See Table I. The results which are shown for 

Heintze’s sets may be smaller than what they really consume 

since we calculate the results after the propagation but it may 

take more memory at some point during the propagation. 

To evaluate our work we chose 4 programs as follows, 

jEdit 2.4 (a text editor), JFlex 1.4.3 and SableCC 2.18.2 (both 

of them are lexical analyzer generators) and Soot 1.2.5 (a 

framework for analyzing and optimizing Java bytecode). 

We used JRE 1.3 as the library to analyze the input 

programs. All benchmarks are performed on a machine with 

2 GB memory (1 GB allocated to JVM) and 2 GHz Intel core 

2 Duo CPU running Ubuntu 8.10. 

TABLE I: TIME AND SPACE FOR POINTS-TO SET PROPAGATION (SPACE IN 

MB AND TIME IN SECONDS). COMPARISON BETWEEN SPARK’S HYBRID, OUR 

RANGED-HYBRID AND HEINTZE’S SHARED POINTS-TO SETS. THE COLUMN 

RANGE+HYBRID SHOWS OUR IMPLEMENTATION. 
 

program 
hybrid range+hybrid heintze 

time space time space time space 

jedit 12.5 79.5 8.5 31.9 18.6 4.9 

soot 10.0 98.4 8.5 34.4 28.1 5.4 

jflex 5.0 65.2 5.3 25.9 13.2 4.1 

sablecc 1.6 17.2 2.0 8.8 3.1 1.5 

Programs jEdit, Soot, JFlex and SableCC consist of 13583, 

13741, 11893 and 5299 methods respectively. This shows 

that our most efficient points-to set (Hybrid Ranged Points 

To Set) makes the analysis of the two larger programs faster 

(JEdit and JFlex) and consumes significantly less memory in 

all four cases when compared to Spark’s hybrid set (the 

fastest and default points-to set of Spark in current version of 

Soot). 

We also compared our implementation to sparse bitmaps 

[16], [17] in term of space that would be saved if our 

techniques were combined with the sparse bitmaps (i.e. every 

element in a sparse bitmap would be a Ranged Bit Vector of 

size 8 × 4 bytes and no element would be allocated unless it 

has at least one bit set). Table II shows the results of this 

experiment. Considering the results shown in the table and 

the cost related to the linked list manipulation of elements in 

sparse bit-maps, we believe that sparse bitmaps are not a 

really good candidate to be combined with our techniques. 

One reason could be that the Ranged Bit Vectors are not 

sparse because of the way we numbered allocation nodes. 

Since in our ordering, all allocation nodes of compatible 

types are consecutive and a points-to set of type T is filled 
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only with those of compatible type with T, but in the plain 

sparse method, allocation nodes of type T would be scattered 

and are not grouped in some interval. Hence the sparse 

method combined with our way of numbering has higher 

chance to allocate fewer elements. 

TABLE II: THIS TABLE SHOWS THE SPACE THAT WOULD BE SAVED IF OUR 

TECHNIQUES WERE COMBINED WITH SPARSE BITMAPS. THE COLUMN 

RANGE SHOWS RANGED POINTS-TO SET AS DESCRIBED IN SECTION VI AND 

THE SECOND COLUMN SHOWS OUR MOST EFFICIENT SET IMPLEMENTATION 

AS DESCRIBED IN SECTION VI (TOTAL SET SIZE /SPACE THAT WOULD BE 

SAVED IF WAS USED IN COMBINATION WITH SPARSE BITMAPS). 

program range range+hybrid 

jedit 49.3/6.1 31.9/6.4 

soot 44.7/5.9 34.4/5.9 

jflex 37.3/4.6 25.9/4.8 

sablecc 9.6/1.1 8.8/1.1 

 

To compare the precision of our intrinsic type filtering 

with type filtering based on type masking, we considered all 

variable nodes which are dereferenced. Table III shows the 

percentage of points-to sets with 0, 1, 2, 3 - 10, 11 - 100, 101 

- 1000 and more than 1000 elements in their points-to sets. 

According to this table, reduction of precision which is 

caused by the way we do type filtering (alignment of the 

common subrange as described in Section V) is trivial. 

TABLE III: PRECISION OF INTRINSIC TYPE FILTERING AND TYPE FILTERING 

BASED ON TYPE MASKING - PRECISION: INTRINSIC (RANGED POINTS-TO SET) 

/ TYPE MASKING (PURE BIT-VECTOR) (% OF TOTAL). 

 jedit jflex soot sablecc 

0 5.48/5.48 4.49/4.49 1.41/1.41 6.37/6.37 

1 28.99/29.01 31.70/31.72 37.85/37.87 34.99/34.99 

2 7.11/7.12 6.89/6.91 17.90/17.90 10.72/10.80 

3-10 47.99/48.02 47.00/47.05 36.17/36.19 39.95/39.95 

11-100 7.81/7.87 9.47/9.39 5.28/5.28 7.71/7.63 

101-1000 2.53/2.42 0.35/0.35 1.29/1.26 0.22/0.22 

1000+ 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0 

 

VIII. CONCLUSION 

In this paper, we presented and evaluated an improvement 

to points-to analyses which orders allocation nodes in our 

desired way and uses our implementation of points-to set. 

This work also combined our methods with Spark’s hybrid 

points-to set idea and evaluated the performance gain. 

Type filtering is done in our method implicitly (it is done 

by means of the Ranged Bit Vectors). In another word, we do 

not need the additional logical and operation to enforce type 

filtering (type masks). This feature along with having smaller 

bit-vectors made our method more efficient than the previous 

works. Note that to do the or operation in the units of chunk 

some justification is performed as you saw in Fig. 3 which is 

an additional overhead compared to previous works. Despite 

this overhead, we see an improvement in time for sufficiently 

large programs. See Section VII. 

We observed that our work consumes 2.5less memory 

than hybrid points-to set (default set in Spark). It also 

improves points-to propagation time for sufficiently large 

programs compared to the same set. We also compared our 

set implementation to other state of the art implementations 

including Heintze’s shared bit-vectors [5] and sparse bitmaps 

[16], [17]. We observed that Heintze’s shared bit-vector sets 

use less memory than both our implementation and Spark’s 

hybrid sets but it is also slower than both of them. We did not 

find sparse bit-maps a good candidate to be combined with 

our method and we believe that it is practically less efficient 

than our method (see Section VII). 

Finally, you can find further details like the way allocation 

nodes of array types are handled in our technical report [18]. 
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