
 

Abstract—Preventive maintenance plays an important role in 

Heating, Ventilation and Air Conditioning (HVAC) system. 

One cost effective strategy is the development of analytic fault 

detection and isolation (FDI) module by online monitoring the 

key variables of HAVC systems. This paper investigates 

real-time FDI for HAVC system by using online Support Vector 

Machine (SVM), by which we are able to train a FDI system 

with manageable complexity under real time working 

conditions. It is also proposed a new approach which allows us 

to detect unknown faults and updating the classifier by using 

these previously unknown faults. Based on the proposed 

approach, a semi unsupervised fault detection methodology has 

been developed for HVAC systems 

 
Index Terms—Intelligent method, unsupervised fault 

detection, online SVM, HVAC system. 

 

I. INTRODUCTION 

There are not many energy systems so commonly used in 

both industry and domestic as HVAC systems. Moreover, 

HVAC system usually consumes the largest portion of 

energy in building for both in industry and domestic. It is 

reported [1] air-conditioning of buildings accounts for 28% 

of the total energy end use of commercial sectors. From 15% 

to 30% of the energy waste in commercial buildings is due to 

the performance degradation, improper control strategy and 

malfunctions of HVAC systems. Regular check and 

maintenance are usually the keys for reaching these goals.  

However, due to the high cost of maintenance, preventive 

maintenance plays an important role. A cost effective 

strategy is the development of fault detection and isolation 

(FDI).  

Several strategies have been employed as a FDI modular in 

a HVAC system. These strategies can be mainly classified in 

two categories: model based strategy and signal processing 

based strategy [2]-[4]. Model-based techniques either use 

mathematical model or a knowledge model to detect and 

isolate the faulty modes. These techniques include but not 

limited to observer-based approach[5], parity-space 

approach[6], and parameter identification based methods[7]. 

Henao[8] reviewed fault detection based on signal processing. 

This procedure involves mathematical or statistical 

operations which are directly performed on the 

measurements to extract the features of faults. Intelligent 

methods such as Genetic Algorithm (GA), Neural Network 

(NN) and Fuzzy Logic had been applied during last decade 

for fault detection. Neural network has been used in the 
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variety range of systems for fault detection even for HVAC 

systems [9].  Lo [10] proposed intelligent technique based on 

fuzzy-genetic algorithm (FGA) for automatically detecting 

faults on HVAC systems. However, many intelligent 

methods such as NN often require big data set for training. 

Some of them are not fast enough to realize real time fault 

detection and isolation. This paper investigates methods with 

real time operation capability and requiring less data. Support 

Vector Machine (SVM) has been extensively studied in data 

mining and machine learning communities for the last two. 

SVM is capable of both classification and regression. It is 

easy to formulate a fault detection and isolation problem as a 

classification problem.  

SVM can be treated as a special neural network. In fact, a 

SVM model is equivalent to a two-layer, perceptron neural 

network. With using a kernel function, SVM is an alternative 

training method for multi-layer perceptron classifiers in 

which the weights of the network are identified by solving a 

quadratic programming problem under linear constraints, 

rather than by solving a non-convex unconstrained 

minimization problem as in standard neural network training. 

Liang[2] studied FDI for HVAC systems by using standard 

SVM (off-line). In this chaper, incremental SVM (on-line) 

has been applied. It is required to solve a quadratic 

programming (QP) for the training of a SVM. However, 

standard numerical techniques for QP is infeasible for very 

large datasets which is the situation for fault deteciton and 

isolation for HVAC systems.  By using online SVM, the 

large-scale classification problems can be implemented in 

real time configuration under limited hardware and software 

resources. Furthermore, this paper also provided a potential 

approach for the implementation of FDI under unsupervised 

learning frame work.  

Based on the model structure given in paper [2], we 

constructed a HVAC model by using Matlab/Simulink and 

identified the variables which are more sensitive to 

commonly encountered HVAC faults. Finally, the 

effectiveness of the proposed online FDI approach has been 

verified and illustrated by using Simulink Simulation 

Platform. The chapter is organized as follows. Section II 

provides the details about HVAC system modelling. In 

Section III, the proposed online SVM based FDI approach is 

presented, which is followed by the simulation studies in 

Section IV.  Conclusions are drawn in Section V.   

 

II. HVAC SYSTEM MODELLING 

A. HVAC System 

In parallel to the modelling of other energy systems, 

HVAC modelling was developed by Arguello-Serran[11], 

Bourhan Tashtoush[12] and others. Gian Liang [13] 

developed a dynamic model of the HVAC system with single 
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zone thermal space. A model of HVAC for thermal comfort 

control based on NN was also developed by Liang [13]. 

Based on these models [13], Liang developed a new model 

for fault detection and diagnosis [2].  

Specifically, a few changes in control signal and model 

parameters have been made in order to well match real 

applications. Fig. 1 shows a simple schematic of a HVAC 

system. It consists of three main parts: Air Handling Unit 

(AHU), the chillier and the control system. When HVAC 

system starts to work, fresh air passes from a heat exchanger 

cooling coil section to change heat between fresh air and 

cooling water. Cooled fresh air is forced by a supply fan to 

the room.  

 

Fig. 1. General schematic of a HVAC system. 

After just a few minutes, the return damper opens to allow 

room air come back to AHU. Then the mixing air passes from 

cooling coil section to decrease its temperature and humidity. 

A trade off among exhaust, fresh and return air is decided by 

control unit. Also the temperature of the room is regulated by 

adjusting the flow rate of cooling water by a certain control 

valve. Fig. 2 shows the block diagram of the HVAC system 

with a simple PI controller. The model is consisting of eight 

variables in which six variables define as states variables.    

Two pressure (air supply pressure Ps and room air pressure 

Pa) and four temperature (wall temperature Tw , cooling coil 

temperature Tcc , air supply temperature Ts , and room air 

temperature Ta) are considered as six states. Cooling water 

flow rate fcc is considered as control signal. Also all six 

mentioned states variables with cooling water outlet 

temperature Twater_out is considered as system outputs. But just 

one of them (room temperature Ta) acts as feedback signa. It 

should be noted that T_water_out does not use as a state variable 

in this modelling and it is just used as auxiliary parameter for 

finding faults.  

The states, control input, and controlled output are listed as 

follows:  

X = [Pa; Ps; Tw; Tcc; Ts; Ta],   U = [fcc] 

Y = [Pa; Ps; Tw; Tcc; Ts; Ta] 

 
For the control of HVAC system, the most popular method 

is Proportion-Integration (PI) control with the flow rate fcc 

served as the control input.  In this study, we therefore select 

PI controller, and tune the controller by using 

Ziegler–Nichols method (Reaction Curve Method).   

In order to simulate the environmental disturbance in real 

application, two disturbances are considered in the model: 

outdoor temperature and outdoor heating (or cooling) load. 

Outdoor heat/cooling loading will disturb the system but it 

cannot be measured directly. Though it can be estimated 

based on the supply/return air temperature/humidity via a 

load observer [11],  for convenience, it is assumed the two 

disturbances are sinusoidal functions. 

B. Parameter Setting 

Table 1 show some major parameters used in this 

simulation. Without loss of generality, simulation runs in 

cooling mode. It is easy to consider heating mode just by 

changing some parameters in table 1. Range of disturbances 

are 24-30 °C and 0.8-1 kW for outside temperature and heat 

loading respectively. Mixed air ratio for this model is 

constant value when system is working properly. The inlet 

water temperature is set as Twater_in=7 °C whilst the outlet 

water temperature is set as Twater_out=9 °C which may be 

disturbed by the cooling load. 

Same as intelligent systems, the parameters of online SVM 

classifier should be trained first. First parameter is maximum 

penalty. By define the maximum penalty of 10 we could 

achieved best margin for SVM. Based on the testing of 

different kernel functions, Gaussian function chooses as the 

best kernel function with 25.1 .  

TABLE I: MAJOR PARAMETER SET FOR SIMULATION 

Parameter definition Setting value 

Temperature set point 

Room space dimension 

Indoor cooling load  range 

Outdoor temperature range 

Outdoor humidity 

Max chilled water flow rate 

Air flow rate 

Mixed air ratio 

Noise of temperature 

Air handling unit volume 

Out side pressure 

Inlet water temperature 

 

27.5 °C 

5m×5m×3m 

0.8-1 kW 

24-30 °C 

55-75% 

0.5 kg/s 

980 m3/h 

4 

5%  mean value 

2m×1m×1m 

1 atm. 

7 °C 

 

C. Simulation 

All initial values of temperature are set at the morning time. 

Simulation lasts for 12 hours (from 8:00 am to 8:00 pm). The 

output temperature for normal condition (with out fault) is 

shown in Fig 3.  

    Tset 

Fig. 2. Block diagram of HVAC model with PI controller. 
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Fig. 3. Temperatures in normal condition of HVAC. 

The first half hour of simulation is the transient of system. 

Room temperature could stay in the desired value (set point) 

but other temperatures change with noise profile due to their 

effort for adjusting the room temperature with the set point. 

Wall temperature is function of outside temperature as it 

follows outdoor temperature profile. But other internal 

temperatures follow an inverse profile of outdoor 

temperature. 

Fig. 4 shows the control signal during simulation time.  

This flow rate is controlled by a control valve generated 

from the PI controller. 

Cooling water flow rate reaches its maximum value at 

noon due to highest value of outlet heat and temperature at 

this time. Some fluctuation in control signal and other 

variables at beginning time of simulation is related to 

transient behaviours of the system. 

 

Fig. 4. water flow rate as the function of control signal. 

D. Fault Introduction 

HVAC system may suffer from many faults or 

malfunctions during operation. Three commonly encountered 

faults are defined in this simulation: 

 Supply fan fault 

 Return damper fault 

 Cooling coil pipes fouling 

Usage of these faults is just to test the performance of 

proposed fault detector system. Incipient faults applied to test 

the proposed fault detector due to its difficulty to detection. 

Four different models consist of one healthy model and three 

faulty models are generated.  

Fig. 5 shows general profile of the fault during one day. 

The amplitude of the faults gradually increased for 6 hours to 

reach their maximum values then they stay in this state for 4 

hours and returns gradually to normal condition during the 

last 6 hours. This fault profile has been applied for each fault 

with some minor changes. In air supply fan fault this profile 

is used with gain of 10. 

 

Fig. 5. Fault trend during one day. 

In damper fault it is used with gain of -2 and shift point of 

+4. For pipe fault it is used with gain -0.3 and shift point of 

+1. The most sensitive parameters have been identified for 

each fault. For the air supply fan fault the major most 

sensitive parameter is the air supply pressure that changes 

between 0 to 10 Pascal during fault period. The mixed air 

ratio is selected as the indicator of the damper fault that 

decreases from 4 to 2. Cooling water flow rate decrease from 

fcc to 0.7fcc in cooling coil tube fault.  

E. Parameter Sensitivity 

The sensitivity of variables respect each fault is analysed in 

this subsection. Fig. 6 shows sensitivity of cooling water flow 

rate respect to different faulty modes. It is sensitive to all 

three faults (damper fault, supply fan fault and cooling water 

tube fault) with sensitivity of 0.03 kg/s, 0.07 kg/s and 0.08 

kg/s. 

 

Fig. 6. Cooling water flow rate changes. 

Other analysis shows cooling coil temperature and outlet 

water temperature are sensitive to both supply fan fault and 

return damper fault. Based on this sensitivity analysis, six 

parameters consisting of air supply, room pressure, air supply 

temperature, cooling coil temperature, outlet water 

temperature, and water flow rate are used for training of 

supply fan fault. Also three parameters consist of cooling coil 

temperature, outlet water temperature and water flow rate are 

applied for training of return damper fault but just water flow 

rate used for training of third fault (Cooling coil pipes 

fouling). 

 

III. ONLINE SUPPORT VECTOR CLASSIFICATION 

A. Incremental-Decremental Online SVM 

The main advantages of SVM include the usage of kernel 

trick (no need to know the non-linear mapping function),  the 

global optimal solution (quadratic problem), and the 

generalization capability obtained by optimizing the margin 

[14]. However, for very large datasets, standard numeric 

techniques for QP become infeasible.  An on-line alternative, 

that formulates the (exact) solution for l+1 training data in 
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terms of that for l data and one new data point, is presented in 

online incremental method. Training an SVM incrementally 

on new data by discarding all previous data except their 

support vectors, gives only approximate results [16]. 

Cauwenberghs[15] consider incremental learning as an exact 

on-line method to construct the solution recursively, one 

point at a time. The key is to retain the Kuhn-Tucker (KT) 

conditions on all previous data, while adiabatically adding a 

new data point to the solution. Leave-one-out is a standard 

procedure in predicting the generalization power of a trained 

classifier, both from a theoretical and empirical perspective 

[17]. 

Giving n data, 𝑆 = {𝑥𝑖 , 𝑦𝑖}  and 𝑦𝑖 ∈  −1, +1  where xi 

represents the condition attributes, yi is the class label 

(correct label is +1 and faulty label is -1), and i is the number 

of data for train. The decision hyperplane of SVM can be 

defined as (w,b), where w is a weight vector and b a bias. Let 

w0 and b0 denote the optimal values of the weight vector and 

bias. Correspondingly, the optimal hyperplane can be written 

as:  

 

  𝑤0
𝑇 + 𝑏0 = 0                                         (1)  

 

To find the optimum values of w and b, it is required to 

solve the following optimization problem:  

 

   𝑚𝑖𝑛𝑤 ,𝑏 ,𝜉         
1

2
𝑤𝑇𝑤 + 𝐶  𝜉𝑖                      (2)𝑖                                        

 

Subject to     𝑦𝑖 𝑤
𝑇𝜑 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖  

where 𝜉 is the slack variable, C is the user-specified penalty 

parameter of the error term (C>0), and 𝜑  is the kernel 

function. SVM can change the original non-linear separation 

problem into a linear separation case by mapping input vector 

on to a higher feature space. On the feature space, the 

two-class separation problem is reduced to find the optimal 

hyperplane that linearly separates the two classes 

transformed in to a quadratic optimization problem. Depend 

on problem type, several kernel functions are used.  

Two best kernel functions for classification problems are 

Radial Basis Function (RBF) and Gaussian function regard to 

nonlinearity consideration. 

 

𝐾 𝑥𝑖 , 𝑥𝑗  = exp{−𝛾 𝑥𝑖 − 𝑥𝑗 
2

 },   𝛾 > 0    𝑅𝐵𝐹      (3)  

 

In SVM classification, the optimal separating function 

reduces to a linear combination of kernels on the training data, 

𝑓 𝑥 =   𝛼𝑗𝑦𝑗𝐾(𝑥𝑗 , 𝑥)𝑗 + 𝑏  ,with training vectors 𝒙𝑖  and 

corresponding labels 𝒚𝑖  in the dual formulation of the 

training problem, the coefficients 𝜶𝑖  are obtained by 

minimizing a convex quadratic objective function under 

constraints. 

 

 𝑚𝑖𝑛0<𝛼𝑖<𝐶     𝑊 = 1/2  𝛼𝑖𝑄𝑖𝑗 𝛼𝑗 −  𝛼𝑖𝑖 + 𝑏 𝑦𝑖𝛼𝑖   𝑖𝑖𝑗 (4)  

 

With Lagrange multiplier (and offset) b, and the symmetric 

positive definite kernel matrix 𝑄𝑖𝑗 = 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗 )  the 

first-order conditions on W <reduce to the Kuhn-Tucker (KT) 

condition: 

𝜕𝑊

𝜕𝛼 𝑖
 

> 0;           𝛼𝑖 = 0
= 0;   0 < 𝛼𝑖 < 𝐶
< 0;           𝛼𝑖 = 𝐶

               
𝜕𝑊

𝜕𝑏
= 0               (5) 

 

The margin vector coefficients change value during each 

incremental step to keep all elements in equilibrium. i.e., 

keep their KT conditions satisfied. It is naturally 

implemented by decremental unlearning, adiabatic reversal 

of incremental learning, on each of the training data from the 

full trained solution. Incremental learning and, in particular, 

decremental unlearning offer a simple and computationally 

efficient scheme for on-line SVM training. It has also exact 

leave-one-out evaluation of the generalization performance 

on the training data.  

B. Algorithm 

There are huge amounts of data generated before a fault 

happens as most HVAC system is rather reliable. For large 

datasets, standard SVM techniques (off line SVM) become 

infeasible.   

 

Fig. 7. Schematic of semi unsupervised fault detection. 

This motivates the usage of incremental-decremental SVM 

(online SVM). Fig. 7 shows the proposed fault detection 

scheme by using incremental-decremental support vector 

machine classification. The main purpose of the system is to 

detect un-known faults by monitoring key HVAC variables 

as discussed in Subsection II.D during system operation.  

In this algorithm new faults can be detect (as unknown new 

faults) by comparing with the outputs of the healthy model 

and the real system. If detected fault was similar to old fault, 

it will be categorized by algorithm as existing faults. 

Otherwise, this data is sent to online SVM trainer for training 

for the new fault. Finally new fault will be isolate by this 

online SVM as a known fault. The incremental procedure is 

reversible and decremental unlearning of each training 

sample produces an exact leave-one-out estimate of faults 

with using all HVAC data during its operating. The main 

advantage of this algorithm is usage of only a range of useful 

data (including healthy data, old faults, and new faults) 

instead of whole data sets. Based on this online training 

procedure, semi-unsupervised fault detection can be 

implemented. 
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Fig. 8. Schematic of label generation algorithm. 

Fig. 8 shows the structure of the label generation algorithm.   

Here, label of y is set as +1 (non-faulty) when the error is 

smaller than a given threshold and it is set as -1 (faulty) when 

the error is bigger than that threshold. Labels including 

yp1,…,ypn are generated with n variables for each fault. For 

each fault all labels should be combined together in a proper 

logic to generate one label as one fault needs just one label for 

training. A combination of labels can be used for generate 

final label. But for real complex HVAC system, we 

recommend using a fuzzy logic membership function and 

some rules to generated final label. In this paper, a specific 

fault can be happen if all errors of sensitive parameters can 

passed from their thresholds. 

 

IV. SIMULATION FOR FAULT DETECTION AND ISOLATION 

Since the SVM classifier presented in last section can only 

be used to deal with two-class case, a multi-layer SVM 

framework has to be designed for the FDI problem with 

various faulty conditions. In order to use online SVM 

classification method to achieve a better isolation 

performance, three faulty models are used in the isolation 

section. A four-layer SVM classifier is designed, in which the 

normal and three different HVAC fault conditions are all 

taken into consideration. Furthermore, it should be pointed 

out that other unknown faulty conditions can be placed in the 

upper layer of the FDI system. The kernel function must be 

properly selected for SVM classifier in order to achieve high 

classification accuracy. In general, linear function, 

polynomial function, radial basis function (RBF), sigmoid 

function, and Gaussian function can be adopted as the kernel 

function. In this paper, Gaussian function is used as it has 

excellent performance in the simulation. 

In this research, two tests are conducted systematically. 

The diagnosis results and corresponding characteristics of the 

SVM classifiers are shown in Fig. 9, Fig. 10 and Fig. 11. Test 

1 is designed to investigate the SVM classifier performance 

on known incipient faults. The steady-state data is used to 

build the four-layer SVM classifier: as mentioned in previous 

section, the data within the threshold under the normal 

condition indicate fault free, and the data beyond the 

threshold indicate faults 1 to 3. For each normal/faulty 

condition, two days data (20 hours data per day between 2am 

and 22pm) are used. Therefore, a total of 4 times 40 hour 

samples are collected. Half of the data for each condition are 

used as the training data, whilst the rest are used as the testing 

data for fault diagnosis.  

 

Fig. 9. Graduate known fault detection. 

In Fig. 9, the label changes from +1 (non-faulty situation) 

to -1 (faulty situation) when the fault is detected. For 

simplicity Fig. 9 only shows two variables when there is fault 

1 in the data: the cooling coil temperature and the water outlet 

temperature. It is clear that the HVAC faults can be 

diagnosed 100% by using the SVM classifier for the testing 

data.  

As mentioned earlier, our proposed algorithm is able to 

detect unknown faults in the sense of semi-unsupervised 

manner. To testing semi-unsupervised performances, an 

unknown sudden fault (at time of 9 h) combined with 

previously introduced incipient faults are imposed on system 

at second test. The detection results are shown in Fig. 10. 

 

Fig. 10. Sudden unknown fault detection. 

It is clearly indicated that the margin changes from high 

level to low level when detecting incipient fault. This change 

is dramatic as unknown fault is abrupt type. To efficiently 

optimizing training process, samples in each normal/faulty 

condition should be applied. A group containing of maximum 

faulty training samples is selected, and applied for training. 

From the Fig. 10, it is found that the designed SVM classifier 

can identify the HVAC unknown fault accurately. Based on 

the simulation result, it is found that by using the proposed 

approach, the unknown faults of HVAC system can also be 

detected efficiently. 
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Fig. 11. Training coefficient via margin change. 

We can see alpha (𝜶𝑖) coefficient change with respect to 

margin change in Fig. 11. As mentioned in previous section, 

this coefficient should be confine between zero and 

maximum penalty as shown in this Fig. 

 

V. CONCLUSION 

This paper focuses on the fault detection and isolation of 

HVAC system under real time working conditions. An online 

SVM FDI classifier has been developed which can be trained 

during the operating of the HVAC system. Different with off 

line method, the proposed approach can even detect new 

unknown faults for the training of the classifier in real time. 

Furthermore, this online approach can more efficiently train 

the FDI modular by throwing out unnecessary data (leave out 

vectors) and just used a series of data with high priority 

regarding to classification. Due to these properties, the 

proposed algorithm can be implemented in a 

semi-unsupervised learning frame work. Simulation study 

indicates that the proposed approach can efficiently detect 

and isolate typical HVAC faults. In the next step, we will 

validate the proposed approach by using real experimental 

data.  
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