



Abstract—This paper presents NALASS, a novel software

tool that attempts to automate a large part of the Requirements

Engineering (RE) process. The tool is based on a methodology

that utilizes elements of natural language syntax and semantics

to formalize activities of requirements discovery, analysis and

specification. NALASS automates the creation of specific

question sets for the elicitation stage, the organisation and

classification of requirements for the analysis stage, with the use

of predefined patterns, and the generation of diagrammatic

notations, use case specifications and the SRS document.

Index Terms—Automated requirements engineering, natural

language.

I. INTRODUCTION

Research and practice show that the least understood parts

of systems‟ development are the stages of requirements

discovery, analysis and specification [1]. In particular, it is

observed that there is a significant gap between the clients‟

needs and the software engineers‟ understanding of the

clients‟ needs [2]. Clients often speak with vague sentences

and/or cannot express their functional needs or, even worse,

they do not know what these needs really are. This problem is

amplified further when the analyst does not provide the right

questions, as he/she essentially does not know precisely what

to ask.

Our standpoint is that if you know what to write, then you

know what to ask. Therefore, if the analysts know, in advance,

specifically what types of functions, data and constraints

(Requirements Analysis - RA) they should search for and

write down, then they will be able to ask specific questions

(Requirements Discovery - RD) regarding that particular

information. A second priority of engineering the

requirements is to formalise the way the analysts write this

information (Requirements Specification - RS) - that is, to

organize it, apply correct syntax, use proper diagrammatical

notation, etc. Similarly, the way the RD questions are written

is part of this (second) priority. Conclusively, we claim that

building the questions for RD, based on RA (mainly) and RS,

is a reliable way to derive the right answers/requirements

from the users. Such a methodology that provides specific

steps in advance and, more importantly, a formalized and

understandable way to engineer requirements, is proposed by

Manuscript received October 28, 2012; revised December 10, 2012.

The authors are with the Department of Electrical Engineering, Computer

Engineering and Informatics, Cyprus University of Technology, Limassol,

Cyprus. (e-mail: marinos.georgiades@cut.ac.cy,

andreas.andreou@cut.ac.cy).

[3]-[4], contrary to other approaches that try to elicit

requirements from existing documents or by using a general

template such as the IEEE SRS document template [5]. The

NLSSRE (Natural Language Syntax and Semantics RE)

methodology utilizes natural language (NL) syntactic and

semantic elements, such as subject, verbs, nouns, genitive

case, adjectives, and adverbs to: (i) identify and formalize

adequately the various types of data and functions of an

information system (IS), as well as their relations, because

language, by its nature, is the most powerful medium of

expression; (ii) provide a common terminology and eliminate

redundancies in specifying names of functions, data and

constraints; (iii) give requirements a NL-like description

which is very understandable and useful as a communication

medium between users, analysts and programmers of the

software system.

To reduce the time required for the manual application of

the NLSSRE methodology, and also to provide a friendly

graphical environment for the Information Systems (IS)

analyst, a software tool is required. Therefore, we introduce

NALASS (Natural Language Syntax and Semantics), a

supporting software tool that automates all the stages of the

NLSSRE methodology, including RD, RA and RS. For the

RD stage, specific sets of questions are automatically created

based on the specific predefined types of data attributes and

patterns of formalized sentences that are given in advance;

for the RA stage, the requirements are automatically

organised and classified based on the same types of data

attributes and patterns; and for the RS stage, the tool can

automatically generate Data Flow Diagrams (DFDs), Class

Diagrams, Use case specifications and diagrams, and the

Software Requirements Specification (SRS) Document.

II. RELATED WORK

Current software tools both generally speaking and in the

context of Natural Language Requirements Engineering

(NLRE) are mainly limited to document parsers that can be

used in various activities such as traceability, verification and

prioritization of requirements, or even automated extraction

A Novel Software Tool for Supporting and Automating the

Requirements Engineering Process With the Use of

Natural Language

Marinos G. Georgiades and Andreas S. Andreou

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

443

The rest of this paper is organized as follows: Section II

outlines related work on RE tools and describes how

NALASS differs from similar propositions. Section III

provides a general overview of the NLSSRE methodology

and its application within the tool, while Section IV presents

the tool in depth. Both sections provide examples of using

NALASS in a real setting. Finally, Section V provides some

conclusions and recommendations for future work.

DOI: 10.7763/IJCTE.2013.V5.727

of requirements from NL requirements documents.

Abstfinder [2] is based on the use of pattern matching

techniques to extract abstractions (stakeholders, roles, tasks,

domain objects, etc.). The frequency with which the

abstractions occur within the text is taken as an indication of

the abstractions' relevance. [6] proposed an automatic

evaluation method called Quality Analyzer of Requirements

Specification (QuARS) to evaluate quality in software

requirements specification. This work developed a tool that

parses sentential requirements written in Natural Language

(NL) to detect potential sources of errors. COLOR-X [7] and

Circe [8] parse a set of structured requirements in natural

language to generate specific models (ER, DFD, OO design,

etc.). The common characteristic of these tools is that they are

mostly used and applied on pre-existing documents with

disorganized text, redundancies and ambiguities. As a result,

the retrieval approach is not particularly reliable, since

requirements are often not written syntactically,

grammatically and semantically correctly from scratch, and

the rules applied to retrieve them cannot work well to

produce reliable and complete results; additionally, there is a

good possibility that the original texts do not cover all the

requirements of the IS under development and also include

redundancies and disorganized material. Other tools, such as

[9] that are not parsers and offer the user the capability to

enter the requirements from scratch do not provide any

specific types of questions for requirements elicitation, which

are linked to the identification of data and functions of an IS.

In contrast, the NALASS tool proposed in this paper

implements the NLSSRE methodology and creates

automatically specific sets of questions, derived from

predefined requirements patterns and predefined

(standardized) types of data attributes, which correspond to

IS elements (functions, data, functional conditions), provided

by NLSSRE. The answers to these questions feed the analysis

and specification stages. Hence, the way the requirements are

elicited is clearly connected to the analysis and specification

of requirements. In the current literature, this link does not

exist, and this is exactly why the resulting requirements

documents need to be re-organized, re-validated and

re-adjusted.

Additionally, NALASS may be conceived as a complete

toolset that can generate DFDs, Class Diagrams, Use Case

descriptions, scenarios and diagrams, as well as a

well-structured NL SRS document that covers the essential

parts of the IEEE SRS template. Regarding the latter, there is

a lack of CASE tools that can produce textual descriptions of

requirements and embed them automatically in a

well-structured SRS document template. Tools such as

Rational Rose [10] and MagicDraw [11] provide significant

capabilities for drawing diagrams and generate code but not

adequate facilities for the above – hence the analysts need to

write their project‟s SRS using regular text editors and

templates.

III. METHODOLOGY OVERVIEW

The NLSSRE methodology introduced by [3] and [4]

provides formalization of the major activities of RE including

Requirements Discovery, Analysis and Specification, so that

the analyst will know in advance, through a step-by-step

approach, what questions to ask, in what specific way to

analyse the answers to the questions, and how to write them

in a specific way. The application domain of the

methodology is an IS (e.g. Hospital IS or Bookstore IS) that

deals mainly with management of documents or other

physical objects that can be conceived as electronic

information which can be Created, Altered, Read and Erased.

The first step of the methodology is the identification of

the Information Objects (IOs) of the system. An IO denotes a

separate entity of information (attributes) that can stand on its

own and can be created, altered, read and erased within the

context of the IS. For example, for a Hospital IS, some of the

IOs include Prescription, Pharmacy, Patient, and Doctor. As

an additional, important step, for each IO, five patterns of

Formalized Sentential Requirements (FSRs) are provided, as

shown in Fig. 1 (a), in the example of the Prescription IO.

Each pattern includes a function (Create, Alter, Read, Erase,

Notify - all derived from relevant linguistic verbs) that also

denotes the type of the FSR, functional conditions

(Instrument, Amount, Time, Location – for simplicity, they

do not appear in the NALASS screenshots), and functional

(semantic) roles (e.g. Creator, Accompaniment) that are

related to each function and are also attributes of the IO. The

aforementioned FSR functions are decomposed to

sub-functions and constraints (e.g. Create is decomposed to

the Add and Compare sub-functions. Compare checks if the

value to be assigned to an IO attribute satisfies the constraints

about that attribute). Hence, the FSR facilitate the

formalization of functions, business roles that replace the

functional roles, data attributes, functional conditions and

constraints of the IO. As another step, for the formalization of

additional types of attributes of each IO, the NLSSRE

methodology makes use of the genitive case, the adjective

and other types of attributes. Some of these types of attributes

will be illustrated in section 4 through the description of the

OO component of NALASS. After the definition of FSRs

and attribute types, the creation of questions for each IO

should take place. Questions are derived from the elements of

the FSR patterns (Fig. 1 (b)) and the predefined types of

attributes (not shown in figure 1(b) for simplicity). Following,

the answers to these questions (Fig. 1 (c)) feed the FSR

patterns (e.g. Creator takes the value Doctor), and, hence,

create complete requirements (Fig. 1 (d)) in the form of

formalized sentences (FSRs) that can be used, as the last step,

to create diagrammatic notations such as DFDs (Fig. 4. 5. 6.),

It has been illustrated that NLSSRE uses syntax (IS

elements of a requirement are written in the correct order in a

formalized sentence) and semantics (genitive case types,

adjective types, etc.) of NL to formalize the IS requirements,

through the stages of RD, RA and RS. Especially the use of

predefined questions guides users to provide specific answers

without ambiguities, vagueness and redundancies.

Additionally the use of NL gives expressiveness to the

formalization of requirements and makes them easily

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

444

Class diagrams (Fig. 7) and Use Case diagrams (Fig. 8) and

specifications (Table I), as well as the SRS document (Fig. 9.

10). The entire procedure is supported and automated by the

NALASS tool, and it will be clarified further through the

description of the tool in Section IV.

understood by the users, analysts and programmers. There is

a common terminology based on a consisted and common

language of writing, without ambiguities and redundancies,

and, furthermore, this controlled language is

computer-processed and translated automatically into

diagrammatic notations, use case descriptions and the SRS

document, as already mentioned.

Fig. 1. The predefined questions (b) created automatically by the FSR patterns (a), and the resulting complete FSRs (d) created automatically by the answers

of the users (c), for the Prescription IO – screenshots are taken from NALASS that automates and supports the NLSSRE methodology.

IV. THE NALASS TOOL IN DEPTH

NALASS is a software tool that supports the NLSSRE

methodology by providing a user-friendly graphical user

interface and automating the application of the methodology.

It includes 7 components as depicted in Fig. 2:

Fig. 2. Configuration of NALASS.

(i) the FSR component that uses the predefined FSR

patterns and the identified IOs to automatically generate, on

one hand, the FSR patterns for each IO, and, on the other

hand, the complete FSRs fed with the received answers; (ii)

the Attribute component that uses the predefined types of

attributes and the identified IOs to automatically generate the

attributes types for each IO, on one hand, and the complete

attributes formed by the received answers, on the other hand;

(iii) the Question component, which processes the elements

of the FSR patterns and attributes for each IO, to

automatically create the question sets (for each IO) to be

submitted to the user; and (iv), (v), (vi) and (vii) the

Documentation, Use Case, Object Oriented and Functional

components that process the elements of the completed FSRs,

SRS Rules

SRS Document

Component

SRS Template

FSR elements,

Attributes

SRS

Document

NLSSRE

elements

OO

Component

Use Case

Component

Functional

Component

FSR

Component

Question

Component

FSR patterns ∀ IO

UC Rules

OO Rules

DFD Rules

Use Case

Descriptions,

Diagrams

Class

Diagrams

DFD Diagrams

Attribute

Component

Complete FSRs

Predefined

attribute types

∀ IO

Questions

IOs

 Answers

Complete

Attributes

IOs

Answers

FSR patterns

Predefined

attribute

types

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

445

the completed attributes and specific rules to automatically

generate the SRS document, Use Case specifications and

diagrams, Class diagrams, and DFDs, respectively.

Below we illustrate, with examples, the 7 components

through the description of the two basic interfaces of the tool,

named Plan and Execution.

Plan. The first step for the analyst, in the Plan section, is to

use a particular guide to identify and add the Information

Objects of the IS. The screen in Fig. 3 shows some of the IOs

of a Hospital Information System.

Fig. 3. Adding information objects .

Subsequently, for each IO, the five patterns of FSRs (fig.

1a – Create, Alter, Read, Erase, Notify) as well as predefined

types of attributes (not shown in the figure for simplification),

as a first step, and specific question sets (fig. 1b), as a second

step, are created automatically by NALASS. The questions

are derived from the processing of the predefined types of

attributes for each IO and from the elements of each FSR

pattern, since they need to be fed with a value – for example,

for the Creator element of the Creation FSR for the

Prescription IO, the question “Who creates the

prescription?” is derived. This formalization in providing

specific questions that are linked to the analysis and

organisation of requirements is the difference from most, if

not all, of the approaches which use formalism in NL RE.

Such approaches try to develop and formalize requirements

that are already written in existing documents. We consider

them as being inefficient, since requirements in such

documents are often poorly written and organized; sentences

do not necessarily follow the correct form of syntax, while

there may exist redundant words, fuzzy and complicated

meanings, etc. As such, it is rather precarious and difficult to

apply linguistic rules on such documents.

Execution. In the „Execution‟ section:

The analyst is in the user‟s environment submitting

questions to the users and noting down the answers (figure

1c). The answers to the questions feed the FSR patterns as

they are the values of the constituent elements of the FSR

patterns, as shown in figure 1(d) (e.g. Creator takes the value

Doctor). The answers also feed the types of attributes.

Subsequently the FSRs and their constituent elements, as

well as the IO attributes, with the use of specific rules are

transformed to DFDs, Class diagrams, Use case

specifications and diagrams, and the SRS document. Below

we introduce this transformation through the description of

the relevant components and some indicative rules:

Functional component: Within this component, the FSRs

for each IO are grouped under one comprehensive function

with the heading Manage IO. For example, for the

Prescription and Drug IOs, the FSRs of Prescription and

Drug, as appear in Fig. 1 (a), will be grouped under Manage

Prescription and Manage Drug. The Manage functions for

each IO are the functions of the 1st level DFD (Fig. 4), the

Create, Alter, Read, Erase and Notify functions for each

Manage IO are the functions of the 2nd level DFD (Fig. 6).

For the 3rd level functions, the second level functions are

decomposed to Compare, Add, and Remove (Fig. 5).

Fig. 4. 1st level DFD, created automatically by NALASS.

Fig. 5. 3rd level DFD, created automatically by NALASS.

Further rules (not mentioned here due to space limitation)

are applied to link functions at the same level. Another

indicative rule is that the roles of Creator, Accompaniment,

Alterator, Intended Recipient, Experiencer and Notifiee

correspond to actors and are represented by a circle.

Furthermore, for the functions Creation, Alteration and

Erasure, the role(s) that appear on the left of the name of each

function in the corresponding FSR syntax provide data input

to the function, hence an arrow from each of these role

entities (actors) goes to the relevant function.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

446

Fig. 6. 2nd level DFD created automatically by NALASS.

Fig. 8. The use case diagram of the Prescription module, which is created automatically by NALASS by parsing the FSRs of a particular IO.

Use Case Name: Create Prescription

ID:

Description: The doctor fills out the form for a new prescription and the system sends the prescription electronically to the

pharmacist.

Preconditions: 1. Create Examination

2. Examination is at Complete state.

Actors: Doctor, Nurse, Pharmacist, Patient

Post-Conditions: Prescription is in Pending state

Flow of Events: 1. Doctor/Nurse enters Patient ID.

1.1. The System checks Patient ID.

2. Doctor/Nurse enters Pharmacist ID.

2.1. The System checks Pharmacist ID.

3. Doctor/Nurse enters Drug Name.

3.1. The System checks Drug Name.

4. Doctor/Nurse enters Drug Dosage.

4.1. The System checks Drug Dosage.

5. Doctor/Nurse enters Other details.

5.1. The System checks Other details.

6. Doctor/Nurse clicks on the Submit button.

6.1. The System stores the Prescription in the database.

6.2. The System notifies the Doctor, Nurse, Pharmacist, and Patient that Prescription is created.

Exception

condition:

1.1. The System displays „Invalid Patient ID‟ message, if patient ID is incorrect. Prescription cannot be saved.

2.1. The System displays „Invalid Pharmacist ID‟ message, if Pharmacist ID is incorrect. Prescription cannot

be saved.

3.1. The System displays „Invalid Drug Name‟ message, if Drug Name is incorrect. Prescription cannot be

saved.

4.1. The System displays „Invalid Drug Dosage‟ message, if Drug Dosage is incorrect. Prescription cannot be

saved.

6. The System does not take any action if Doctor/Nurse click on the Cancel button.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

447

TABLE I: USE CASE SPECIFICATION EXAMPLE FOR „CREATE PRESCRIPTION‟.

Object Oriented component: Within this component, the

IOs become Classes, and the functions of the FSRs for each

IO become the methods of the IO. For attributes, we

distinguish several types, examples of which are the

Primitive attributes, which are related to the IO per se and

usually refer to its physical characteristics (e.g., for the

Patient IO, primitive attributes include temperature, height,

mass), and the Peripheral attributes that refer to other IOs

related to the IO under study (e.g., for Patient, peripheral

attributes include Doctor, Disease) and usually appear in the

FSR. Specific rules are applied by NALASS to transform the

IOs into classes and to define attributes and methods. For

example, peripheral attributes are all defined in the FSR

patterns. Hence, NALASS reads the FSRs and transforms the

roles of the syntactic subject of each FSR (e.g. Creator,

Accompaniment) and the Intended Recipient and Notifiee

into attributes. Further rules regarding the relationships

between classes and cardinality are realized by NALASS. Fig.

7 shows the automatic construction of the Prescription and

Drug classes, with their attributes and relationship.

Use case component: This component reads the FSRs of

each IO, and for each IO, it creates a Use case model that

includes at least five main use cases, one for each of the 5

FSRs. FSR sub-functions (e.g. add, delete) correspond to

possible “include” use cases or use case actions (figure 8).

The Read FSR derives a Read use case which is <included>

in the Alter, and Erase use cases. Another indicative rule is

that the subject roles of creator and alterator in the FSR are

identified as primary actors and positioned on the right of the

use case diagram. For the development of the use case

specification (Table I), the component uses further rules and

also reads the completed attributes for each IO. For example,

the sub-functions of each FSR (add/enter, compare/check)

for a particular IO, with the IO attributes are used to construct

the transactions (flow of events) of each use case of the IO

use case model.

Fig. 7. General form of a class diagram created automatically by NALASS.

The SRS document component: The Documentation

component receives as inputs the processed (fed with the

answers of the users) elements of the NLSSRE methodology

including FSRs, IOs and IO attributes, the SRS template that

determines the organization and formatting of the SRS

document, and the rules to convert the aforementioned inputs

into a well-structured SRS document.

The tool reads the template and applies: (a) formatting

rules for the formatting of the new SRS document, by

identifying the formatting elements of the template, such as

fonts type and size, and line spacing, and applying them to

define the format of the new SRS document; (b) substitution

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

448

Fig. 9. SRS document template given as input to NALASS.

Fig. 10. Excerpt of the SRS document created automatically by NALASS.

rules, by replacing the template variables included in “< >”,

as shown in Fig. 9 with the values of the components of the

corresponding FSRs, IOs and attributes of IOs, as shown in

figure 10 (e.g. Information Object 1 is replaced by

Prescription, and Creator of IO 1 is replaced by Doctor).

V. CONCLUSIONS AND FUTURE WORK

This paper has presented NALASS (Natural Language

Syntax and Semantics), a software tool that is intended to

automate the application of the NLSSRE methodology

(Natural Language Syntax and Semantics Requirements

Engineering) as illustrated in [3]-[4]. Like the methodology

on which it is based, the tool can be used through the entire

Requirements Engineering process to automate large parts of

requirements discovery, analysis and specification. NALASS

provides a friendly graphical user environment for the

Information Systems (IS) analyst, and it reduces the time

required for the manual application of the NLSSRE

methodology. For the requirements discovery stage, specific

sets of questions are automatically created based on the

specific predefined types of data attributes and patterns of

formalized sentential requirements that are given in advance;

for the requirements analysis stage, the requirements are

automatically organised and classified according to the same

types of data and patterns of formalized sentences; and for

the requirements specification stage, the tool can

automatically generate Data Flow Diagrams (DFDs), Class

Diagrams, Use case specifications and diagrams, and the

Software Requirements Specification (SRS) Document.

Our work is still in progress, so future considerations

involve (i) expansion of the tool features, such as the

automatic generation of activity diagrams, and embedding of

DFDs, Class Diagrams and Use case diagrams and

specifications (the automatic creation of which is already

implemented in NALASS) to the right section of the SRS

document (as also indicated in the IEEE SRS template), and

(ii) development of a web version of the tool, since now is

only available in a desktop version.

REFERENCES

[1] The Standish group. (23 April 2009). The CHAOS report, Press release

[Online]. Available:

http://www1.standishgroup.com/newsroom/chaos_2009.php

[2] L. Goldin and D. Berry, “Abstfinder: A prototype natural language text

abstraction finder for use in requirement elicitation,” Automated

Software Engineering, Kluwer Academic Publishers, Netherlands,

1997, pp. 375–412.

[3] M. Georgiades, A. Andreou, and C. Pattichis, “A Requirements

Engineering Methodology basde on Natural Language Syntax and

Semantics,” in Proc. of the 13th IEEE International Requirements

Engineering Conference, August 29-September 02, 2005, Paris, France,

pp. 473-474.

[4] M. Georgiades and A. Andreou, “A Novel Methodology to Formalize

the Requirements Engineering Process with the Use of Natural

Language,” presented at IADIS International Conference on Applied

Computing, October 14-16, Timisoara, 2010.

[5] IEEE Std 830-1998, “Recommended Practice for Software

Requirements Specifications,” IEEE Xplore, 1998.

[6] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An Automatic Quality

Evaluation for Natural Language Requirements,” presented at Seventh

International Workshop on Requirements Engineering: Foundation for

Software Quality, Interlaken, Switzerland, 2001.

[7] F. M. Burg, Linguistic Instruments in Requirements Engineering, IOS

Press, 1997.

[8] V. Ambriola and V. Gervasi, “Processing natural language

requirements,”in Proc. Of ASE 1997, pp. 36-45.

[9] N. Kassel and B. A. Malloy, “An Approach to Automate Requirements

Elicitation and Specification,” in Proc. of the 7th Int. Conf. on Software

Engineering and Applications, November 3-5, 2003, Marina del Rey,

CA, USA, pp. 544-549.

[10] IBM Rational Rose. (July 12, 2010). [Online]. Available:

http://www-306.ibm.com/software/rational/

[11] MagicDraw. (July 12, 2010). [Online]. Available:

http://www.magicdraw.com/

 Andreas S. Andreou studied Computer

Engineering and Informatics at the University of

Patras, Greece (Diploma, 1993, Ph.D., 2000). Prior

to joining the academia he worked in the industry at

the posts of Programmer-Analyst, of Director of

Requirements Analysis and Development and of IT

consultant in Banking Systems. Currently he is an

Associate Professor at the Department of Electrical

Engineering and Computer Engineering

and Informatics of the Cyprus University of Technology. He also served as

Software Engineering and IT consultant in several major software projects in

Cyprus, including the Integrated Software System for the New Nicosia

General Hospital. His research interests include Software Engineering, Web

Engineering, Electronic and Mobile Commerce and Intelligent Information

Systems.

Marinos G. Georgiades obtained a BSc and a

Ph.D. in Computer Science from the University

of Cyprus and an MSc in Information

Management from the University of Sheffield.

His research interests include Software

Engineering and more specifically Requirements

Engineering with emphasis on the use of Natural

Language for the formalization and automation of

software requirements elicitation, analysis and

specification. He is the recipient of the ISDA

2010 best student paper award.

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

449

