

Abstract—The general problem of multiprocessor scheduling

can be stated as scheduling a task graph onto a multiprocessor

system so that schedule length can be optimized. Task

scheduling in multiprocessor system is a NP-complete problem.

In literature, several heuristic methods have been developed

that obtain suboptimal solutions in less than the polynomial

time. Recently, Genetic algorithms have received much

awareness as they are robust and guarantee for a good solution.

In this paper, we have developed a genetic algorithm based on

the principles of evolution found in nature for finding an

optimal solution. Genetic algorithm is based on three operators:

Natural Selection, Crossover and Mutation. To compare the

performance of our algorithm, we have also implemented

another scheduling algorithm HEFT which is a heuristic

algorithm. Simulation results comprises of three parts: Quality

of solutions, robustness of genetic algorithm, and effect of

mutation probability on performance of genetic algorithm.

Index Terms—Genetic algorithm, fitness function,

multi-processor system, NP-complete etc.

I. INTRODUCTION

Task scheduling in multiprocessor systems also known as

multiprocessor scheduling has been a source of challenging

problems for researchers in the area of computer engineering.

The general problem of multiprocessor scheduling can be

stated as scheduling a set of partially ordered computational

tasks onto a multiprocessor system so that a set of

performance criteria will be optimized.

Unfortunately, Task scheduling in multi processor system

is NP-complete [1]. There are various methods by which we

can find the solution of scheduling problems in less than the

polynomial time. Heuristics based scheduling methods are on

of them but it has seen that they give good results for some

inputs while bad for others. One another recent solution of

scheduling problem is Genetic algorithms (GA), which are

based on the mechanics of natural selection and natural

genetics. The main goal behind research on genetic

algorithms is robustness. Genetic algorithms [2]-[5] are the

most popular random search techniques for different kind of

task scheduling problems.

A genetic algorithm continuously tries to improve the

average fitness of a population by construction of new

populations. Quality of solution depends heavily on the

Manuscript received September 15, 2012; revised November 30, 2012.

S. Gupta and G. Agarwal are with the Computer Science and Information

Technology Deptt. Krishna Institute of Management and Technology,

Moradabad, India (e-mail: sachiagarwal@rediffmail.com,

meetgaurav1@rediffmail.com)

V. Kumar is with the Computer Science Deptt, Moradabad Institute of

Technology Moradabad, India (e-mail: Vikas_in_mittal@rediffmail.com).

selection of some key parameters like fitness function,

population size, crossover probability and mutation

probability.

In this paper, we first introduce task scheduling problem

having some specified characteristics, after that genetic

approach is discussed in detail and the last section presents

experiments and results.

II. MULTIPROCESSOR TASK SCHEDULING

Many parallel applications consist of multiple functional

units. While the execution of some of the tasks depends on

the output of the other tasks, others can be executed

independently at the same time, which increases parallelism

of the problem. The task scheduling problem is the problem

of assigning the tasks in the multiprocessor system in a

manner that will optimize the overall performance of the

application, while guarantee the correctness of the result.

Multiprocessor scheduling problems can be classified into

many different categories based on characteristics of the

program and tasks to be scheduled, the multiprocessor

system, and the availability of information (See Fig. 1). The

two main categories of Multiprocessors Task scheduling are:

Static and dynamic task scheduling. A static or deterministic

task scheduling is one in which precedence constraints and

the relationships among the task are known well in advance

while non-deterministic or dynamic scheduling is one in

which these information is not known in advance or not

known till run time. Here we only consider static task

scheduling problems. Static task scheduling algorithms [6],

[7] can be classified into two parts: Heuristic Based and

Guided random Search Based Algorithms. Heuristic based

algorithm searches a path in the solution space based on the

heuristic used while ignoring other possible paths. List

scheduling algorithms [8], clustering [8] and duplication

based algorithms [9], [10] fall under this category.

 In List Scheduling Heuristic, each task is allotted a

priority then added to a queue of waiting tasks in order of

decreasing priority. As processors become available, the task

with the highest priority is deleted from the queue and

assigned to the most suited processor. The major difference

between algorithms in this category is the way by which

priorities are assigned and the most suited processor is

allocated. In Clustering Heuristic, tasks of a given task graph

are mapped into an unlimited number of clusters. In this

heuristic, each iteration refines the previous clustering by

merging some clusters. If two tasks are assigned to the same

cluster, they will be executed on the same processor. In

duplication based heuristic, scheduling of a task graph is

done by mapping some of its task redundantly, which reduces

the inter process communication over head.

An Efficient and Robust Genetic Algorithm for

Multiprocessor Task Scheduling

Sachi Gupta, Gaurav Agarwal, and Vikas Kumar

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

377DOI: 10.7763/IJCTE.2013.V5.713

Fig. 1. Classification of task scheduling algorithm

Guided random search techniques use random choices to

guide them selves through the problem space. Genetic

Algorithm [11], [12], [13] Belong to the Guided random

Search based category.

III. PROBLEM DESCRIPTION

In our work, we considered Static scheduling problems

with the following characteristics:

 Tasks are non preemptive in nature. Precedence
relations among the tasks exist.

 Communication costs do not exist.

 In a Multiprocessor System, all the processors are
heterogeneous meaning thereby a task may take
different execution time on each processor.

A static scheduling problem consists of three main

components: A multiprocessor system, an application and an

objective for scheduling.

The multiprocessor system consists of a limited number of

fully connected heterogeneous processors (P1, P2... Pm). An

application comprises tasks and their dependencies on each

other. It can be represented as a directed acyclic graph (DAG)

[14], [15], (see Fig.2) G = (V, E, W), where the vertices set V

consists of v non preemptive tasks, and vi denotes the ith task.

The edge set E represents the precedence relationships

among tasks. A directed edge eij in E indicated that vj can not

begin its execution before receiving data from vi. W is a

matrix of vxm, and wij in W represents the estimated

execution time of vi on jth processor.

Fig. 2. A sample directet acyclic graph

The main objective of the task scheduling is to determine

the assignment of tasks of a given application to a given

parallel system such that the execution time (or schedule

length) of this application is minimized satisfying all

precedence constraints.

IV. GENETIC APPROACH

Genetic Algorithms or evolutionary algorithms are

developed by John Holland in 1960s. They are random

search based algorithm premised on the evolutionary ideas of

natural selection and genetic. The basic concept of GA is

designed to simulate processes in natural system necessary

for evolution. Some key terms used in genetics are as

follows:

 Gene: A single encoding of a part of the solution
space.

 Chromosome: A string of “Genes” that represents a
solution.

 Population: The number of “Chromosomes” available
to test.

 Locus: A unique position a gene can occupy on the
chromosome.

Genetic Algorithm uses three operators known as natural

selection, crossover and mutation. Genetic algorithm differs

from the traditional optimization methods in the following

ways:

 Genetic Algorithms are both effective and robust.

 They can produce high quality solutions.

 Able to exploit favorable characteristics of previous
solution attempts to construct better solutions.

 Computationally simple and easy to implement.

 Genetic Algorithms use probabilistic transition rules,
not deterministic rules.

A. Genetic Algorthtm Structrure

The structure of a genetic algorithm for any problem

depends on five things which are as follows:

 The choice of representation of chromosomes.

 Construction of genetic operators.

 The choice of Fitness Function.

 Probabilities that can control genetic operators.

 No. of Generations.

Each of the above five parts greatly affects the solution

obtained as well as the performance of the genetic algorithm.

Typically, a Genetic Algorithm Structure consists of the

following steps:

 GA1: Initialization – initialize the population.

 GA2: Evaluation – evaluate each chromosome using
fitness function.

 GA3: Genetic operations –Select the parent and apply
genetic operators on them to produce new
chromosomes (offspring).

 GA4: Repeat steps GA2 and GA3 until termination
condition reached.

From the above steps, we can see that genetic algorithms

utilize the concept of survival of the fittest; passing “good”

chromosomes to the next generation, and combining different

strings to explore new search points.

B. Initial Population (Structure of the Chromosome)

Designing of chromosome structure is crucial for devising

Genetic Algorithm.

We define our chromosome structure as a combination of

two strings SQ and SP, whose length equal to the number of

tasks. SQ (scheduling queue) maintains precedence

constraints between tasks, and an entry in SQ represents a

task to be scheduled. An entry in SP (scheduling processor)

represents the processor the corresponding task is scheduled

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

378

onto.

 The details to generate a chromosome can be seen in

following steps:

 IP1: Select randomly a task from the entire entry tasks.
Set this task as the first task in SQ.

 IP2: Repeat step IP3 for (v-1) times.

 IP3: Randomly select a task who is not in SQ and
whose predecessors all have been in SQ, and add this
task to SQ.

 IP4: For SP part, randomly generate an integer
number between 1 and m for each task in SQ and add
it to SP.

C. Evaluation and Selection: Roulette Wheel Mechanism

The fitness function in genetic algorithms is typically the

objective function that we want to optimize in the problem. It

is used to evaluate the chromosomes. For calculating the

fitness values and in order to select good chromosomes, we

define the fitness function as:

F (i) = (maxFT-FT (i) +1/ (maxFT-minFT+1) (1)

where: maxFT and minFT is the maximum and minimum

finishing time of chromosomes in current generation,

respectively. FT(i) is the finishing time of the ith

chromosome.

Once the fitness values of all the chromosomes have been

evaluated, we can select the higher fitness value

chromosomes using the roulette wheel mechanism. We have

implemented a roulette wheel mechanism where each

chromosome in the population occupies a slot size

proportional to its fitness value. Random numbers are

generated and used as an index into the roulette wheel to

determine which chromosome will be passed to the next

generation. Because chromosomes with higher fitness value

will have larger slots, they are more likely to be selected and

passed to the next generation.

D. Reproduction: Crossover and Mutation

Crossover

Crossover is a mechanism that produces new offspring that

have some parts of both parent's genetic material. The

simplest type of crossover is single-point crossover.

Multipoint crossover uses m randomly chosen crossover

positions. Bits between successive crossover points are

exchanged producing two new offspring.

As our chromosome comprises two separate parts SP and

SQ having different characteristics, for each part we employ

different crossover policies. We randomly select one or the

second part and apply two different crossover operators for

these two parts.

Details about crossover are given in following steps:

 CR1: Input the Crossover probability Pc.

 CR2: Randomly select pairs of chromosomes and
generate a float number (FLC) between 0 and 1 for
each pair.

 CR3: If FLC <= Pc, then repeat step CR4 to step CR5
Else directly reproduce those two chromosomes to the
next generation.

 CR4: Randomly generate two crossover points, p and
q, between 1 and v and crossover flag CF between 0
and 1.

 CR5: If CF=0 then rearrange the order of tasks in SQ
between p and q of one chromosome according to the
order of tasks of another chromosome, the rest of the
two chromosomes are remained. Else exchange the
part in SP between p and q of two chromosomes and
the rest of the two chromosomes are remained.

Mutation

Mutation is a genetic operator that alters one or more gene

values in a chromosome from its initial state. This can result

in entirely new chromosomes being added to the population.

With these new chromosomes, the genetic algorithm may be

able to achieve a better solution than was previously possible.

Mutation can be considered as a random alternation of the

individual.

We employ two policies to mute the chromosome as given

in following steps:

 MT1: Input the Mutation probability Pm.

 MT2: For each chromosome, generate a float number
(FLM) between 0 and 1.

 MT3: If FLM <= Pm, then repeat step MT4 to step
MT5 Else directly reproduce this chromosome to the
next generation.

 MT4: Randomly generate a mutation point p between
1 and v and mutation flag MF between 0 and 1.

 MT5: If MF=0 then select randomly a location
between location of the nearest immediate
predecessor and that of successor of sqp. Then move
sqp to this location. Else change randomly the
processor of sqp between 1 and m as spp.

V. EXPERIMENTS AND RESULTS

In our work, we implemented two algorithms for solution

of multiprocessor task scheduling problem. One is based on

list scheduling heuristic HEFT and other is our proposed

Genetic Algorithm. For performance evaluation of our

algorithm we generated some problems of varying sizes and

solved them by both the algorithms. Details of our

experimental setup and results obtained by HEFT and

proposed GA are as given below.

A. Experimental Setup

We have implemented a system to automatically generate

the scheduling problems of required sizes. This we have done

to avoid biasing in giving values of different parameters

required for the problems. Our system fits random values to

these parameters in appropriate ranges. We have generated

problems for our experiments with the following

characteristics:

 Size of problem ranges from 25 to 65 with an interval
of 5.

 There is no limit on the number of successors of each
task except the exit task which does not have any
successor.

 The execution time for each task is a random number
between 5 and 25.

 Number of processors varies from 4 to 8 according to
the size of problems.

As we did not put any restriction over the number of

successor a task may have, task graph may be much

complicated. So, the problems we have chosen may be

considered difficult in comparison to the kind of problems we

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

379

normally see in literature, where a restriction on maximum

number of successor tasks has been put.

B. Results of HEFT

The Heterogeneous-Earliest-Finish-Time (HEFT)

Algorithm is a heuristic scheduling algorithm for a bounded

number of heterogeneous processors, which has two major

phases: a task prioritizing phase for computing the priorities

of all tasks and a processor selection phase for selecting the

tasks in the order of their priorities and scheduling each

selected task on its “best” processor, which minimizes the

task's finish time.

We run HEFT procedure on ten different problems with

Problem Identification Numbers (PIN) 0 to 9 for each

problem size to note the length of the schedules obtained (see

Table I). We then computed average schedule length for each

problem size for comparison with corresponding results

obtained from GA.

TABLE I: RESUTS OF HEFT

Size

of

Problem

PIN (0-9)
Average

Schedule

Length 0 1 2 3 4 5 6 7 8 9

25
11

6

10

8

14

5

10

5

10

7

14

4

14

1

15

4

14

8

17

0
133.8

30
15

8

16

5

17

0

14

0

17

0

16

7

17

6

14

7

16

1

17

3
162.7

35
16

1

16

3

16

2

19

3

13

9

17

6

14

0

17

7

19

2

19

7
170

40
20

3

18

3

15

4

18

0

20

2

20

8

17

4

18

4

16

2

21

1
186.1

45
21

7

18

4

19

3

18

6

22

9

17

9

17

1

21

6

25

6

21

7
204.8

50
19

2

22

0

18

6

24

1

23

6

20

1

20

3

24

9

21

8

21

6
216.2

55
23

3

22

0

21

6

24

0

22

9

24

3

24

0

23

5

21

9

23

7
231.2

60
25

2

26

0

25

9

26

6

24

4

21

9

26

4

26

0

24

7

25

2
252.3

65
27

7

29

4

25

0

25

5

27

5

26

0

28

2

28

4

27

2

24

5
269.4

TABLE II: RESULTS OF GA

Size

of

Problem

PIN (0-9)
Average

Schedule

Length 0 1 2 3 4 5 6 7 8 9

25
11

6

10

8

14

5

10

4

10

7

14

3

14

1

15

4

14

8

17

0
133.6

30
15

8

16

5

17

0

14

0

17

0

16

4

17

6

14

7

15

9

17

3
162.2

35
16

0

16

3

16

2

19

3

13

9

17

6

14

0

17

7

19

1

19

7
169.8

40
20

2

18

0

15

4

17

7

20

2

20

8

17

4

18

3

15

9

21

0
184.9

45
21

7

18

0

19

1

18

6

22

9

17

9

17

1

21

6

25

6

21

6
204.1

50
19

2

22

0

18

6

24

1

23

6

20

1

20

3

24

9

21

7

21

6
216.1

55
23

3

22

0

21

5

23

9

23

0

24

3

24

0

23

5

21

9

23

7
231.1

60
25

2

25

9

25

6

26

6

24

6

22

0

26

4

26

0

24

7

25

2
252.2

65
27

7

29

4

24

9

25

3

27

3

26

1

28

1

28

4

27

1

24

4
268.7

TABLE III: COMPARISON OF HEFT AND GA

No. of tasks No. of processors Avg. schedule length (HEFT)
Avg. schedule length

(GA)

25 4 133.8 133.6

30 4 162.7 162.2

35 5 170 169.8

40 5 186.1 184.9

45 6 204.8 204.1

50 6 216.2 216.1

55 7 231.2 231.1

60 7 252.3 252.2

65 8 269.4 268.7

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

380

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

381

A. Results of GA

The proposed genetic algorithm was implemented and

evaluated on the same set of problems we used to evaluate

HEFT. Results obtained are shown in Table II. We set

parameters for our Genetic Algorithm as:

 Population Size=25,

 Maximum Generations= 5000,

 Crossover Probability= .6

 Mutation Probability =.2

B. Comparison of HEFT and GA

Results obtained from our experiments are analyzed for

following factors:

Quality of solution: Comparison of average schedule

length of the GA and HEFT is given in Table III and in Fig. 3.

Results demonstrate that our proposed Genetic Algorithm is

able to compete with heuristic based algorithms as far as

quality of solution is concerned. As heuristics are biased

towards certain characteristics of solution so they tend to

search solution only in a small part of whole search space. It

is also possible that they never explore a particular region of

search space. Thus for some problems heuristics may give

bad results also if they are not chosen carefully.

HEFT vs GA

133.8

162.7

170

186.1

204.8

216.2

231.2

252.3

269.4

133.6

162.2

169.8

184.9

204.1

231.1

252.2

268.7

216.1

0 50 100 150 200 250 300

25

30

35

40

45

50

55

60

65

P
ro

b
le

m
 s

iz
e

Avg. Schedule Length
HEFT results GA results

Fig. 3. HEFT Vs GA

Generations vs Avg. schedule length for

problem size 45

0

100

200

300

400

500

0 19 71 237 387 564 1537

Generation

A
v

g
.

sc
h

e
d

u
le

 l
e
n

g
th

Problem no. 1

Fig. 4. Problem Size vs avg. schedule length for problem size 45

On the other hand GA is a more powerful method as it

searches simultaneously in many parts of search space.

Because of mutation operator, change in region being

searched, gives potential to GA to search in any part of the

search space. Thus it is more likely to find a better or best

solution.

Robustness and gurantee for good solution: During our

experiments on GA we noted Average schedule lengths of

populations emerging generations after generation (see Fig.

4).Though we have shown results only for problem size 45 in

Fig. 4, for each problem irrespective of its size we observe

that average schedule length is continuously decreasing as

more and more generations are evolving. This shows that

Genetic Algorithm is robust and ultimately it will give us a

good quality solution as quality of solution set is

continuously improved. It also reveals that more generations

we evolve; it is likely to have better quality in solution.

Effect of mutation probability on the performance of GA:

As mutation is the key to change the region of search space,

mutation probability may have dominating role in finding

solutions of good quality. Thus, we repeated our experiments

by fixing crossover probability and changing mutation

probabilities from 0.05 to .40 and noted average schedule

lengths. We done our experiments on the problem having

size 65. we can observe the similar trend in the problems of

all sizes. Fig. 5 shows the further average of results, mixing

the effect of all crossover probabilities which clearly shows

that up till mutation probability is .20, increase in mutation

probability leading to better results. After .20 results are

fluctuating in a small range but normally are not better than

that we obtained for .20. So, we have found best mutation

probability for our set of problems as .20.

Effect of mutation probability on Avg.schedule

length

265

270

275

280

285

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

mutation probabilities (pm)

A
v

g
.
s
c
h

e
d

u
le

 l
e
n

g
th

Avg. schedule length

Fig. 5. Effect of mutation probability on avg. schedule length

VI. CONCLUSION

We have constructed a system which automatically

generates the problems of required sizes and also fits values

to the parameters. During the experiments with these

problems we have seen that for 28.8% problems GA gives

lower schedule length, for 4.44% problems GA gives slightly

higher schedule length while for 66.67% problems GA gives

equal schedule length in comparison with HEFT.

We analyzed performance of our algorithm for robustness.

We have seen that in GA, Average Schedule Length

continuously decreases as the number of generation increases.

This shows that genetic algorithm is robust and gives

guarantee for good results.

Lastly, we analyzed effect of mutation probability on the

performance of GA. We found that mutation is an escape

mechanism to avoid premature convergence. Mutation can be

considered as an occasional (with small probability) random

alternation of the value of a string. For our problem set, we

found best mutation probability as .20.

ACKNOWLEDGMENT

We would like to thank the anonymous referees for their

helpful comments and suggestions that have improved the

quality of this manuscript. I would also like to express sincere

gratitude to Krishna Group for the sponsorship.

REFERENCES

[1] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide

to the theory of NP completeness,” San Francisco, CA, W. H. Freeman,

1979.

[2] A. Chipperfield and P. Flemming, “Parallel genetic algorithms, parallel

and distributed computing handbook,” First ed., New York,

McGraw-Hill, vol. 143, pp. 111-118, 1996.

[3] D. C. Goldberg, “Genetic algorithms in search, optimization and

machine learning,” Add. Wesley Publishing, 1989.

[4] J. H. Holland, “Adaptation in natural and artificial systems,” MIT Press,

1975.

[5] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey

computer,” vol. 27, pp. 17-26, 1994.

[6] H. E. Rewini, T. G. Lewis, and H. H. Ali, “Task scheduling in parallel

and distributed systems,” Prentice Hall, 1994.

[7] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating

directed task graphs to multiprocessors,” ACM Computing Surveys, vol.

31, no. 4, pp. 406-471, 1999.

[8] H. Topcuoglu and M. Y. Wu, “Performance-effective and

low-complexity task scheduling for heterogeneous computing,” IEEE

Transactions on Parallel and Distributed System, vol. 13, pp. 260-274,

2002.

[9] B. Kruatrachue and T. G. Lewis, “Duplication scheduling heuristic, a

new precedence task scheduler for parallel systems,” Technical Report,

Oregon State Univ., 1987.

[10] T. Tsuchiya, T. Osada, and T. Kikuno, “Genetic-based multiprocessor

scheduling using task duplication,” Microprocessors and

Microsystems, vol. 22, pp. 197-207, 1998.

[11] P. C. Wang and W. Korfhage, “Process scheduling using genetic

algorithms,” in IEEE Symp. on Parallel and Dist. Proc., Texas, USA,

Oct. 1995, pp. 638-641.

[12] R. C. Correa, A. Ferreira, and P. Rebreyend, “Scheduling

multiprocessor tasks with genetic algorithms,” IEEE Transactions

Parallel and Distributed Systems, vol. 10, pp. 825, 1999.

[13] Y. W. Zhongiz and J. G. Yang, “A genetic algorithm for tasks

scheduling in parallel multiprocessor systems,” Proceedings of the

Second International Conference on Machine Learning and

Cybernetics, Xi'an, pp. 2-5 November 2003.

[14] J. L. Gross and J. Yellen, Handbook of Graph Theory, CRC Press.

[15] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs.

Second Edition, Elsevier, 2004.

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

382

