
  

 

Abstract—The general problem of multiprocessor scheduling 

can be stated as scheduling a task graph onto a multiprocessor 

system so that schedule length can be optimized. Task 

scheduling in multiprocessor system is a NP-complete problem. 

In literature, several heuristic methods have been developed 

that obtain suboptimal solutions in less than the polynomial 

time. Recently, Genetic algorithms have received much 

awareness as they are robust and guarantee for a good solution. 

In this paper, we have developed a genetic algorithm based on 

the principles of evolution found in nature for finding an 

optimal solution. Genetic algorithm is based on three operators: 

Natural Selection, Crossover and Mutation. To compare the 

performance of our algorithm, we have also implemented 

another scheduling algorithm HEFT which is a heuristic 

algorithm. Simulation results comprises of three parts: Quality 

of solutions, robustness of genetic algorithm, and effect of 

mutation probability on performance of genetic algorithm. 

 
Index Terms—Genetic algorithm, fitness function, 

multi-processor system, NP-complete etc. 

 

I.  INTRODUCTION  

Task scheduling in multiprocessor systems also known as 

multiprocessor scheduling has been a source of challenging 

problems for researchers in the area of computer engineering. 

The general problem of multiprocessor scheduling can be 

stated as scheduling a set of partially ordered computational 

tasks onto a multiprocessor system so that a set of 

performance criteria will be optimized.  

Unfortunately, Task scheduling in multi processor system 

is NP-complete [1]. There are various methods by which we 

can find the solution of scheduling problems in less than the 

polynomial time. Heuristics based scheduling methods are on 

of them but it has seen that they give good results for some 

inputs while bad for others. One another recent solution of 

scheduling problem is Genetic algorithms (GA), which are 

based on the mechanics of natural selection and natural 

genetics. The main goal behind research on genetic 

algorithms is robustness. Genetic algorithms [2]-[5] are the 

most popular random search techniques for different kind of 

task scheduling problems. 

A genetic algorithm continuously tries to improve the 

average fitness of a population by construction of new 

populations. Quality of solution depends heavily on the 
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selection of some key parameters like fitness function, 

population size, crossover probability and mutation 

probability. 

In this paper, we first introduce task scheduling problem 

having some specified characteristics, after that genetic 

approach is discussed in detail and the last section presents 

experiments and results. 

 

II. MULTIPROCESSOR TASK SCHEDULING 

Many parallel applications consist of multiple functional 

units. While the execution of some of the tasks depends on 

the output of the other tasks, others can be executed 

independently at the same time, which increases parallelism 

of the problem. The task scheduling problem is the problem 

of assigning the tasks in the multiprocessor system in a 

manner that will optimize the overall performance of the 

application, while guarantee the correctness of the result. 

Multiprocessor scheduling problems can be classified into 

many different categories based on characteristics of the 

program and tasks to be scheduled, the multiprocessor 

system, and the availability of information (See Fig. 1). The 

two main categories of Multiprocessors Task scheduling are: 

Static and dynamic task scheduling. A static or deterministic 

task scheduling is one in which precedence constraints and 

the relationships among the task are known well in advance 

while non-deterministic or dynamic scheduling is one in  

which these information is not known in advance or not 

known till run time. Here we only consider static task 

scheduling problems. Static task scheduling algorithms [6], 

[7] can be classified into two parts: Heuristic Based and 

Guided random Search Based Algorithms. Heuristic based 

algorithm searches a path in the solution space based on the 

heuristic used while ignoring other possible paths. List 

scheduling algorithms [8], clustering [8] and duplication 

based algorithms [9], [10] fall under this category. 

 In List Scheduling Heuristic, each task is allotted a 

priority then added to a queue of waiting tasks in order of 

decreasing priority. As processors become available, the task 

with the highest priority is deleted from the queue and 

assigned to the most suited processor. The major difference 

between algorithms in this category is the way by which 

priorities are assigned and the most suited processor is 

allocated. In Clustering Heuristic, tasks of a given task graph 

are mapped into an unlimited number of clusters. In this 

heuristic, each iteration refines the previous clustering by 

merging some clusters. If two tasks are assigned to the same 

cluster, they will be executed on the same processor. In 

duplication based heuristic, scheduling of a task graph is 

done by mapping some of its task redundantly, which reduces 

the inter process communication over head. 
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Fig. 1. Classification of task scheduling algorithm 

Guided random search techniques use random choices to 

guide them selves through the problem space. Genetic 

Algorithm [11], [12], [13] Belong to the Guided random 

Search based category. 

 

III. PROBLEM DESCRIPTION 

In our work, we considered Static scheduling problems 

with the following characteristics: 

 Tasks are non preemptive in nature. Precedence 
relations among the tasks exist.  

 Communication costs do not exist. 

 In a Multiprocessor System, all the processors are 
heterogeneous meaning thereby a task may take 
different execution time on each processor. 

A static scheduling problem consists of three main 

components: A multiprocessor system, an application and an 

objective for scheduling.  

The multiprocessor system consists of a limited number of 

fully connected heterogeneous processors (P1, P2... Pm). An 

application comprises tasks and their dependencies on each 

other. It can be represented as a directed acyclic graph (DAG) 

[14], [15], (see Fig.2) G = (V, E, W), where the vertices set V 

consists of v non preemptive tasks, and vi denotes the ith task. 

The edge set E represents the precedence relationships 

among tasks. A directed edge eij in E indicated that vj can not 

begin its execution before receiving data from vi. W is a 

matrix of vxm, and wij in W represents the estimated 

execution time of vi   on jth processor.  

 

Fig. 2. A sample directet acyclic graph 

The main objective of the task scheduling is to determine 

the assignment of tasks of a given application to a given 

parallel system such that the execution time (or schedule 

length) of this application is minimized satisfying all 

precedence constraints. 

IV. GENETIC APPROACH 

Genetic Algorithms or evolutionary algorithms are 

developed by John Holland in 1960s. They are random 

search based algorithm premised on the evolutionary ideas of 

natural selection and genetic. The basic concept of GA is 

designed to simulate processes in natural system necessary 

for evolution. Some key terms used in genetics are as 

follows: 

 Gene: A single encoding of a part of the solution 
space. 

 Chromosome: A string of “Genes” that represents a 
solution. 

 Population: The number of “Chromosomes” available 
to test. 

 Locus:  A unique position a gene can occupy on the 
chromosome. 

Genetic Algorithm uses three operators known as natural 

selection, crossover and mutation. Genetic algorithm differs 

from the traditional optimization methods in the following 

ways: 

 Genetic Algorithms are both effective and robust. 

 They can produce high quality solutions. 

 Able to exploit favorable characteristics of previous 
solution attempts to construct better solutions. 

 Computationally simple and easy to implement. 

 Genetic Algorithms use probabilistic transition rules, 
not deterministic rules. 

A. Genetic Algorthtm Structrure  

The structure of a genetic algorithm for any problem 

depends on five things which are as follows: 

 The choice of representation of chromosomes. 

 Construction of genetic operators. 

 The choice of Fitness Function. 

 Probabilities that can control genetic operators. 

 No. of Generations. 

Each of the above five parts greatly affects the solution 

obtained as well as the performance of the genetic algorithm. 

Typically, a Genetic Algorithm Structure consists of the 

following steps: 

 GA1: Initialization – initialize the population.  

 GA2: Evaluation – evaluate each chromosome using 
fitness function. 

 GA3: Genetic operations –Select the parent and apply 
genetic operators on them to produce new 
chromosomes (offspring).  

 GA4: Repeat steps GA2 and GA3 until termination 
condition reached. 

From the above steps, we can see that genetic algorithms 

utilize the concept of survival of the fittest; passing “good” 

chromosomes to the next generation, and combining different 

strings to explore new search points. 

B. Initial Population (Structure of the Chromosome) 

Designing of chromosome structure is crucial for devising 

Genetic Algorithm.  

We define our chromosome structure as a combination of 

two strings SQ and SP, whose length equal to the number of 

tasks. SQ (scheduling queue) maintains precedence 

constraints between tasks, and an entry in SQ represents a 

task to be scheduled. An entry in SP (scheduling processor) 

represents the processor the corresponding task is scheduled 
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onto. 

 The details to generate a chromosome can be seen in 

following steps: 

 IP1: Select randomly a task from the entire entry tasks. 
Set this task as the first task in SQ. 

 IP2: Repeat step IP3 for (v-1) times. 

 IP3: Randomly select a task who is not in SQ and 
whose predecessors all have been in SQ, and add this 
task to SQ. 

 IP4: For SP part, randomly generate an integer 
number between 1 and m for each task in SQ and add 
it to SP. 

C. Evaluation and Selection: Roulette Wheel Mechanism  

The fitness function in genetic algorithms is typically the 

objective function that we want to optimize in the problem. It 

is used to evaluate the chromosomes. For calculating the 

fitness values and in order to select good chromosomes, we 

define the fitness function as: 

F (i) = (maxFT-FT (i) +1/ (maxFT-minFT+1)           (1) 

where: maxFT and minFT is the maximum and minimum 

finishing time of chromosomes in current generation, 

respectively. FT(i) is the finishing time of the ith 

chromosome.  

Once the fitness values of all the chromosomes have been 

evaluated, we can select the higher fitness value 

chromosomes using the roulette wheel mechanism. We have 

implemented a roulette wheel mechanism where each 

chromosome in the population occupies a slot size 

proportional to its fitness value. Random numbers are 

generated and used as an index into the roulette wheel to 

determine which chromosome will be passed to the next 

generation. Because chromosomes with higher fitness value 

will have larger slots, they are more likely to be selected and 

passed to the next generation. 

D. Reproduction: Crossover and Mutation  

Crossover 

Crossover is a mechanism that produces new offspring that 

have some parts of both parent's genetic material. The 

simplest type of crossover is single-point crossover. 

Multipoint crossover uses m randomly chosen crossover 

positions. Bits between successive crossover points are 

exchanged producing two new offspring.  

As our chromosome comprises two separate parts SP and 

SQ having different characteristics, for each part we employ 

different crossover policies. We randomly select one or the 

second part and apply two different crossover operators for 

these two parts.  

Details about crossover are given in following steps: 

 CR1: Input the Crossover probability Pc. 

 CR2: Randomly select pairs of chromosomes and 
generate a float number (FLC) between 0 and 1 for 
each pair.  

 CR3: If FLC <= Pc, then repeat step CR4 to step CR5 
Else directly reproduce those two chromosomes to the 
next generation. 

 CR4: Randomly generate two crossover points, p and 
q, between 1 and v and crossover flag CF between 0 
and 1. 

 CR5: If CF=0 then rearrange the order of tasks in SQ 
between p and q of one chromosome according to the 
order of tasks of another chromosome, the rest of the 
two chromosomes are remained. Else exchange the 
part in SP between p and q of two chromosomes and 
the rest of the two chromosomes are remained. 

Mutation 

Mutation is a genetic operator that alters one or more gene 

values in a chromosome from its initial state. This can result 

in entirely new chromosomes being added to the population. 

With these new chromosomes, the genetic algorithm may be 

able to achieve a better solution than was previously possible. 

Mutation can be considered as a random alternation of the 

individual.  

We employ two policies to mute the chromosome as given 

in following steps: 

 MT1: Input the Mutation probability Pm. 

 MT2: For each chromosome, generate a float number 
(FLM) between 0 and 1. 

 MT3: If FLM <= Pm, then repeat step MT4 to step 
MT5 Else directly reproduce this chromosome to the 
next generation. 

 MT4: Randomly generate a mutation point p between 
1 and v and mutation flag MF between 0 and 1. 

 MT5: If MF=0 then select randomly a location 
between location of the nearest immediate 
predecessor and that of successor of sqp. Then move 
sqp to this location. Else change randomly the 
processor of sqp between 1 and m as spp. 

 

V. EXPERIMENTS AND RESULTS 

In our work, we implemented two algorithms for solution 

of multiprocessor task scheduling problem. One is based on 

list scheduling heuristic HEFT and other is our proposed 

Genetic Algorithm. For performance evaluation of our 

algorithm we generated some problems of varying sizes and 

solved them by both the algorithms. Details of our 

experimental setup and results obtained by HEFT and 

proposed GA are as given below. 

A. Experimental Setup 

We have implemented a system to automatically generate 

the scheduling problems of required sizes. This we have done 

to avoid biasing in giving values of different parameters 

required for the problems. Our system fits random values to 

these parameters in appropriate ranges. We have generated 

problems for our experiments with the following 

characteristics: 

 Size of problem ranges from 25 to 65 with an interval 
of 5.  

 There is no limit on the number of successors of each 
task except the exit task which does not have any 
successor.  

 The execution time for each task is a random number 
between 5 and 25.  

 Number of processors varies from 4 to 8 according to 
the size of problems. 

As we did not put any restriction over the number of 

successor a task may have, task graph may be much 

complicated. So, the problems we have chosen may be 

considered difficult in comparison to the kind of problems we 
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normally see in literature, where a restriction on maximum 

number of successor tasks has been put.  

B. Results of HEFT 

The Heterogeneous-Earliest-Finish-Time (HEFT) 

Algorithm is a heuristic scheduling algorithm for a bounded 

number of heterogeneous processors, which has two major 

phases: a task prioritizing phase for computing the priorities 

of all tasks and a processor selection phase for selecting the 

tasks in the order of their priorities and scheduling each 

selected task on its “best” processor, which minimizes the 

task's finish time. 

We run HEFT procedure on ten different problems with 

Problem Identification Numbers (PIN) 0 to 9 for each 

problem size to note the length of the schedules obtained (see 

Table I). We then computed average schedule length for each 

problem size for comparison with corresponding results 

obtained from GA. 

TABLE I: RESUTS OF HEFT 

Size 

of 

Problem 
 

 

PIN (0-9) 
Average 

Schedule 

Length 0 1 2 3 4 5 6 7 8 9 

25 
11

6 

10

8 

14

5 

10

5 

10

7 

14

4 

14

1 

15

4 

14

8 

17

0 
133.8 

30 
15

8 

16

5 

17

0 

14

0 

17

0 

16

7 

17

6 

14

7 

16

1 

17

3 
162.7 

35 
16

1 

16

3 

16

2 

19

3 

13

9 

17

6 

14

0 

17

7 

19

2 

19

7 
170 

40 
20

3 

18

3 

15

4 

18

0 

20

2 

20

8 

17

4 

18

4 

16

2 

21

1 
186.1 

45 
21

7 

18

4 

19

3 

18

6 

22

9 

17

9 

17

1 

21

6 

25

6 

21

7 
204.8 

50 
19

2 

22

0 

18

6 

24

1 

23

6 

20

1 

20

3 

24

9 

21

8 

21

6 
216.2 

55 
23

3 

22

0 

21

6 

24

0 

22

9 

24

3 

24

0 

23

5 

21

9 

23

7 
231.2 

60 
25

2 

26

0 

25

9 

26

6 

24

4 

21

9 

26

4 

26

0 

24

7 

25

2 
252.3 

65 
27

7 

29

4 

25

0 

25

5 

27

5 

26

0 

28

2 

28

4 

27

2 

24

5 
269.4 

TABLE II: RESULTS OF GA 

Size 

of 

Problem 
 

 

PIN (0-9) 
Average 

Schedule 

Length 0 1 2 3 4 5 6 7 8 9 

25 
11

6 

10

8 

14

5 

10

4 

10

7 

14

3 

14

1 

15

4 

14

8 

17

0 
133.6 

30 
15

8 

16

5 

17

0 

14

0 

17

0 

16

4 

17

6 

14

7 

15

9 

17

3 
162.2 

35 
16

0 

16

3 

16

2 

19

3 

13

9 

17

6 

14

0 

17

7 

19

1 

19

7 
169.8 

40 
20

2 

18

0 

15

4 

17

7 

20

2 

20

8 

17

4 

18

3 

15

9 

21

0 
184.9 

45 
21

7 

18

0 

19

1 

18

6 

22

9 

17

9 

17

1 

21

6 

25

6 

21

6 
204.1 

50 
19

2 

22

0 

18

6 

24

1 

23

6 

20

1 

20

3 

24

9 

21

7 

21

6 
216.1 

55 
23

3 

22

0 

21

5 

23

9 

23

0 

24

3 

24

0 

23

5 

21

9 

23

7 
231.1 

60 
25

2 

25

9 

25

6 

26

6 

24

6 

22

0 

26

4 

26

0 

24

7 

25

2 
252.2 

65 
27

7 

29

4 

24

9 

25

3 

27

3 

26

1 

28

1 

28

4 

27

1 

24

4 
268.7 

TABLE III: COMPARISON OF HEFT AND GA 

No. of tasks No. of processors Avg.  schedule length (HEFT) 
Avg. schedule length 

(GA) 

25 4 133.8 133.6 

30 4 162.7 162.2 

35 5 170 169.8 

40 5 186.1 184.9 

45 6 204.8 204.1 

50 6 216.2 216.1 

55 7 231.2 231.1 

60 7 252.3 252.2 

65 8 269.4 268.7 
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A. Results of GA

The proposed genetic algorithm was implemented and 

evaluated on the same set of problems we used to evaluate 

HEFT. Results obtained are shown in Table II.  We set 

parameters for our Genetic Algorithm as:

 Population Size=25, 

 Maximum Generations= 5000, 

 Crossover Probability= .6 

 Mutation Probability =.2

B. Comparison of HEFT and GA

Results obtained from our experiments are analyzed for 

following factors:

Quality of solution: Comparison of average schedule 

length of the GA and HEFT is given in Table III and in Fig. 3. 

Results demonstrate that our proposed Genetic Algorithm is 

able to compete with heuristic based algorithms as far as 

quality of solution is concerned. As heuristics are biased 

towards certain characteristics of solution so they tend to 

search solution only in a small part of whole search space. It 

is also possible that they never explore a particular region of 

search space. Thus for some problems heuristics may give 

bad results also if they are not chosen carefully.

HEFT vs GA
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Fig. 4. Problem Size vs avg. schedule length for problem size 45

On the other hand GA is a more powerful method as it 

searches simultaneously in many parts of search space. 

Because of mutation operator, change in region being 

searched, gives potential to GA to search in any part of the 

search space. Thus it is more likely to find a better or best 

solution.

Robustness and gurantee for good solution: During our 

experiments on GA we noted Average schedule lengths of 

populations emerging generations after generation (see Fig. 

4).Though we have shown results only for problem size 45 in 

Fig. 4, for each problem irrespective of its size we observe 

that average schedule length is continuously decreasing as 

more and more generations are evolving. This shows that 

Genetic Algorithm is robust and ultimately it will give us a 

good quality solution as quality of solution set is 

continuously improved. It also reveals that more generations 

we evolve; it is likely to have better quality in solution.

Effect of mutation probability on the performance of GA: 

As mutation is the key to change the region of search space, 

mutation probability may have dominating role in finding 

solutions of good quality. Thus, we repeated our experiments 

by fixing crossover probability and changing mutation 

probabilities from 0.05 to .40 and noted average schedule 

lengths. We done our experiments on the problem having 

size 65. we can observe the similar trend in the problems of 

all sizes. Fig. 5 shows the further average of results, mixing 

the effect of all crossover probabilities which clearly shows 

that up till mutation probability is .20, increase in mutation 

probability leading to better results. After .20 results are 

fluctuating in a small range but normally are not better than 

that we obtained for .20. So, we have found best mutation 

probability for our set of problems as .20.

Effect of mutation probability on Avg.schedule 
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Fig. 5. Effect of mutation probability on avg. schedule length

VI. CONCLUSION

We have constructed a system which automatically 

generates the problems of required sizes and also fits values 

to the parameters. During the experiments with these 

problems we have seen that for 28.8% problems GA gives 

lower schedule length, for 4.44% problems GA gives slightly 

higher schedule length while for 66.67% problems GA gives 

equal schedule length in comparison with HEFT. 

We analyzed performance of our algorithm for robustness. 

We have seen that in GA, Average Schedule Length 

continuously decreases as the number of generation increases. 

This shows that genetic algorithm is robust and gives 

guarantee for good results. 

Lastly, we analyzed effect of mutation probability on the 

performance of GA. We found that mutation is an escape 

mechanism to avoid premature convergence. Mutation can be 

considered as an occasional (with small probability) random 

alternation of the value of a string. For our problem set, we 

found best mutation probability as .20.
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