
  

 

Abstract—An algorithm is proposed that allows to estimate 

the self-similarity parameter of a fractal k-dimensional 

stochastic process. Our technique greatly improves the 

processing times of a distribution-based estimator, that – 

introduced years ago – efficiently worked only in the 

one-dimensional distribution case. 

 
Index Terms—Algorithm, estimator, fractional Brownian 

motion, self-similar processes.  

 

I. INTRODUCTION 

A distinctive feature of fractals, both deterministic and 

stochastic, is self-similarity, that is the property they display 

to be at some degree scale invariant under proper 

renormalization. This notion is often used to describe the 

behaviour of many phenomena, such as e.g. complex 

networks [1], internet applications [2]-[5] turbulence [6], 

geophysical record [7], [8], economics and finance [9]-[12], 

biology [13], image, object detection  and video filtering [14], 

optics [15].  

The number of fields in which self-similarity is claimed to 

occur has motivated many contributions on the estimation 

problem (see, e.g., [16], [17] for a survey). Whereas the 

notion of (strong) self-similarity is given in terms of the 

process finite-dimensional distributions, the estimators are 

generally based on the scaling of specific moments (for 

example, absolute moments or second-order moments) and 

this dichotomy can originate controversial results. A different 

approach was suggested by [18], who defined a proper metric 

on the space of the k-dimensional distributions of the process 

and provided some necessary conditions of self-similarity. 

The method was applied only in the one-dimensional case 

and for quite short sequences, for which the computer 

processing times are acceptable. When the general 

k-dimensional case is taken into consideration, the time 

required grows as a power law with the length of the 

sequences, making very difficult any application. The 

purpose of this work is to implement the method through an 

efficient algorithm able to pull down the processing times in a 

significant way. The remainder of this paper is organized as 

follows: Section II recalls the basic definitions of self-similar 

processes and summarizes the main results of the estimator. 

In Section III the revised algorithm is illustrated and some 

examples are provided. Finally, Section IV concludes. 
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II. ESTIMATION OF THE SELF-SIMILARITY PARAMETER 

The very first starting point is the definition of (statistical) 

self-similarity. From the pioneering contribution by [19], the 

notion of self-similarity has been differently formulated in 

literature. A recent reference work in this field is [20]. 

Definition 1. The real-valued, continuous time stochastic 

process {X(t), tT} is self-similar with index H0 > 0 (shortly, 

H0-ss) if, for any a   and integer k such that t1,…,tkT, 

the equality 
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holds for its finite-dimensional distributions. 

Definition 2. The second-order stationary, real-valued 

stochastic process X(t) is H0-second order self-similar if – 

denoted by ( ,  )  ( ) ( ) Y t a X t a X t    it’s a lagged 
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( 1) 1

( , ) ( ,1),
tm

t m

Y t m m Y





  

   m, t{1,2,…} 

the averaged (over blocks of length m) sequence – it holds 

   02( 1)
( , ) ( ,1)

H
Var Y t m m Var Y t

                  (2) 

The process is also said H0-second order asymptotically 

self-similar if, for k{1,2,…} 
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as m diverges.

Example. A reference process in self-similarity is the 

fractional Brownian motion (fBm). Originally defined in a 

seminal paper by [21], the one-dimensional fBm (in notation, 

BH(t)) is the only centered Gaussian, H-sssi stochastic 

process with autocovariance function
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where K2 = Var(BH(1)) and ,t s
 . From (3) it readily 

follows that
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 H-sssi stands for H-self similar with stationary increments.
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where 
iHB  (i = 1,…, k) are k independent copies of the 

(one-dimensional) fBm with the same self-similarity 

parameter H[0,1], is named k-dimensional fBm. Although 

more general definitions for the k-dimensional fBm can be 

found in literature, we will restrict our simulations to the case 

when the self-similarity parameter is the same along all the 

directions; obviously, the algorithm continues working even 

in the general case 
i jH H for i j . The parameter H 

affects the smoothness of the process, as shown in the 

examples provided – for the 2-dimensional case – by Figures 

1-3. 

 

Fig. 1. Surrogated fBm with parameter H = 0.25. 

 

Fig. 2. Surrogated fBm with parameter H = 0.50. 

 

Fig. 3. Surrogated fBm with parameter H = 0.75. 

The process displays smoother and smoother surfaces as H 

grows. The value H = ½ recovers the Brownian motion as a 

special case. 

Denoted by ( )E   the expected value, it is easy to check 

that equality (1) implies 

   0( ) (1)
q qH q

E X t t E X                        (4) 

which justifies the fact that self-similarity is often tested 

through the scaling behaviour of the process sample 

moments. 

Nonetheless, several problems arise with this approach: (a) 

as relation (4) does not imply relation (3), the (4)-based 

conclusions can be questionable; (b) generally, relation (4) is 

studied only for particular values of q (1 or 2 are the most 

frequent cases), what leads to infer weak forms of 

self-similarity (e.g., second-order or asymptotical 

self-similarity). 

In order to bypass these problems and test the condition of 

self-similarity in its larger meaning (that is Definition 1), [18] 

suggests a different method which takes into account the 

whole process distribution. 

The method is shortly summarized in the followings. 

Let A  be any bounded set of 
+R  and let min( )a= A  

and max( )A= A . For any a A , the set {X(at)} of the 

a-lagged rescaled process is considered. Denoted by   the 

k-dimensional distribution of X and setting 

   1 2( ), ( ),..., ( )kX a X at X at X at , equality (1) becomes 
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When  X(t) is H0-self-similar, one has 
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Therefore, denoted by    ( )
,   HH a x a

a x    x A  the 

set of the (absolutely continuous) k-dimensional probability 

distribution functions of   ( )H
a X at

, one can define as 

distance function  the one induced by the sup-norm   


  

and assume as measure of the discrepancy among the 

rescaled distributions the diameter   of the metric space 

 ,H  . Namely: 
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For the diameter, in [18] the following three propositions 

are proved. 

Proposition 1. {X(t), tT} is H0-ss if and only if, for any 
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bounded  R +A  and any integer k,  
0

0k

H   . 

Proposition 2.  Let {X(t), tT} be H0-ss, A a  and 

0X   ( 0x  ). Then  k

H   is non-increasing for H  

H0 and non-decreasing for H  H0. 

Proposition 3. Let {X(t), tT} be H0-ss, 0x   ( 0x  ) and 

let  
1,..,i niA  be a sequence of sets such that 

p qa a  and 

p qA A  for p q . Then, with respect to the sequence 

 iA , the diameter  k

H   is: (i) non-decreasing if H  H0; 

(ii) an identically zero function if H = H0. 

Proposition 1 basically states the uniqueness of the 

self-similarity parameter in terms of the diameter  k

H  . 

Proposition 2 provides a necessary condition of 

self-similarity, requiring the diameter to be a monotone 

function of H (non increasing for H  H0 and non decreasing 

for H  H0). Finally, Proposition 3 states that the diameter is 

monotone also with respect to an increasing sequence of lags. 

Exploiting the three propositions, one can test for 

self-similarity simply by estimating the minimum of the 

function with respect to H, once a minimal and a maximal lag 

have been fixed. Further propositions are deduced in order to 

assess the statistical significance of 
k  by the well-known 

Kolmogorov-Smirnov test, but here we just want to focus on 

the estimation of 0 arg min k

H

H  . 

Fig. 4 displays an application of the measure (6) to a 

one-dimensional fractional Brownian motion simulated with 

parameter H0 = 0.6 and setting 1a  and  2,..., 20A . As 

stated by Proposition 3, when H  H0, the diameter increases 

with  both H  H0 and A . 

 

III. THE ALGORITHM 

 

 

 

 

 

 

 
 

 

a) Calculate the increment process of lag a  

b) For each lag in a a A   and for each H]0, 

1[ calculate: 

b.1) The distance  ,a H  between the empirical 

cumulative distribution of lag a and a  

b.2)  0
ˆ ( ) arg min ,

H

H a a H  

c) Estimate the self-similar parameter 
0Ĥ  averaging on 

a the values 
0

ˆ ( )H a ; 

3) Repeat step 1) for each dimension. 

Applying the algorithm to the three surrogated fBm’s of 

Figures 1-3, one gets the surfaces of Figures 5-7. Notice that 

the global minimum corresponds to the values of H0 used to 

simulated the series. 

The main problem of the above algorithm resides in the 

processing times required for analysing the non trivial case of 

k > 1 dimensions. 

In order to speed up the estimation procedure, we 

improved the algorithm as follows. 

Improved algorithm. 

4) Fix a dimension of B. 

5) For every path: 

a) Calculate the increment process of lag 1 

b) For lags a  and A  and for each H]0, 1[ calculate: 

b.1) The distances ,( )a H  and ( , )A H  between 

The empirical cumulative distribution of lag 1 

and, respectively, lags a  and A ; 

b.2)    0 0
ˆ ˆ( ) arg min , ( ) arg min ,, 

H H

H a a H H A A H   ; 

c) Denoted by 0 0
ˆ ˆmin{ ( ),  ( )}mH H a H A  and 

0 0
ˆ ˆmax{ ( ),  ( )}MH H a H A ,  fix 0 and 

consider the interval  ,  m MI H H    ; 

6) For each lag in a a A   and for each HI calculate: 

b.1) The distance  ,a H  between the empirical 

cumulative distribution of lag a and a  

b.2)  0
ˆ ( ) arg min ,

H

H a a H  

7) Estimate the self-similar parameter 
0Ĥ  averaging on a 

the values 
0

ˆ ( )H a ; 

8) Repeat step 1) for each dimension. 

 

Fig. 5. Self-similarity parameter estimation (H=0.25). 
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Generally, once a k-dimensional fBm B has been 

simulated, the method above described can be implemented 

as follows

Fig. 4. Self-similarity parameter estimation.

Algorithm

1) Fix a dimension of B.

2) For every path:

 The simulations were obtained by FracLab® using the improved Wood 

and Chan algorithm [21].



  

 

Fig. 6. Self-similarity parameter estimation (H=0.50). 

 

Fig. 7. Self-similarity parameter estimation (H=0.75). 

The above algorithm is very simple. It is composed by a 

pre-estimation (step 2) and an estimation (steps 3-4). The 

pre-estimation basically restricts to the set I the candidate 

self-similarity parameters H’s for which the test is run. As the 

maximal variation in terms of the diameter (but also in terms 

of the corresponding abscissae, due to numerical 

approximations) occurs in correspondence of the extremal 

lags, we first calculate the diameter for the minimal and the 

maximal lags. The points of minimum serve to define the set I, 

which is generally smaller than the whole domain [0, 1]. This 

significantly reduces the processing times, as shown in Table 

1 and Figure 8, which reproduce the times in seconds 

required by the two algorithms for different sample sizes. 

Clearly, the time needed – independent on H – strongly 

depends on the set A . In our simulations we assumed as a 

rule of thumb  1,2,...,20A , which seems a good trade-off 

between the accuracy of the estimation and the processing 

time. The tolerance parameter   was set to 0.1. 

TABLE I: TIME CONSUMPTION (IN SECONDS). 

Process length Not improved Improved Ratio 

256 1,793 315 17.57% 

512 4,346 820 18.87% 

1024 12,951 2183 16.86% 

2048 38,271 6879 17.97% 

The calculations were perfomed in MatLab environment 

(MatLab 7.9.0.529 r.2009b) on a HP Workstation XW6200 

with CPU Intel(R) XEON(TM) 3,40 GHz (two processors) 

and RAM 8.00 GB, with operating system environment 

Windows XP Professional 64 bit. 

 

IV. CONCLUSION 

An algorithm is presented that significantly improves the 

estimation times for a self-similar process in the general case 

of k-dimension. Further work could to be carried out about 

the optimal (in a numerical sense) set A and the tolerance 

parameter .  

 

Fig. 8. Time consumption. 
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