



Abstract—Mutation testing is a fault-based testing technique

that can be used for testing software at unit level, integration

level and specification level. In addition to assessing the test

data adequacy, mutation testing has also been used to support

other testing activities such as test data generation, regression

testing etc. Several works has been done on automatic

generation of test data that can be effectively kill mutants.

Constraint-based test data generation (CBT) is one of the

automatic test data generation techniques using mutation

testing, however, existing approaches of test case generation

generally generate test data by killing one mutant at one time.

Thus, more test cases are needed for achieving a given mutation

score. In this paper, an approach is proposed by filtering the

test data according to necessity condition and reachability

condition by killing multiple mutants, mutated at the different

location at one time and filtered test data also achieved same or

approximate same mutation score. In proposed approach, some

test data is filtered out of large test data that is sufficient to kill

multiple mutants, located at different location. So this approach

reduces the testing cost and time.

Index Terms—Constraint-based testing, Mutation testing,

mutation operator.

I. INTRODUCTION

Software testing is a technique for software quality

assurance. It is a time consuming process and accounts for

about 50% of the cost of software development [1],[2]. An

important problem of software testing is how to generate the

effective test data. If the problem of automatic test data

generation can be well solved, then the cost of software

testing can be significantly reduced. Mutation testing is based

on mutation analysis. Mutation testing is a fault-based testing

technique which is originally introduced by Hamlet [3] and

DeMillo et al. [4] for assessing the effectiveness of test suites

in unit testing. Mutation testing is a method of software

testing, which involves small syntactic change in programs

source code [5]. These syntactic changed programs are called

mutant programs which are created by replacing well-defined

mutation operators. Mutation testing is a powerful testing

technique for achieving correct or closes to correct program.

Mutation testing is based on three fundamental assumptions,

One is known as competent programmer hypothesis (CPH)

or the competent programmer assumption and second is

known as coupling effect [4]. Third assumption is the

Manuscript received September 10, 2012; revised November 21, 2012.

Nagendra Pratap Singh is with the Computer Science and Engineering

Department at NVPEMI, Kanpur, India (e-mail:

nagendrasngh447@gmail.com).

Rishi Mishra is with the I. T. Manager in United Bank of India, Lucknow,

India (e-mail: rishi.msr@gmail.com).

presence of an oracle for classifying the output of a test

execution as correct or not.

The competent programmer hypothesis was introduced by

DeMillo et al. [4]. It says that programmers create a correct

version of program. But it may be possible that there may be

faults in the program delivered by a competent programmer,

we assume that these faults are merely small simple faults

which can be corrected by small syntactical changes.

Therefore, in Mutation Testing, faults constructed from

several simple syntactical changes are applied, which

represent the faults that are made by competent programmers.

An example of the CPH can be found in Acree et al., s work

[6] and a theoretical discussion can be found in Budd et al., s

work [7].

The Coupling Effect was also introduced by DeMillo et al.,

[7]. While the CPH concern with a programmers behavior,

the Coupling Effect is observed empirically. DeMillo et al.,

states that Test data that distinguishes all programs differing

from a correct one by only simple errors is so sensitive that it

also implicitly distinguishes more complex errors. Offutt [8],

[9] extended the Mutation Coupling Effect Hypothesis with a

precise definition of simple and complex faults. According to

this definition, a simple fault is represented by a mutant that

is created by making a single syntactical change, while a

complex fault is represented as a mutant that is created by

making more than one change. Offutt says the coupling effect

hypothesis is complex faults are coupled to simple faults in

such a way that a test data set that detects all simple faults in a

program will detect a high percentage of the complex faults

or says If a test suite kills a mutant, it also kills mutants of

mutant [9]. Third assumption is presence of an oracle for

classifying the output of a test execution as correct or not the

implementation of oracle is itself a complex problem and

beyond the scope of our work.

In mutation testing, for an original program (OP) a set of

faulty programs M called as mutants (mutant program) are

generated by replacing some syntax to the original program

OP. In a Table-1 and 2 shows OP and its all mutant programs

M1, M2, M3, M4, M5 that are generated by replacing the

relational operator (>) by the operators <,<=,>=,==,

respectively. A rule that generates a mutant from the original

program is known as a mutation operator shown in Table

land 2, we use ROR operator. There are many other operators

that can be used. Typical mutation operators are designed to

change the variables and expressions by replacement,

insertion or deletion operators. These typical mutation

operators were implemented in the Mothra mutation system

[10].

An Approach to Filter the Test Data for Killing Multiple

Mutants in Different Locations

Nagendra Pratap Singh, Rishi Mishra, Sailesh Tiwari, and A. K. Misra

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

253DOI: 10.7763/IJCTE.2013.V5.688

mailto:rishi.msr@gmail.com

TABLE I

OP M1 M2

int big(a, c)

{

 if(a>c)

printf(“big=a”); else

printf(“big=c”); }

int big(a, c)

 {

if(a<c)

printf(“big=a”); else

printf(“big=c”); }

int big(a, c)

{

if(a<=c)

printf(“big=a”;else

printf(“big=c”;}

TABLE II

M3 M4 M5

int big(a, c)

{

 if(a>=c)

printf(“big=a”):

else printf(“big=c”);

}

int big(a, c)

 {

 if(a=c)

printf(“big=a”); else

printf(“big=c”);

}

int big(a, c)

{

 if(a c)

printf(“big=a”;else

printf(“big=c”);}

After generating the mutants, all generated test data is

applied on original program (OP) and as well as on created

mutants that distinguish mutants from the original program.

Intuitively, a test data that kill more mutants prove its

effectiveness on others. Specifically, the ratio of killed

mutants to the nonequivalent mutants is used as the mutation

adequacy score to indicate test suite quality in mutation

testing.

Although, mutation testing is an effective means to find the

effectiveness of test suites. Generating the test data that can

achieve a satisfactory mutation adequacy score can be very

labor-intensive [11]. For this problem, several approaches

have been proposed in the literature. The Constraint-based

testing (CBT) technique was developed by DeMillo and

Offutt [12]. They used symbolic evaluation, control-flow

analysis, and information of mutants for generating test data

automatically. Test data generated by CBT can kill more than

90% of the mutants for most programs [13]. There was a

problem in CBT approach to handling the nested expressions,

arrays and loops. Another approach is proposed by Offutt and

Jin for test data generation, known as Dynamic Domain

Reduction (DDR) [14].This approach applies some

limitations in CBT approach. So we can say that DDR

approach is better than CBT approach but both approaches

generates test data by solving one mutants necessity

condition and reach ability conditions [15], [16]. According

to the paper [15], [16] the number of possible mutants is

proportional to the product of the number of data references

and the number of data objects. Which indicates one test

data is generated according to one mutant, that means if there

are N number of mutants then N number of test data are

required to killing the mutants which become a big burden.

So another novel approach is proposed by Ming-Hao Liu etal.

[17] that generate test data for killing a multiple mutants

that are placed in same location. This approach generates

one test data according to multiple mutants that are mutated

at the same location at one time. Thus this approach can

generate smaller test suite that can achieve the same mutation

testing score. The experimental results of this approach show

that it is more cost-effective.

Our proposed approach is the extension of [17]. In this

approach, generated test data is filtered by killing a multiple

mutants that are placed in different location. This approach

generates one test data according to multiple mutants that

are mutated at the different location at one time. Thus, this

approach can generate smaller test suite that can achieve the

same mutation score. Thus, the cost of testing is reduced.

II. BACKGROUND DETAILS

According to the paper [12], [13], [15], [17] the test data to

kill a mutant must be satisfied three conditions known as

reachability condition, necessity condition, sufficiency

condition. Lets OP is original program, M is mutent of OP on

aparticuler statement S and test data for OP is T then three

conditions is defined as follows:-

A. Reachability Condition

The test data T must be reach to statement S because S

is replaced by mutant. Mutant is a syntactic change to an

executable statement, and the other statements in the

mutated program are syntactically equal to the statements

in the original program. If T cannot be reached to S then it is

guaranteed that T will never kill the M.

1- int a, b, c;

2- if(a>b) Reachability Condition

 {

3- if(a>c) Mutants are:- (a>=c), (a<c),

 (a<=c), (a==c), & (ac)

4- printf(“a is largest”);

5- else

6- printf(“c is largest”);

 }

7- else

 {

8- if(c>b)

9- printf(“c is largest”);

10- else

11- printf(“b is largest”);

 }

 }

Fig. 1. For example a program show in figure-1, if we replace.

Statement (a>c) of line number 3 by mutant operator ROR

as shown in table 1 and 2 then the reachability condition of

this S is (a>b) which is shown in line number 2. That means

if T not satisfy the reachability condition then mutant cannot

be executed.

B. Necessity Condition

A generated test case that kills mutants needs to have

this characteristic: it must differentiate the mutants behavior

that is, why the mutant is represented by a single change to

t the original program, the execution state of the mutant

program must differ from that of the original program after

some execution of the mutated statement. This characteristic

is known as the necessary condition.

Given a program OP anda mutant program M by

changing a statement S in OP, for a test data T to kill M,

it is necessary that the state of M immediately following

some execution of S be different from the state of OP at the

same location [12]. According to paper [17] necessity

condition for killing the mutants (same location) of the

program shown in the Fig. 1. is calculated as:-

Necessity condition for (a>c)

(a>c) ≠ (a>=c)

(a>c) ≠ (a<c)

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

254

(a>c) ≠ (a<=c)

(a>c) ≠ (a==c)

(a>c) ≠ (a≠c)

Then combined these five we get

{(a>c) ≠ (a>=c)}&&{(a>c) ≠ (a<c)}

&&{(a>c) ≠ (a<=c)} &&{(a>c) ≠ (a==c)}

&&{(a>c) ≠ (a≠c)}

which is equivalent to

(a<c) && (a == c) (1)

C. Sufficiency Condition

The necessity condition never guaranteed that to be

suf-ficient to kill the mutant. For a test case to kill a mutant, it

must create different output,in which case the final state of

the mutant program differs from the original program.

Although filtering the test cases that meet this sufficiency

condition is certainly desirable, it is impractical in practice

[13].

There are some approaches [14], [17] that utilize the

reachability conditions and the necessity condition to

generate test data that does not guarantee to kill all

mutants, but can kill most of the mutants [13].

III. OUR APPROACH

The proposed approach in paper [17], Ming-Hao Liu et al.

says one test data are required to kill multiple mutants that are

mutated in same location at one time. Thus this approach

generate small test suite that achieve same test adequacy

score (mutation score). But in our approach generate small

test suite that achieve same test adequacy score and each test

data of a test suite is able to killed multiple mutants that are

mutated in different location at one time.

In Fig. 1. the all mutants of statement (a>c) is known as

same location mutants because they have same reachable

condition.

The all mutants of the statement (a>c) and (c>b) is known

as different location mutants because they have inside the

same conditional statement which is responsible to find out

the reachable condition of both statements. Although if two

mutated statements are inside different conditional statement

that is also known as different location mutants.

There are some assumptions in proposed approach, first

the mutants that are located in different location having same

reachability conditions and the necessity conditions are

similar in structure. Second the combined necessity

conditions of different locations mutant in one condition

that is also combined with shared reachability condition

which is known as Final Filtering Condition (FFC). Third

assumption is the conditional statements that lead test case

to reach the inner block of code containing mutants are

used to provide the reachability condition. The main aim of

proposed approach is to replace the mutants on different

location by using one mutation operator known as Relation

Operator Replacement (ROR). ROR mutation operator can

produce more than one mutant on the particular location (see

Fig.1).Our approach follows the following four steps:-

1) Find the reachability condition of mutants that are

located in different locations.

2) Find the necessity condition of each different location

mutants.

3) Combining necessity condition of each different location

mutants with shared reachability condition (if exist) by

using conjuction (&&) operator and generate Final

Filtering Condition (FFC) for each different locations.

4) Generate reduced test data by using FFCs.

Proposed approach generates FFC condition that filter the

already generated test data. The generated test data before

filtering is able to kill the multiple mutants in same location

with some adequacy score but the filtered test data is also

able to kill multiple mutants in same location as well as

different location with the same adequacy score as compared

to that before filtering. The step-by-step implementation of

proposed approach (by using the program shows in Fig. 1) is

as follows:-

A. Step-1

Out of three relational expressions in program (figure-1)

the expression (a>b) is a reachability condition for other two

relational expressions (a>c) and (c>b) because both

expression (a>c) and (c>b) depends on the expression (a>b).

That means if condition (a>b) is true then expression (a>c),

otherwise expression (c>b) is executed.

B. Step-2

The Necessity condition for location-1(line number-3) is

shows in equation (1) similarly the Necessity condition for

location-2 (line number-8) is

(c < b) && (c == b) (2)

C. Step-3

In this step the necessity condition of location-1 which

shows in equation (1) is combined with their reachability

condition (a>b) by using conjuction operator.

(a>b) &&[(a < c) && (a == c)]

[(a>b) && (a < c)] && [(a>b) && (a == c)]

 [(b<a< c)]&&[((a == c) > b)] (3)

Similarly the necessity condition of second location which

shows in equation (2) is combined with their reachability

condition (a<=b) by using conjuction operator.

(a<=b) && (c < b) && (c == b)

[(a<=b) && (c < b)] && [(a<=b) && (a == c)]

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

255

Table I and Table II shows original program OP and its

all mutant programs M1, M2, M3, M4, M5 that is generated

by replacing the retional operator (>) by the operators

<,<=,>=,==,≠ respectively. Program in Fig. 1containing three

relational operators (a>b) (a>c) and (c>b), each one of

these three relational operators is replaced by any one of

other relational operators like <, <=, >=, ==, ≠, so there are

total fifteen mutants are generated.

[((a,c)<b)║((a== b)>c)] && [((a<(b==c)) ║ (a==b==c)]

[((a; c) < b) ║ ((a == b) > c)]

&&[((a < (b == c)) ║ (a == b == c)] (4)

According to figure-1 line no. 2 (reachablity condition of

line no.3 and line no.8) is also replaced by five mutants using

ROR mutation operator. In line no. 2 (a>b) is not depends on

any branch predicate so there are no any reachability

condition to kill all five mutants. Hence the necessity

condition for (a>b) is show in equation 5.

(a < b) && (a == b) (5)

D. Step-4

Thus the combination of FFCs (Eqn-3, 4, 5) is used

to Generate a filtered test data that is used to kill

mutants.

IV. EXPERIMENTAL RESULT

Let us take an example of program shown in Fig. 1 that

can find the largest integer from the given three integers as

inputs.The following test caseare generated to test the

Program shown in Fig. 1.

T1:-All three integers are different.

T2:-Any two integers are same.

T3:-All integers are same.

Assume that the value of a,b,c are 5,4,6 respectively then

all possible test data in each test case is shown in TABLE-III.

TABLE III

Test Case Test Data

T1 t11=(5,4,6), t12= (5,6,4) , t13= (6,5,4),

 t14= (6,4,5), t15= (4,5,6), t16= (4,6,5)

T2 t21=(5,5,4), t22=(5,4,5), t23=(4,5,5),

 t24=(5,5,6), t25=(5,6,5), t26=(6,5,5),

 t27=(4,4,6), t28=(4,6,4), t29=(6,4,4)

 t210=(4,4,5), t211=(4,5,4), t212=(5,4,4)

 t213=(6,6,4), t214=(6,4,6), t215=(4,6,6)

 t216=(6,6,5), t217=(6,5,6), t218=(5,6,6)

T3 t31=(5,5,5), t32=(6,6,6), t33=(4,4,4)

Let us select 15 test data out of 27 test data randomly

which is t11, t12, t13, t14,t15, t16, t24, t25, t26, t31, t213, t214,

t27, t28, t29 and using these test data find the out put of the

actual program and their mutant programs which is shown in

TABLE IV.

Again by using our approach, filter the previesly selected

15 Test data by using Eqn-3,4,5. Test data t11 and t 214 satisfy

the Eqn-3. Combination of two test data, one test data from t12,

t16, t25, t28, t213 and second test data t31 satisfied the Eqn-4.

Our approach select any one combination of two test data

out of six possible combination because all six possible

combination is able to kill the same number of mutant,

TABLE-V shows the results of two combinations (t12,t31)

and (t28,t31) out of six possible combinations.

Test data that satisfy the Eqn-5, is also satisfy the Eqn-4.

So our approach select only 4 test data t11, t31, t214, t28,and

out of 15 test data after filtering. The output of the actual

program and their mutant program is shown in TABLE VI.

TABLE IV

T.D. OP M1 M2 M3 M4 M5 M6 M

7

t11

t12

t13

t14

t15

t16

t24

t25

t26

t31

t213

t421

t27

t28

t29

c

b

a

a

c

b

c

b

a

b

b

c

c

b

a

c

b

a

a

c

b

c

b

a

b

b

a

c

b

a

a

b

c

c

c

b

c

b

c

b

b

c

c

b

c

a

b

c

c

c

b

c

b

c

b

b

a

c

b

c

c

b

c

c

c

b

c

b

c

b

b

a

c

b

c

a

b

a

a

c

b

c

b

a

b

b

c

c

b

a

c

b

a

a

c

b

c

b

a

c

b

c

c

b

a

c

c

a

a

b

c

b

c

a

b

c

c

b

c

a

M8 M9 M10 M11 M12 M13 M14 M15

c

c

a

a

b

c

b

c

a

c

c

c

b

c

a

c

b

a

a

b

b

b

b

a

c

b

c

b

b

a

c c

a

a

c

c

c

c

a

b

c

c

c

c

a

c

b

a

a

c

b

c

b

a

c

a

c

c

b

a

c

a

b

c

c

c

c

c

b

b

b

c

c

c

b

c

a

b

c

c

c

c

c

b

c

a

c

c

c

b

c

b

b

c

c

b

c

b

b

c

a

c

c

b

b

c

a

a

a

c

c

c

c

a

b

b

c

c

c

a

TABLE V

T.D. OP M1 M2 M3 M4 M5 M6 M7

t12

t31

b

b

b

b

b

b

b

b

b

b

b

b

b

c

c

b

M8 M9 M10 M11 M12 M13 M14 M15

c

c

b

c

c

b

b

c

a

b

a

c

a

c

a

b

T.D. OP M1 M2 M3 M4 M5 M6 M7

t28

t31

b

b

b

b

b

b

b

b

b

b

b

b

b

c

c

b

M8 M9 M10 M11 M12 M13 M14 M15

c

c

b

c

c b b

c

c

b

c

c

b

c

c

b

TABLE VI

T.D. OP M1 M2 M3 M4 M5 M6 M7

t11

t31

t214

t28

c

b

c

b

c

b

a

b

a

b

c

b

a

b

a

b

c

b

a

b

a

b

c

b

c

c

c

b

c

b

c

c

M8 M9 M10 M11 M12 M13 M14 M15

c

c

c

c

c

c

c

b

c

b

c

c

c

c

c

b

c

b

c

c

c

c

c

c

c

c

c

b

c

b

c

c

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

256

In traditional mutation testing approach one test data are

require to kill one mutant. So in this example there are 15 test

data are required to kill all 15 mutants but by in ourapproach

only four test data are able to kill all 15 mutants, so the testing

cost and time is reduced.

V. CONCLUSION AND FUTURE WORK

This paper presents a new approach for filtering the

generated test data and filtered test data can be used for

killing multiple mutants at different locations effectively.

The filtering of test data is based on the combination of

necessity condition with reachability condition (if exist). The

conjunction operator (&&) is used in combination of these

condition which generates Final Filtering Condition (FFC)

for each different location. Experimental results show that

proposed approach reduces the test data by filtering them.

Both necessity and reachability conditions are satisfied by

combination of Final Filtering Condition (FFC). The

generated test data before filtering is able to kill the multiple

mutants in same location with some adequacy score but the

filtered test data is also capable to kill multiple mutants in

same location as well as different location with the same

adequacy score as compared to that before filtering.

Proposed approach reduces the test data effectively by

filtering them so that less test data is used for killing the

multiple mutants. Therefore, less execution time is required

to kill the mutants which reduce the cost of mutation testing

activity and prove its efficacy over other approaches given in

literature. In future, proposed approach can be implemented

as tool to filter the generated test data or it can also be

integrated with the existing mutation testing tools such as Mu,

JUNIT etc.

REFERENCES

[6] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. S. Ward,

“Mutation analysis, Georgia institute of technology, Atlanta, Georgia,”

Technique Report GIT-ICS, vol. 79, no. 8, 1979.

[7] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward,

“Theoretical and empirical studies on using program mutation to test

the functional correctness of programs,” in Proceedings of the 7th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages(POPL80), Las Vegas, Nevada, pp. 220-233, 28-30 January

1980.

[8] A. J. Offutt, “The coupling effect: Fact or Fiction,” ACM SIGSOFT

Software Engineering Notes, vol. 14, no. 8, pp. 131140, December

1989.

[9] A. J. Offutt, “Investigations of the software testing coupling effect,”

ACM Transactions on Software Engineering and Methodology, vol. 1,

no. 1, pp. 520, January 1992.

[10] K. N. King and A. J. Offutt, “A fortran language system for mutation-

based software testing,” Software: Practice and Experience, vol. 21,

no. 7, pp. 685-718, October 1991.

[11] A. J. Offutt and R. H. Untch, “Mutation 2000: Uninting the

Orthogonal,” Mutation 2000: Mutation Testing in the Twentieth and

the Twenty First Centuries, San Jose, CA, pp. 45-55, October 2000.

[12] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data

generation,” IEEE Transactions on Software Engineering, vol. 17, pp.

900- 910, September 1991.

[13] R. A. DeMillo and A. J. Offutt, “Experimental results from an

automatic test case generator,” ACM Transactions on Software

Engineering Methodology, vol. 2, pp. 109-127, April 1993.

[14] A. J. Offutt, Z. Jin, and J. Pan, “The dynamic domain reduction

approach to test data generation,” Software Practice and Experience,

vol. 29, pp. 167-193, January 1999.

[15] A. J. Offutt and J. Pan, “Detecting equivalent mutants and the feasible

path problem,” in Proceedings of the 1996 Annual Conference on

Computer Assurance (COMPASS 96), (Gaithersburg MD), IEEE

Computer Society Press, pp. 224-236, June 1996.

[16] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing:

an empirical study,” Journal of Systems and Software, vol. 31, no. 3,

pp. 185-196, December 1995

[17] M. H. Liu, Y. F. Gao, J. H. Shan, J. H. Liu, L. Zhang, and J. S. Sun, “An

approach to test data generation for killing multiple mutants,” IEEE

International Conference on Software Maintenance (ICSM’06),

0-7695-2354-4/06, 2006

Nagendra Pratap Singh is Assistant Professor

and Head of Computer Science and Engineering

Department at Naraina Vidya Peeth Engineering

and Management Institute, Kanpur, India. He is

widely known about a work on Mutation Analysis

and Testing Technique. He has more than 10 years

of Experience (Teaching and Research) and

awarded M.Tech. Degree from Moti Lal Nehru

National Institute of Technology, Allahabad,

India. His M.Tech. thesis based on Mutation

Testing under the supervision of Prof. A. K. Misra from Moti Lal Nehru

National Institute of Technology, Allahabad, India. He is enrolled in

Advance Ph.D. Program from Shri G. S. Institute of Technology and Science,

Indore, India.

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

257

[1] G. Myers, The Art of Software Testing, John Wiley and Sons, New

York NY, 1979.

[2] I. Sommerville, Software Engineering, Addison-Wesley Publishing

Company Inc., 4th edition, 1992.

[3] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE

Transactions on Software Engineering, vol. 3, no. 4, pp. 279-290, July

1977.

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data

selection: Help for the practicing programmer,” IEEE Computer, vol.

11, no. 4, pp. 34- 41, April 1978.

[5] A. Jefferson Offutt, A Practical System for Mutation Testing: Help for

the Common Programmer

