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Abstract—Mutation testing is a fault-based testing technique 

that can be used for testing software at unit level, integration 

level and specification level. In addition to assessing the test 

data adequacy, mutation testing has also been used to support 

other testing activities such as test data generation, regression 

testing etc. Several works has been done on automatic 

generation of test data that can be effectively kill mutants. 

Constraint-based test data generation (CBT) is one of the 

automatic test data generation techniques using mutation 

testing, however, existing approaches of test case generation 

generally generate test data by killing one mutant at one time. 

Thus, more test cases are needed for achieving a given mutation 

score. In this paper, an approach is proposed by filtering the 

test data according to necessity condition and reachability 

condition by killing multiple mutants, mutated at the different 

location at one time and filtered test data also achieved same or 

approximate same mutation score. In proposed approach, some 

test data is filtered out of large test data that is sufficient to kill 

multiple mutants, located at different location. So this approach 

reduces the testing cost and time. 

 
Index Terms—Constraint-based testing, Mutation testing, 

mutation operator. 

 

I. INTRODUCTION 

Software testing is a technique for software quality 

assurance. It is a time consuming process and accounts for 

about 50% of the cost of software development [1],[2]. An 

important problem of software testing is how to generate the 

effective test data. If the problem of automatic test data 

generation can be well solved, then the cost of software 

testing can be significantly reduced. Mutation testing is based 

on mutation analysis. Mutation testing is a fault-based testing 

technique which is originally introduced by Hamlet [3] and 

DeMillo et al. [4] for assessing the effectiveness of test suites 

in unit testing. Mutation testing is a method of software 

testing, which involves small syntactic change in programs 

source code [5]. These syntactic changed programs are called 

mutant programs which are created by replacing well-defined 

mutation operators. Mutation testing is a powerful testing 

technique for achieving correct or closes to correct program. 

Mutation testing is based on three fundamental assumptions, 

One is known as competent programmer hypothesis (CPH) 

or the competent programmer assumption and second is 

known as coupling effect [4]. Third assumption is the 
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presence of an oracle for classifying the output of a test 

execution as correct or not. 

The competent programmer hypothesis was introduced by 

DeMillo et al. [4]. It says that programmers create a correct 

version of program. But it may be possible that there may be 

faults in the program delivered by a competent programmer, 

we assume that these faults are merely small simple faults 

which can be corrected by small syntactical changes. 

Therefore, in Mutation Testing, faults constructed from 

several simple syntactical changes are applied, which 

represent the faults that are made by competent programmers. 

An example of the CPH can be found in Acree et al., s work 

[6] and a theoretical discussion can be found in Budd et al., s 

work [7]. 

The Coupling Effect was also introduced by DeMillo et al., 

[7]. While the CPH concern with a programmers behavior, 

the Coupling Effect is observed empirically. DeMillo et al., 

states that Test data that distinguishes all programs differing 

from a correct one by only simple errors is so sensitive that it 

also implicitly distinguishes more complex errors. Offutt [8], 

[9] extended the Mutation Coupling Effect Hypothesis with a 

precise definition of simple and complex faults. According to 

this definition, a simple fault is represented by a mutant that 

is created by making a single syntactical change, while a 

complex fault is represented as a mutant that is created by 

making more than one change. Offutt says the coupling effect 

hypothesis is complex faults are coupled to simple faults in 

such a way that a test data set that detects all simple faults in a 

program will detect a high percentage of the complex faults 

or says If a test suite kills a mutant, it also kills mutants of 

mutant [9]. Third assumption is presence of an oracle for 

classifying the output of a test execution as correct or not the 

implementation of oracle is itself a complex problem and 

beyond the scope of our work. 

In mutation testing, for an original program (OP) a set of 

faulty programs M called as mutants (mutant program) are 

generated by replacing some syntax to the original program 

OP. In a Table-1 and 2 shows OP and its all mutant programs 

M1, M2, M3, M4, M5 that are generated by replacing the 

relational operator (>) by the operators <,<=,>=,==, 

respectively. A rule that generates a mutant from the original 

program is known as a mutation operator shown in Table 

land 2, we use ROR operator. There are many other operators 

that can be used. Typical mutation operators are designed to 

change the variables and expressions by replacement,   

insertion or deletion operators. These typical mutation 

operators were implemented in the Mothra mutation system 

[10]. 
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TABLE I 

OP M1 M2 

int big(a, c) 

{ 

 if(a>c) 

printf(“big=a”); else 

printf(“big=c”); } 

int big(a, c)    

 {  

if(a<c) 

printf(“big=a”); else 

printf(“big=c”); } 

int big(a, c) 

{  

if(a<=c) 

printf(“big=a”;else 

printf(“big=c”;} 

TABLE  II 

M3 M4 M5 

int big(a, c) 

{ 

 if(a>=c) 

printf(“big=a”): 

else printf(“big=c”); 

} 

int big(a, c)        

 {    

 if(a=c) 

printf(“big=a”); else 

printf(“big=c”); 

} 

int big(a, c) 

{ 

 if(a c) 

printf(“big=a”;else 

printf(“big=c”);} 

 

After generating the mutants, all generated test data is 

applied on original program (OP) and as well as on created 

mutants that distinguish mutants from the original program. 

Intuitively, a test data that kill more mutants prove its 

effectiveness on others.   Specifically,   the   ratio   of   killed 

mutants to the nonequivalent mutants is used as the mutation 

adequacy score to indicate test suite quality in mutation 

testing. 

Although, mutation testing is an effective means to find the 

effectiveness of test suites. Generating the test data that can 

achieve a   satisfactory mutation adequacy score can be very 

labor-intensive [11]. For this problem, several approaches 

have been proposed in the literature. The Constraint-based 

testing (CBT) technique was developed by DeMillo and 

Offutt [12]. They used symbolic evaluation, control-flow 

analysis, and information of mutants for generating test data 

automatically. Test data generated by CBT can kill more than 

90% of the mutants for most programs [13]. There was a 

problem in CBT approach to handling the nested expressions, 

arrays and loops. Another approach is proposed by Offutt and 

Jin for test data generation, known as Dynamic Domain 

Reduction (DDR) [14].This approach applies some 

limitations in CBT approach. So we can say that DDR 

approach is better than CBT approach but both approaches 

generates test data by solving one mutants necessity  

condition  and  reach  ability conditions [15], [16]. According  

to  the  paper [15], [16] the number of possible mutants is  

proportional  to the product of  the number of data references  

and  the  number  of data  objects. Which indicates one test 

data is generated according to one mutant, that means if there 

are N number of mutants then N number of test data are 

required to killing the mutants which become a big burden. 

So another novel approach is proposed by Ming-Hao Liu etal. 

[17] that generate  test  data for  killing a multiple mutants 

that are  placed in  same location. This approach generates 

one test data according to multiple mutants that are mutated 

at the same location at one time. Thus this approach can 

generate smaller test suite that can achieve the same mutation 

testing score. The experimental results of this approach show 

that it is more cost-effective. 

Our proposed approach is the extension of [17]. In this 

approach, generated test data is filtered by killing a multiple 

mutants   that are placed   in different location.  This approach 

generates  one   test data  according  to  multiple  mutants  that 

are mutated  at the different  location  at  one  time. Thus, this 

approach can generate smaller test suite that can achieve the 

same mutation score. Thus, the cost of testing is reduced. 

 
 

II. BACKGROUND DETAILS 
 

According to the paper [12], [13], [15], [17] the test data to 

kill a mutant must be satisfied three conditions known as 

reachability condition, necessity condition, sufficiency 

condition. Lets OP is original program, M is mutent of OP on 

aparticuler   statement   S and test data for OP is T then three 

conditions is defined as follows:- 
 

A. Reachability Condition 

The test  data  T  must  be reach  to  statement  S  because S  

is  replaced  by  mutant.  Mutant  is  a  syntactic  change  to an   

executable   statement,   and  the  other  statements  in  the 

mutated  program  are  syntactically  equal to the statements 

in the  original  program.  If T cannot be reached to S then it is 

guaranteed that T will never kill the M. 

1-   int a, b, c; 

2-   if(a>b)                    Reachability Condition 

      { 

3-   if(a>c)                     Mutants are:- (a>=c), (a<c), 

                                         (a<=c), (a==c), &  ( ac) 

4-   printf(“a is largest”); 

5-   else 

6-   printf(“c is largest”); 

      } 

7-   else 

      { 

8-   if(c>b) 

9-   printf(“c is largest”); 

10- else 

11- printf(“b is largest”); 

      } 

      } 

Fig. 1. For example a program show in figure-1, if we replace. 

Statement (a>c) of line number 3 by mutant operator  ROR 

as shown  in table  1 and  2 then  the reachability  condition of 

this S is (a>b) which is shown  in  line  number 2. That means 

if T not satisfy the reachability condition then mutant cannot 

be executed. 

B. Necessity Condition 

A   generated    test   case  that kills  mutants  needs  to  have 

this characteristic: it must differentiate the mutants behavior 

that is, why  the  mutant is  represented by  a  single change to   

t   the original program, the execution state of the mutant 

program  must  differ  from  that of the original  program after 

some execution of the mutated statement.  This characteristic 

is known as the necessary condition.  

Given a program OP anda  mutant  program  M by  

changing  a  statement  S in OP, for a  test data  T  to  kill  M, 

it is  necessary  that  the  state  of  M immediately following  

some  execution of S be different from the state of OP at the 

same location [12]. According to paper [17] necessity 

condition for killing the mutants (same location) of the 

program shown in the Fig. 1. is calculated as:- 

Necessity condition for (a>c) 

(a>c) ≠ (a>=c) 

(a>c) ≠ (a<c) 
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(a>c) ≠ (a<=c) 

(a>c) ≠ (a==c) 

(a>c) ≠ ( a≠c) 

Then combined these five we get 

{(a>c) ≠ (a>=c)}&&{(a>c) ≠ (a<c)} 

&&{(a>c) ≠ (a<=c)} &&{(a>c) ≠ (a==c)} 

&&{(a>c) ≠ ( a≠c)} 

which is equivalent to 

(a<c) && (a == c)                              (1) 

 

C. Sufficiency Condition 

The necessity condition never guaranteed that to be 

suf-ficient to kill the mutant. For a test case to kill a mutant, it 

must create different output,in which case the final state of 

the mutant program differs from  the original program. 

Although filtering the test cases that meet this sufficiency 

condition is certainly desirable, it is impractical in practice 

[13].  

There are some  approaches  [14],  [17]  that  utilize  the  

reachability conditions  and  the  necessity  condition  to 

generate  test data that  does  not  guarantee  to  kill all 

mutants, but can kill most of the mutants [13]. 

 

III. OUR APPROACH 

The proposed approach in paper [17], Ming-Hao Liu et   al. 

says one test data are required to kill multiple mutants that are 

mutated in same location at one time. Thus this approach 

generate small test suite that achieve same test adequacy 

score (mutation score). But in our approach generate small 

test suite that achieve same test adequacy   score and each test 

data of a   test suite   is able to killed multiple mutants that are 

mutated   in different   location at one time.  

In Fig. 1. the all  mutants of statement   (a>c) is  known as     

same location mutants because they have same reachable 

condition. 

The all mutants of the statement (a>c) and (c>b) is known 

as different location   mutants   because   they   have inside the 

same conditional statement which is responsible to find out 

the reachable condition of both statements. Although if two 

mutated statements are inside different conditional statement 

that is also known as different location mutants. 

There are some assumptions in proposed approach, first 

the mutants that are located in different location having same 

reachability conditions and the necessity conditions are 

similar in structure. Second the combined necessity 

conditions of different   locations mutant in one condition   

that is also combined with shared reachability condition 

which is known as Final Filtering Condition   (FFC).  Third 

assumption is the conditional    statements   that lead test case 

to reach the inner block of code containing   mutants   are   

used   to provide the reachability condition.   The main aim of 

proposed approach is to replace the   mutants   on different 

location by using one mutation operator known as    Relation 

Operator Replacement (ROR). ROR mutation   operator can   

produce more than one mutant on the particular location (see 

Fig.1).Our approach follows the following four steps:-  

1) Find the reachability condition of mutants that are 

located in different locations. 

2) Find the necessity    condition of each different location 

mutants. 

3) Combining necessity condition of each different location 

mutants with shared reachability condition (if exist) by 

using conjuction (&&) operator and generate Final 

Filtering Condition (FFC) for each different locations. 

4) Generate reduced test data by using FFCs. 

    

 

     

Proposed approach generates FFC condition that filter the 

already generated test data. The generated test data before 

filtering is able to kill the multiple mutants in same location 

with some adequacy score but the filtered test data is also 

able to kill multiple mutants in same location as well as 

different location with the same adequacy score as compared 

to that before filtering. The step-by-step implementation of 

proposed approach (by using the program shows in Fig. 1) is 

as follows:- 

A. Step-1 
 

Out of three relational expressions in   program   (figure-1) 

the expression (a>b) is a reachability condition for other two   

relational expressions (a>c) and (c>b) because both 

expression (a>c) and (c>b) depends on the expression (a>b). 

That means if condition (a>b) is true then expression (a>c), 

otherwise expression (c>b) is executed. 

B. Step-2 
 

The Necessity condition for location-1(line number-3) is 

shows in equation (1) similarly the Necessity condition for 

location-2 (line number-8) is 

(c < b) && (c == b)                          (2) 

C. Step-3 
 

In this step the necessity condition of location-1 which 

shows   in   equation   (1)   is combined with their reachability 

condition (a>b) by using conjuction operator. 

(a>b) &&[ (a < c) && (a == c)] 

[(a>b) && (a < c)] && [(a>b) && (a == c)] 

                [(b<a< c)]&&[((a == c) > b)]                   (3) 

Similarly the necessity condition of second location which 

shows in equation (2) is combined with their reachability 

condition (a<=b) by using conjuction operator. 

(a<=b) && (c < b) && (c == b) 

[(a<=b) && (c < b)] && [(a<=b) && (a == c)] 
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Table I and Table II shows original program OP and its  

all  mutant programs  M1,  M2, M3, M4, M5 that is generated 

by replacing the retional operator (>) by the operators

<,<=,>=,==,≠ respectively. Program in Fig. 1containing three 

relational operators (a>b) (a>c) and  (c>b), each   one   of

these three relational operators is replaced by any one of 

other relational operators like <, <=, >=, ==, ≠, so there   are  

total  fifteen mutants are generated.



  

[((a,c)<b)║((a== b)>c)] && [((a<(b==c)) ║ (a==b==c)] 

[((a; c) < b) ║ ((a == b) > c)] 

&&[((a < (b == c)) ║ (a == b == c)]              (4) 

According   to figure-1 line no. 2 (reachablity condition of 

line no.3 and line no.8) is also replaced by five mutants using 

ROR mutation operator. In line no. 2 (a>b) is not depends on 

any branch predicate so there are no any reachability 

condition to kill all five mutants. Hence the necessity 

condition for (a>b) is show in equation 5. 

(a < b) && (a == b)                           (5) 

D.  Step-4 

Thus    the   combination   of FFCs   (Eqn-3, 4, 5)   is   used    

to Generate   a    filtered   test   data   that is used to kill 

mutants. 

 

IV. EXPERIMENTAL RESULT 
 

Let us take an example of program shown in   Fig. 1 that 

can find the largest integer from the given three integers as 

inputs.The following test caseare generated to test the 

Program shown in Fig. 1. 

T1:-All three integers are different. 

T2:-Any two integers are same. 

T3:-All integers are same. 

Assume that the value of a,b,c are 5,4,6  respectively   then  

all possible test data in each test case is shown in TABLE-III. 

TABLE III 

Test Case      Test Data 

T1  t11=(5,4,6),   t12= (5,6,4) , t13= (6,5,4), 

 t14= (6,4,5),  t15= (4,5,6),  t16= (4,6,5) 

T2  t21=(5,5,4),   t22=(5,4,5),   t23=(4,5,5), 

 t24=(5,5,6),   t25=(5,6,5),   t26=(6,5,5), 

 t27=(4,4,6),   t28=(4,6,4),   t29=(6,4,4) 

 t210=(4,4,5),  t211=(4,5,4),  t212=(5,4,4) 

 t213=(6,6,4),  t214=(6,4,6),  t215=(4,6,6) 

 t216=(6,6,5),  t217=(6,5,6),  t218=(5,6,6) 

T3  t31=(5,5,5),   t32=(6,6,6),    t33=(4,4,4) 

Let   us  select  15 test data out of 27 test data randomly 

which is  t11,  t12,  t13, t14,t15,  t16,  t24,   t25,   t26,    t31,    t213,   t214, 

t27, t28, t29 and  using these   test data find the out put of the 

actual program and their mutant programs which is shown in 

TABLE IV. 

Again by  using our approach,  filter  the previesly  selected 

15 Test  data  by  using  Eqn-3,4,5.  Test data t11 and t 214 satisfy 

the Eqn-3. Combination of two test data, one test data from t12, 

t16, t25, t28, t213   and    second   test   data   t31   satisfied   the Eqn-4.  

Our  approach  select  any  one combination of two test data 

out of six possible combination because all six possible 

combination  is  able  to  kill  the   same   number   of   mutant, 

TABLE-V  shows  the  results  of  two  combinations (t12,t31) 

and (t28,t31) out of six possible combinations. 

Test data that satisfy the Eqn-5, is also satisfy the Eqn-4. 

So  our  approach  select only  4 test  data  t11, t31, t214,  t28,and 

out of  15 test  data  after  filtering.  The output of the actual 

program and their mutant program is shown in TABLE VI.          

TABLE IV 

T.D. OP M1 M2 M3 M4 M5 M6 M

7 

t11 

t12  

t13 

t14  

t15  

t16  

t24  

t25  

t26  

t31  
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t28  

t29  

c 

b 
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c 
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TABLE V 

T.D. OP M1 M2 M3 M4 M5 M6 M7 

t12 

t31 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

b 

c 

c 

b 

M8 M9 M10 M11 M12 M13 M14 M15 

c 

c 

b 

c 
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c 
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c 

a 

c 
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b 

T.D. OP M1 M2 M3 M4 M5 M6 M7 
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TABLE VI 

T.D. OP   M1 M2  M3 M4  M5  M6  M7 
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In traditional mutation testing approach one test data are 

require to kill one mutant.  So in this example there are 15 test 

data are required to kill all 15 mutants but by  in ourapproach  

only four test data are able to kill all 15 mutants, so the testing 

cost and time is reduced. 

 

V. CONCLUSION AND FUTURE WORK 
 

This paper presents a new approach for filtering the 

generated test data and filtered test data can be used for   

killing multiple mutants at different locations effectively. 

The filtering of test data is based on the combination of 

necessity condition with reachability condition (if exist). The 

conjunction operator (&&) is used in combination of these     

condition which generates Final Filtering Condition (FFC) 

for each different location.  Experimental results show that 

proposed approach reduces the test data by filtering them.   

Both necessity and reachability conditions are satisfied by 

combination of Final Filtering Condition (FFC). The 

generated test data before filtering is able to kill the multiple 

mutants in same location with some adequacy score but the   

filtered test data is also capable to kill multiple mutants in   

same   location as well as different location with the same 

adequacy score as compared to that before filtering.  

Proposed approach reduces the test data effectively by 

filtering them so that less test data is used for killing the   

multiple mutants. Therefore, less execution time is required 

to kill the mutants which reduce the cost of mutation testing    

activity and prove its efficacy over other approaches given in 

literature. In future, proposed approach can be implemented 

as tool to filter the generated test data or it can also be 

integrated with the existing mutation testing tools such as Mu, 

JUNIT etc. 
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