

Abstract—Regression testing is used to revalidate modified

program and provide confidence that changes does not harm

the behavior of the existing code. Test suites grows in size as

software evolve, a simple approach of regression testing is

re-test all approach in which all the pre-existing test suites are

executed on the code but it is too expensive and increase the cost

of testing activity. Different problems have been involved with

regression testing, e.g. test suites minimization problem, test

selection problem, coverage identification problem, test case

execution problem, test case maintenance problem etc. Another

problem may occur, when tester has to select the changed

paths from the set of modified paths for test case execution.

This paper presents a new path selection strategy based on

static analysis for regression testing which enables the tester to

execute the test cases in an order that increases their

effectiveness to find faults taking minimum efforts. With the

proposed approach, tester can select the paths among the set of

paths in an order to achieve the testing objective. Infeasible

paths are also identified by the proposed approach which can

reduce the effort, time, and cost.

Index Terms—Regression testing, software complexity

metrics, path selection strategy.

I. INTRODUCTION

Software development experiences shows that it is difficult

to set measurable targets when developing software products.

Produced/developed software has to be reliable and

maintainable. On the other side, “You cannot control what

you cannot measure” [1]. To avoid this, regression testing is

performed during changes are made to existing software; the

purpose of regression testing is to provide modified program

without obstructing the existing, unchanged part of the

software [2].

Software systems are maintained by developers by doing

regression test periodically in hope to find errors caused by

changes and provide confidence that modifications made in

the software are correct. Developers/testers often create an

initial test suite and then reuse it for regression testing [3].

These initial test suites are generally saved by the developers

in order to reuse these test suites in regression testing as their

software evolves. This reuse of test suites is pervasive in

software industries [4]. A variety of selective regression

testing strategies are proposed to select an appropriate

subset of test cases from previously run test suites, based on

Manuscript received September 13, 2012; revised November 26, 2012.

M. K. Debbarma is with the Department of Computer Science and

Engineering, National Institute of Technology, Agartala, Tripura, PIN

799055, India (e-mail: mrinal@nita.ac.in).

S. Tiwari and A. K. Misra are with the Computer Science and

Engineering Department of Motilal Nehru Institute of Technology

Allahabad, PIN 211-004, India, (e-mail: shail.tiwari@hotmail.com,

akm@mnnit.ac.in).

the changes made to the software system for enhancement.

The most common approach to this problem is simply

execute the existing test cases in the test suite; i.e. retest all

approach, a systematically selected subset is chosen to be

reuse, then substantial resources will be saved, due to the

limited size of the selected test data [5], [6].

There are distinctions between classes of techniques of

regression testing: Test suites minimization techniques can

be used to reduce test suite by eliminating redundant test

suites. In safe approaches, every test case is selected that

exercised any program element which could be affected by a

program modification. In coverage approaches, test cases are

selected which met some structural criteria. In this approach,

select a single test case satisfying each coverage requirement

introduced by the criterion, minimization techniques work

like coverage approaches [7].

During maintenance phase of software lifecycle,

regression testing tasks comprise a significant percentage of

the costs of software testing as cost always increases when

modifications are made in later stages of software

development. A key difference between regression testing

and development testing is that during regression testing a

well-established test suite is available for reuse. One

necessary strategy for regression testing is retest-all strategy

i.e. re-tests all the test of test suite but it may consume

excessive time and resources which may lead to increase in

cost. On the other side, regression test selection strategy

reduces the time required to retest a modified program by

selecting some subset of the existing test suite. Therefore the

methods that reduce the cost of regression testing tasks are

always valuable. Most recent researches in regression testing

concerns selective retest techniques. Various regression test

selection strategies are described in [7].

One important approach is considered as coverage

approach in which test cases are assure and met with

structural coverage criterion. To satisfy this criterion, the

execution of complete paths that cover the required test data

component is necessary; we select those paths that cover a

given required component. Our goal is to identify „best paths‟

from the set of covered paths which is infinite or greater

number [8]. The term „best‟ is related to some program

characteristics which can influence the testing activities: (i)

complexity [9] (ii) NPATH [10] (iii) feasibility [11] and (iv)

Halstead software science [12], [13]. These program

characteristics plays vital role to achieve testing objective.

Selection of paths is depends on tester‟s perception whether

the ease of data generation is required orincrease efficacy is

required or in between these two. These perceptions of tester

are in view of overall time given for testing activity.

Following assumption are made to simplify the target

problem:

Let T be the previously run test suite, saved for reuse in

Efficient Path Selection Strategy Based on Static Analysis

for Regression Testing

Mrinal Kanti Debbarma, Shailesh Tiwari, and A. K. Misra

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

248DOI: 10.7763/IJCTE.2013.V5.687

regression testing and {T1, T2,…….Tn} are the test cases

belongs to T. Let P be the set of paths in modified program

which may be finite or greater in number i.e. {P1, P2,

P3,….Pn}. Our main objective is to run the test cases on

different paths in order to achieve various parameters given

in literature: branch, statement, paths and dataflow coverage

etc. It is not possible to exhaustive testing by rerunning the

test cases on every path if the paths are infinite or greater in

number. Tester has its own objectives to perform testing

activity; in this paper two of these objectives are considered:

making test data generation easier and enhanced efficacy is

required. To perform testing activity totally depends on tester.

Problem may arise how a tester selects the path that meets

with the defined testing objective defined by [14].

 This paper presents an approach by which the tester

selects the modified path. Path selection strategy is used to

achieve the tester‟s objective.

II. BACKGROUND DETAILS

A. Regression Testing

Regression testing is a process to uncover errors by

partially retesting a modified program. Regression testing is

done after modification is made in the implemented program.

This can be done by rerunning the existing test suites against

the modified code to determine whether the changes affects

anything that worked properly prior to the change or writing

new test cases where necessary. Adequate coverage should

be primary consideration when conducting regression tests.

For simplification: Let P be a program and P' be a modified

version of program P; let T be a set of test cases for P then T'

is selected from T that is subset of T for executing P',

establishing T' correctness with respect to P', if necessary,

create T'' and execute T'' on P', establishing T'' correctness

with respect to P', if necessary, create T''' and execute T'' on

P', establishing T''' correctness with respect to P'. Each of

these steps is involved with some problems of selective retest

technique: Regression test selection problem, Coverage

identification problem, Test suite execution problem and Test

suite maintenance problem.

B. Software Complexity Metrics: Program

Characteristics

Structural testing criteria consider on the knowledge of the

internal structure of the program implementation to derive

the testing criteria. To identify all possible executionpaths

through the software programming skill is essential. The

tester select test case input to use paths through the code and

determines the coverage gained. Test cases are generated for

actual implementation, if there is some change in

implementation then it leads to change in test cases. They can

be classified as Control flow, complexity and data flow based

criteria. For the control flow based criteria, testing

requirements are based on the Control Flow Graph (CFG). It

requires the execution of components (blocks) of the program

under test in condition of subsequent elements of the CFG i.e.

nodes, edges and paths. The complexity based criterion

requires the execution of all independent paths of the

program; it is based on McCabe‟s complexity concept [12].

Another method is number of unit tests needed to test every

combination of paths in a method. In Data Flow based criteria,

both data flow and control flow information are used to

perform testing requirements [15]. These coverage criteria

are based on code coverage. Code coverage/Test coverage is

the degree to which source code of a program has been tested.

Test coverage is measured during test execution. Once such a

criterion has been selected, test data must be selected to fulfill

the criterion.

It is usually impossible to test all the paths in a program

because it may be possible that program contains an infinite

or greater number of paths. Path selection criteria given in the

literature has some weaknesses that these criteria cannot

assure that set of test data are capable of uncovering all errors

will be chosen. Therefore, a practical path selection criterion

which specifies a finite subset of paths and adequacy is

needed to bring closer establishing correctness [9].

This paper presents analysis of selection of „best paths‟, by

using path selection technique which is our main objective.

Following software complexity metrics are taken as program

characteristics which can control the testing activity.

1) Complexity

Complexity of software is measuring of code quality; it

requires a model to convert internal quality attributes to code

reliability. High degree of complexity in a component

(function, subroutine, object, class etc.) is bad in comparison

to a low degree of complexity in a component is considered

good. Various internal code attributes that are used to

indirectly assess code quality. Software complexity measures

which enables the tester to counts the acyclic execution paths

through a component and improve software code quality. In a

program characteristic that is one of the responsible factors

that affect the developer‟s productivity [9] in program

comprehension, maintenance, and testing. There are several

methods to calculate complexity measures were investigated,

e.g. different version of LOC[9], NPATH [10], McCabe‟s

cyclomatic number [12], Data quality [12], Halstead‟s

software science [12], [13] etc.

Low degree of complexity in a component is considered

good as it affects the developer‟s productivity. If a path

hashigh degree of complexity then there may be a greater

probability of containing errors in that [2]. Tester can select

the path with the greatest weight or with the least weight of

LOC which depend on tester‟s observation whether the ease

of test data generation is required or improved efficacy is

required [8].

All the complexity weights for all paths of are saved that

can be used to select the paths if software evolves.

2) NPATH evaluation of control flow graph

The control flow measure by NPATH, invented by Nejmeh

[10], it measures the acyclic execution paths, NPATH is a

metric which counts the number of execution path through a

functions. One of the popular software complexity measures

NPATH complexities (NC), is determined as:

NPATH== 𝑁𝑃(
𝑖=𝑛

𝑖=1
statementi)

NP (if)= NP (expr)+ NP (if-range)+1

NP (if-else)= NP (expr)+ NP (if-range)+ NP (else-range)

NP (while)= NP (expr)+ NP (while-range)+1

NP (do-while)= NP (expr)+ NP (do-range)+1

NP (for)= NP (for-range)+ NP (expr1)+ NP (expr2)+

NP (expr3)+1

NP (”?”)= NP (expr1+NP (expr2)+ NP (expr3)+2

NP (repeat)= NP (repeat-range)+1

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

249

NP (switch)= NP (expr)+ 𝑁𝑃(𝑐𝑎𝑠𝑒 − 𝑟𝑎𝑛𝑔𝑒)𝑖=𝑛
𝑖=1 +

NP (default-range)

NP (function call)=1

NP (sequential)=1

NP (return)=1

NP (continue)=1

NP (break)=1

NP (goto label)=1

NP (expressions)=Number of && and || operators in

expression

Fig. 1. NPATH complexity measure.

where „N‟ represents the number of statements in the body of

component (function) and „NP‟ (Statement) represents the

acyclic execution path complexity of statement i. Here

„(expr)‟ represents expression which is derived from

flow-graph representation of the statement. NPATH measure

follows:

if (a>b)

z=a;

else

z=b;

The NPATH value is 2 as follows:

NP(<if-else>)=NP(<expr>)+NP(<if-range>)+NP(<else-

range>)

3) Feasibility

A path is feasible if there is an input datum for these paths

to be executed. In contrast, a path is said to be infeasible if

there is no set of values for the input test data that cause path

to be executed [11]. Identify infeasible paths is an

undecidable question [4]. If a path contains lower number of

predicates then it has greater probability of being feasible. On

the other side, if a path consists of greater number of

predicates then it may have greater probability of finding out

errors in the program. Predicate is considered as simple

Boolean form in condition. So, when the paths having few

predicates are selected then the numbers of infeasible paths

are reduced.

4) Halstead software science

Another alternative software complexity measures have to

be considered. M. Halstead‟s Software science measures [6]

are very useful. Halseatd‟s software science is based on an

enhancement of measuring program size by counting lines of

code. Halstead‟s metrics measure the number of number of

operators and the number of operands and their respective

occurrence in the program (code). These operators and

operands are to be considered during calculation of Program

Length, Vocabulary, Volume, Potential Volume, Estimated

Program Length, Difficulty, and Effort and time by using

following formulae:

n1: number of unique operators,

n2: number of unique operands,

N1: total number of operators, and

N2: total number of operands,

Program Length (N) =N1+N2

Program Vocabulary (n) =n1+n2

Volume of a Program (V) =Nlog2n

Potential Volume of Program,

(V*) = (2+n2) log2 (2+n2)

Program Level (L) =L=V*/V

Program Difficulty (D) =1/L

Estimated Program Length (N) =n1log2n1+n2log2n2

Estimated Program Level (L) =2n2/ (n1N2)

Estimated Difficulty (D) =1/L=n1N2/2n2

Effort (E) =V/L=VD= (n1 x N2) / 2n2

III. OUR APPROACH

Our approach deals with analysis of path selection problem.

Four program characteristics are considered from the

literatures that are responsible for software complexity

measures to analyze the paths. Tester can select paths from

given program characteristics. Weights of each program

characteristics are evaluated for each path. Selection of paths

is depending on interest of tester, so tester can select paths

according to testing objective.

Let P be the old version of program and P' be the new

version of program in „C‟ given in Fig. 2.

Fig. 2. Program P and P'

1

2

3 4

5

6

11 7

8 9

10

1

2

3 4

5

6

13

7

8
9

10
11

12

Fig. 3. CFG for program P and P’

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

250

TABLE I: COMPUTED WEIGHTS SOFTWARE COMPLEXITY METRICS FOR

PROGRAM P.

Pa

th

Contents of Path LOC NPATH Predi

-cate

Software

Science

D E

P1 {1,2,3,5,6,7,9,10,

6,11}

22 6 4 24 6663

P2 {1,2,3,5,

6,7,8,10,6,11}

24 6 4 21 7707

P3 {1,2,4,5,6,7,9,10,

6,11}

20 4 4 21 5691

P4 {1,2,4,5,6,7,8,10,

6,11}

22 3 4 19 5491

P5 {1,2,3,5,6,11} 14 4 2 17 3553

P6 {1,2,4,5,6,11} 12 4 2 15 2505

The structure of a program P ad P‟ can be represented by a

control flow graph in Fig. 3, G (P) = {N, E, s, e}, where N is a

set of nodes representing basic blocks of code or branch

points in the function; E is a set of edges representing flow of

control in the function; s is the unique entry node and e is the

unique exit node. At first, all paths are identified from the

graph then weights for complexity, sensibility are evaluated

and saved for each path.

TABLE II: COMPUTED WEIGHTS SOFTWARE COMPLEXITY METRICS FOR

PROGRAM P’

Pa

th

Contents of

Path

LOC NPATH Predi

-cate

Software

Science

D E

P1 {1,2,3,5,6,7,9,

11,12,6,13}

26 8 5 36 11844

P2 {1,2,3,5,

6,7,8,12,6,13}

24 6 4 22 5214

P3 {1,2,4,5,6,7,9,

11,12,6,13}

24 4 5 36 11232

P4 {1,2,4,5,6,7,9,

10,12,6,13}

21 8 5 31 10943

P5 {1,2,4,5,6,7,8,

12,6,13}

22 8 4 25 6250

P6 {1,2,3,5,6,13} 14 4 2 19 3496

P7 {1,2,4,5,6,7,8,

12,6,13}

14 4 2 19 3420

Our main objective for path selection criteria is to select

the „best‟ paths and this selection is made on the following

program characteristics which can influence the testing

activity:

Complexity of each path can be calculated by using LOC,

NPATH found in each node or path. The degree to which

characteristics that hamper software maintenance are present

is called software maintainability. Software complexity

measures how difficult the program is to work with. It

includes understandability, modifiability, and testability of

software. Various approaches may be taken in measuring

complexity characteristics given in literature, e.g.

NPATH[10], McCabe‟s cyclomatic number[12], LOC[9],

Data quality[9], Halstead‟s software science[15] etc.

In this paper, we work with two software science measures;

they are the difficulty and effort measure.

One major weakness of this complexity is that they do not

measure control flow complexity and difficult to compute

during fast and easy computation. As it affects the

developer‟s productivity so if a path has low complexity the

ease of test data generation is achieved. In contrast, if a path

has high complexity then there may be a greater probability

of containing errors in that [8].

In this regard, the tester can select the path with the

greatest weight or with the least weight of LOC which

depend on tester‟s perception whether the ease of test data

generation is required or enhanced efficacy is required [4].

All the complexity weights for all paths of new version of

program P' are evaluated.

Number of predicates in each path are identified and saved

which help tester to distinguish between feasible paths and

infeasible paths. If a tester selects feasible paths then the ease

of test data generation is achieved and if complex paths are

selected by tester then efficacy is increased.

From the above Table I and Table II, it is clear that the path

can be feasible if it contain lower number of predicates. It

means that out of these six identified paths from Table I. P5,

P6 have greater probability of being feasible among all the

paths and from Table II. P6 and P7 have greater probability of

being feasible among all the paths.

IV. CONCLUSION

Path selection strategy to be used from the set of paths to

achieve the testing objective and tester can reduce cost, time

and effort to this activity. Software characteristics play vital

role in path selection strategy. Characteristics used here for

path selection was complexity, testability and feasibility. In

addition , it was observed that If tester‟s objective is to

achieve ease of test case generations then those paths are

selected in which LOC, NPATH, Halstead‟s difficulty, effort

and predicates found in path are lesser. If tester‟s objective is

to increase the efficacy then those paths are selected in which

LOC, NPATH, Halstead‟s difficulty, effort and predicates

found in a path are greater.

Tester can use this approach to execute the test case on the

selected paths. By the use of path selection strategy,

infeasible paths are also identified which can reduce the time,

effort, and cost. The strategy also eases the process of

regression testing without affecting the quality of software

testing. The proposed work is the extension of path selection

strategy for regression testing [3].

REFERENCES

[1] D. Marco, Controlling Software Projects, Prentice Hall, New York,

1982

[2] S. Yoo and M. Harman, “Regression testing minimisation, selection

and prioritisation - a survey,” Technical Report TR-09-09. October 26,

2009, pp. 1-80

[3] S. Tiwari, K. K. Mishra, A. Kumar, and A. K. Misra, “Path selection

strategy for regression testing,” Presented at the SERP 2010 in World

Comp 2010, Las Vegas, July 12-15, 2010.

[4] P. G. Frankl and E. J Weyuker, “An application family of data flow

testing criteria,” IEEE Transactions on software Engg, vol. 14, no. 10,

pp. 1483-1498, October, 1988.

[5] D. S. Rosenblum and E. J. Weyuker, “Using coverage information to

predict the cost effectiveness of regression testing strategies,” IEEE

Transaction on Software Engg., vol. 23, no. 3, March 1997.

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

251

[6] R. Subramanyan and C. J. Budnik, “Test selection prioritization

strategy,” 33rd Annual IEEE International Computer Software and

Applications Conference - Workshops, 2009.

[7] G. Rothermel and M. J. Harrold, “Analyzing regression test selection

techniques,” IEEE Trans. Software Eng., vol. 22, no. 8, pp. 529-551,

Aug. 1996.

[8] L. M. Press et al., “Path selection in the structural testing: proposition,

implementation, and application of strategies,” IEEE XXI International

Conference of Chilean Computer Science Society(SCCC’01)

[9] S. D. Conte, H. E Dunsmore, and V. Y. Shen, “Software engineering

metrics and models,” Benjamin/Cummings Publishing Company, Inc.,

1986.

[10] B. A. Nejmeh, “NPATH: A measure of execution path complexity and

its applications,” Comm. of the ACM, vol. 31, no. 2, pp. 188-210,

February 1988.

[11] D. F. Yates and N. Malevris, “Reducing the effects of infeasible paths

in branch testing,” ACM SIGSOFT Software Engineering Notes, vol.

14, no. 8, pp. 48-54, December 1989.

[12] T. A. M. Cabe, “A complexity measure,” IEEE Transactions on

Software Engineering, vol. 2, no. 4, pp. 308-320, December 1976.

[13] A. Fitzsimmon and T. Love, “A review and evaluation of software

science,” Computing Survey, vol. 10, no. 1, March 1978.

[14] W. E. Howden, “Methodology for the generation of test data,” IEEE

Trans. Computers, vol. TC-24, May 1975.

[15] M. Halstead. Elements of Software Science. North-Holland, 1977.

[16] W. E. Wong et al., “A study of effective regression testing in practice,”

IEEE Eighth International Symposium on Software Reliability Engg

(ISSRE '97).

[17] D. B. Wey, “Semantic differencing to reduce the cost of regression

testing,” Proc. Conf. Software Maintenance-1992, pp. 41-50, Nov.

1992.

[18] G. Rothermel and M. J. Harrold, “A safe, efficient regression test

selection technique,” ACM Transactions on Software Engineering and

Methodology, vol. 6, no. 2, April 1997, pp. 173-210..

[19] N. Malevris, D. F. Yates, and A. Veevers, “Predictive metrics for likely

feasibility of program paths,” Information and Software Technology,

vol. 32, no. 2, pp. 115-119, March 1990.

[20] S. Rapps and E. J. Weyuker, “Data flow analysis techniques for test

data selection,” Proc. Int. Conf. Software Engineering, Tokyo, Japan,

September 1982.

[21] M. R. Woodward, D. Hedley, and M. A. Hennell, “Experience with

path analysis and testing of programs,” IEEE Trans. Software Eng., vol.

SE-6, pp. 278-286, May 1980.

[22] T. L Graves et al., “An empirical study of regression test selection

techniques,” ACM Transaction on Software Engg. and Methodology,

vol. 10, no. 2, April 2001.

[23] E. Miller, “Coverage measure definitions reviewed,” Testing

Techniques Newsletter, vol. 3, no. 4, pp. 6, Nov. 1980.

[24] J. Voas, L. Morell, and K. Liller, “Predicting where faults can hide

from testing,” IEEE Software, pp. 41-47, March 1991.

[25] P. G. Frankl and E. J Weyuker, “An application family of data flow

testing criteria,” IEEE Transactions on Software Engg, vol. 14, no. 10,

pp. 1483-1498, October, 1988.

[26] A. Pasala et al., “Selection of regression test suite to validate software

applications upon deployment of upgrades,” IEEE 19th Australian

Conference on Software Engineering, November 2008.

Mrinal Kanti Debbarma presently working as

Assistant Professor at Computer Science &

Engineering Department of National Institute of

Technology Agartala, India, he received the B.Tech

(IET, Lucknow), M.Tech (MNNIT, Allahabad),

currently pursuing Ph.D.(Information Technology)

at Assam University. His research interest include in

Software Engineering with special interest in

Regression testing, MANET Routing Protocols,

Wireless Sensor Networks.He has published technical papers in various

International Journals and Conferences.Mr. Debbarma is a member of

IAENG, IACSIT. email: mrinal@nita.ac.in

Shailesh Tiwari is pursuing his Ph.D at Computer

Science & Engineering Department of Motilal

Nehru Institute of Technology Allahabad, PIN

211-004, India,(e-mail: shail.tiwari@hotmail.com)

International Journal of Computer Theory and Engineering, Vol. 5, No. 2, April 2013

252

Dr. A. K. Misra working as Professor, at Computer

Science & Engineering Department of Motilal

Nehru Institute of Technology Allahabad, India, He

obtained Ph.D. (1990) from M.N.R.E.C.,

Allahabad, M.E. Hon's (1976) from M.N.R.E.C.,

Allahbad B.E. (1971) University of Roorkee, India.

His current research interest includes Software

Engineering, Programming Methodology, Artificial

Intelligence. Dr. Misra earned Life Member of Computer Society of India,

Indian Society of Technical Education., Institution of Engineers, India.

(Fellow), Member of ACM. He has published more than 100 technical

papers in various International Journals and Conferences. (e-mail:

akm@mnnit.ac.in).

