

Abstract— In this paper we present an open source text

mining system, UMagic, which identifies key domain entities

and their relationships from text documents. UMagic extracts

the key information components from the textual document

and transforms them into UML based diagrams without

human intervention. UMagic performs the linguists processing

of given text using open source tool named GATE [1], to mark

entities and relationships between these entities. Afterwards, it

generates ER diagram from the marked text automatically.

Though the task in hand is very complex, specifically when

carried out in absolutely automated fashion, but it has

immense applications in real world scenarios. From Software

Engineering perspective, this approach can be employed to

bridge the gap between the analysis phase and design phase of

the software development process. This results in reduced time

and complexity of the design phase, as well the improved

degree of correctness of the design documents.

Index Terms—Artificial intelligence, ERD, GATE, natural

languare processing, text mining, UML, XML.

I. INTRODUCTION AND MOTIVATION

Today, we live in a world with immensely large amounts

of data and information. According to literature, most of the

available data is in unstructured form, mainly containing

textual information [2], [3]. It is not easy to analyze this

unstructured textual data to extract meaningful knowledge

instances from it. For this purpose, research in text mining is

gaining importance for processing textual information.

There exist two main phases for text mining: a

preprocessing phase which converts the text into a

structured or semi-structured form, and secondly discovery

phase in which text mining techniques are applied to extract

the information nuggets. The purpose of this paper is to use

the concept of text mining to draw UML diagrams from

textual documents. Since the manual design of such

diagrams requires time and expertise, we present a modeling

system UMagic, The UML Modeler. UMagic take textual

information as input, processes it, converts it into a formal

data-model, and generates structured diagrams for the

system. Thus, the system is deemed to simplify the design

process in software development and business field.

Entity Relationship Diagram (ERD) is the most commonly

used illustration of the relational data-model for any

software or business system [4]. It provides the foundation

for relational database architecture [5]. In other words, ERD

mocks up the logical model of a relational database. The

constituents of an ERD are entities, their attributes, and their

inter-relationships. Generally, entities are considered as

nouns and relations as verbs. Three major types of relations

that connect entities in a database are: One-To-Many (1: m),

One-To-One (1:1) and Many-To-Many (m: m).

To process textual information, for the ERD generation, is

quite hectic especially for complex systems. We can use

some open source linguistic processing software like

General Architecture for Text Engineering (GATE) for

initial textual processing and rendering the information into

structured format. For the purpose of annotation, GATE

employs Language Resources (LRs) and Processing

Resources (PRs). LRs are used to create the corpus, on

which PRs works to perform different operations required to

process underlying text. GATE Visual Studio provides the

functionality to draw diagrams. The resulted diagram is in

the pictorial form showing precise and correct information.

The information about the drawn diagram is stored in the

XML format.

The rest of the paper is organized as: section 2 described

the related work and background study of the relevant

concepts. Section 3 illustrates in detail the framework for

UMagic, section 4 presents a discussion of the outcomes of

the proposed system. Finally, we conclude the paper and

give future directions in section 5.

II. RELATED WORK AND BACKGROUND

Text mining has gained much popularity and its usage is

increasing day by day. Text mining applications facilitate

users by automatically extracting the information of interest.

During different phases of software development lifecycle,

various documents i.e. requirement analysis document,

functional specification document; design document etc. are

generated. Employing text mining applications to process

these documents may help in extracting useful pieces of

information. For example if requirement analysis document

is processed by applying text mining techniques, it can be

transformed into a formal data-model, and structured

diagrams can be drawn for the system in automated fashion.

This can also help further in automatic generation of

database for a software system, reducing the workload of

software engineers.

Today, relational database is the most appropriate way to

store the information digitally in an organized manner.

Relational database provides the facility to manipulate this

stored information according to the underlying requirements.

Design of relational database revolves around the concept of

entities and relationships between them. In common words,

an entity is a real world thing that has some properties called

attributes. An entity is composed of a set of attributes that

capture the information about that entity. Key attribute or a

set of key attributes are used to relate one or more entities.

UMagic! THE UML Modeler for Text Documents

Iram Shahzadi, Qanita Ahmad, Kiran Fatima, Imran Sarwar, and Waqar Mahmood

DOI: 10.7763/IJCTE.2013.V5.670 166

Manuscript received June 25, 2012; revised September 8, 2012.

Iram Shahzadi, Qanita Ahmad, Imran Sarwar and Waqar Mahmood are

with Al-Khawarizmi Institute of Computer Science University of

Engineering & Technology, Lahore, Pakistan (e-mail:

iram.naseer@kics.edu.pk)

Kiran Fatima is with Department of Computer Science & Engineering,

University of Engineering & Technology, Lahore, Pakistan

(kiran_csengineer@yahoo.com)

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

So a relation is a key property of an entity that creates its

mapping with different entities [6], [7].

A number of tools exist in literature that transforms the

given ERD into relational database. An XML-based ER-

diagram Drawing and Translation Tool, named “ERDraw”

presented by Shuyun Xu and others [8], provides a visual

interface to draw ER diagram by dragging and dropping the

provided ER-diagrams components. ERDraw further works

on the user drawn ER diagram, to extract entities and their

relations. It generates an ER semantic object model, based

on the extracted entities and relations. Semantic object

model is basically a data structure capturing the complete

ERD information. This Semantic object model is used to

generate a relational object model that is transformed into a

relational database schema. TabletERD [9] is another tool

that provide user with the facility to draw ERD. User can

visually draw entities and can drop a relationship between

them. TabletERD generates xml and SQL code based on

ERD which is compatible with different famous database

management systems like MySQL, IBM DB2, Microsoft

SQL Server and Oracle.

As discussed above, the existing tools require input from

user in the form of entities and their relationships. Whereas

our proposed tool UMagic automatically performs the task

of extracting entities from the given text, along with their

relations. Performing this task in automated manner, results

in faster drawing of ER-diagram and further generation of

entity relational data model. Changes are easy to incorporate

as most of the work is to be done by the system not by the

user.

III. OUR PROPOSED METHODOLOGY

UMagic is the blend of text engineering with UML. It

takes text document as input and processes it to add

annotations with this text. From Software Engineering

perspective UMagic can be employed to bridge the gap

between the analysis phase and design phase of the software

development process. This results in reduced time and

complexity of the design phase, as well the improved degree

of correctness of the design documents.

UMagic, the UML modeler proposes the idea to annotate

the given text automatically using GATE language

processing tool and extract entities and their relations from

this annotated text. The extracted information, in terms of

entities and their inter-relationships, can be used to draw ER

diagram. The entity relation diagram serves as the basis to

the physical data model for the system, and thus is of the

outmost importance in the software development lifecycle.

We employ the linguistic processing capabilities of GATE

to extract the entities and relationships information from the

input textual data. For the purpose of basic text processing

and information extraction, GATE provides ANNIE, A

Nearly New Information Extraction. ANNIE consists of

different components such as tokenizer, gazetteer, sentence

splitter, semantic tagger, and part-of-speech tagger

processing of the underlying documents. For the

implementation purposes of UMagic, we used ANNIE to

parse different parts of speech from the textual data. The

nouns are marked as entities; while verbs as relations. This

tagged information is then passed onto ERD generator

module for the creation of entity relation diagram.

The system architecture of UMagic is depicted in Fig. 1.

The architecture is showing full functionality of the system.

Document Acquisition, Document Processing, XML

Modeling and ERD Generation are the main modules of the

system. Document Acquisition obtains document for

processing. Then Processing is done in Document

Processing module through GATE. This processed

information of document is stored in the form of XML

format. ERD Generation module takes this information as

input and draws the required diagram which is ERD in our

case. Detailed description of these modules is as follows:

Fig. 1. UMagic system architecture

This module is responsible for the collection of textual

document to provide input to the system. It invokes the

relevant interface in the document processing module for the

further linguistic processing on the document. The

document acquisition module takes the input textual

documents in a variety of formats like pdf, html, plain text

files, etc.

Document processing module serves as the backbone of

the system. It uses the plug-ins provided by GATE to

process the document linguistically. As mentioned earlier,

ANNIE, the information extraction system of GATE is

employed to mark the required information. The core

components required for this module are discussed here.

The main functionality of sentence splitter is to segment

the input textual document into sentences. The splitter uses a

gazetteer list of abbreviations to help distinguish the end of

a sentence. The sentence splitter is domain and application-

independent. The most commons forms of sentence splitter

abbreviations are „.‟, line breaks, „?‟, multiple punctuations

„??!!?‟ etc.

The tokenizer breaks up the text into „tokens‟ which

normally are strings of characters, categorized according to

the defined rules as a symbol. The tokenizer splits the text

into very simple tokens such as numbers, punctuation and

words of different types. This step is essential for the further

morphological analysis and information extraction from the

input text. No further processing on the text is possible in

ANNIE without this step.

This component annotates the tokenized text. Each word

or symbol is tagged with its part of speech i.e. verb noun,

adjective, conjunction etc. ANNIE uses a given lexicon and

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

167

A. Document Acquisition

B. Document Processing

1) Sentence splitter

2) Tokenizer

3) Part-of-Speech tagger

a set of rules for the purpose of annotations.

Semantic tagger works on the already tagged pieces of text

and transforms them into annotated entities by using the

Java Annotation Patterns Engine (JAPE) provided by the

GATE. JAPE uses rules defined in JAPE language for

annotating these entities.

Fig. 2. Gazetteer rule

Gazetteer lists are plain text files containing one entity

name per line. The purpose of gazetteer is to identify the

entities, by string matching, in the given text and mark them

with the hierarchy that is already defined by the gazetteer

lists.

The Orthomatcher module, also known as OrthoMatcher,

works on the text proceeds by semantic tagger. Till semantic

tagger entities are marked. Now Orthomatcher identify

relationships between named entities, along with other rules

defined in JAPE. Thus in this step co-reference is added

between the entities found by semantic tagger in previous

step.

After document processing is completed using ANNIE,

processed text along with the marked entities and relations is

transformed into XML file, and then stored in an xml data

store. The format of this XML file is shown in Fig.3.

IV. RESULTS AND DISCUSSION

We used the following input text and applied the above

discussed steps in sequence. Required components of

ANNIE were added from the GATE which processed the

text accordingly. Entities were marked with their relative

attributes in the given text, as shown in Fig.4.
<? xml version= “1.0” encoding= “utf-8”?>

<ERD>

 <Entities>

 <Entity ID= “A.1” Name= “Official”>

 <Attributes>

 <Attribute ID= “A.1.1” Id= “Id_No.” />

 <Attribute ID= “A.1.2” Name= “FName” />

<Attribute ID= “A.1.3” Name= “LName” />

<Attribute ID= “A.1.4” Name= “Rank” />

<Attribute ID= “A.1.5” Name= “Event_Assigned” />

</Attributes>

 </Entity>

 <Entity ID= “A.3” Name= “Event”>

 <Attributes>

 <Attribute ID= “A.3.1” Name= “Planned_date” />

 <Attribute ID= “A.3.2” Name= “Event_Duration” />

 <Attribute ID= “A.3.4” Name= “No._of_officials” />

 </Attributes>

 </Entity>

 <Entity ID= “A.4” Name= “Sport complex”>

 <Attributes>

 <Attribute ID= “A.4.1” Name= “Location” />

 <Attribute ID= “A.4.2” Name=

“Chief_organizing_individual”/>

 <Attribute ID= “A.4.3” Name= “Total_occupied_area” />

 </Attributes>

 </Entity>

 <Entity ID= “A.5” Name= “Roster”>

 <Attributes>………………..

 <Attribute ID= “A.5.1” Name= “Id_no.”>

 <Attribute ID= “A.5.2” Name= “FName”>

 <Attribute ID= “A.5.5” Name= “Event_Assigned”>

<Attribute ID= “A.5.6” Name= “No._of_Event_Play”>

 </Attributes>

 </Entity>

 </Entities>

 <Relationships>

 <Relationship ID= “R.1” Type= “1-m” E1= “A.2” E2= “A.4”>

 <Relationship ID= “R.2” Type= “1-m” E1= “A.2” E2= “A.3”>

 </Relationships>

 <Instances>

 <Instance ID= “” />

 ….

 </Instances>

</ERD>

Fig. 3. Xml file format

Following rules were used to mark the entities existing in

the given example text.

Rule: PersonAttribute

 (

{Lookup.majorType == personattributes}

): personattributes

(

{TempPerson}

): person

-->

: personattributes.PersonAttribute = {rule = “PersonAttribute"},:

person.Person = {kind = "personName", rule = “PersonAttribute"}

Rule: PersonEntity

 (

({Lookup.majorType == Person}): Person

)

-->: Person.Name = {kind = “Person", rule= PersonEntity}

Rule: LocationEntity

 (

({Lookup.majorType == location}): location

)

-->:location.Name = {kind = "location", rule= LocationEntity}

Rule: Offical_fName

(

{Lookup.majorType == fName }

): Offical

-->

:Official .fName = {rule = "Official_fName ", type

= :Official.Lookup.minorType}

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

168

4) Semantic tagger

5) Gazetteer

6) Orthographic Coreference

7) Modeling Entities and Relationship into XML

Fig. 4. Marked entities‟ attributes

After the input document is processed, its output is stored

in the form of XML, with marked entities and relations;

ERD Generation module takes xml file as input and draws

the ER diagram as shown in Fig. 5.

Fig. 5. ER diagram generated as output

As ERD represents the logical data-model on any

relational database, it can be easily transformed into

physical model i.e into a relational database. Marked entities

represented in ERD are transformed into table and attributes

of that entity becomes the field of that table. Relations

between different entities are used to represent the relations

between the tables, representing those entities, as their

primary or foreign key. Once database is created, it can be

further operated on to find the behavioral model of the

generated database attributes in form of their access

methods. This can further help in generation of other UML

diagrams like Object Diagram, Class Diagram and

Interaction Diagrams etc.

V. CONCLUSION AND FUTURE WORK

In the paper, we have presented a simple system for the

generation of ER Diagrams through the textual document

generated during the software development life cycle.

UMagic can be helpful in making the project development

life shorter. It is user friendly and can be used to store

information semantically. The modular approach of the

UMagic allows the provision of integration with other tools.

For instance, the functionality of UMagic can be extended

by providing TabletERD as its plug-in. The TabletERD will

ease up the transition of logical model to the physical

models through automated generation of database script.

The architecture of UMagic is shown to be extensible, in

order to cater for the whole array of UML diagrams. As the

work presented here processes the text semantically, we

intend to work on behavioral aspects of these UML

diagrams.

ACKNOWLEDGMENT

We are very thankful to Ayesha Lone, Fabeha Pasha and

Umer Saleem, students of Computer Science & Engineering

department, University of Engineering & Technology,

Lahore, Pakistan. These students helped in practical

implementation of this paper.

Rule: EventAttribute

 (

{Lookup.majorType == eventattributes}

): eventattributes

(

{TempEvent}

): event

-->

: EventAttributes.EventAttribute = {rule = “EventAttributes"},

: event.Event = {kind = "eventName", rule = “EventAttribute"}

Rule: EventEntity

 (

({Lookup.majorType == Event}): Event

)

-->:location.Name = {kind = "Event", rule= EventEntity}

{TempEvent}

): event

-->

: EventAttributes.EventAttribute = {rule = “EventAttributes"},

: event.Event = {kind = "eventName", rule = “EventAttribute"}

): location

-->

: LocationAttributes.LocationAttribute = {rule =

“LocationAttribute"},

: location.Location = {kind = "locationName", rule =

“LocationAttribute"}

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

169

REFERENCES

[1] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, C. Ursu, M.

Dimitrov, M. Dowman, N. Aswani, I. Roberts, Y. Li, A. Sha_rin, and

A. Funk, Developing Language Processing Components with GATE,

Version 6, User Guide.

[2] J. Rilling, R. Witte, D. K. Gašević, Z. J. Pan, Semantic Technologies

in System Maintenance, 2008.

[3] M. Penelope, R. Maria, S. Spiros, Knowledge Mining: A Quantitative

Synthesis of Research, Results and Findings, 2005.

[4] Entity-relationship model. [Online]. Available:

http://www.en.wikipedia.org/wiki/Entity relationship_model

[5] Understanding Entity Relationship Diagrams Introduction. [Online].

Available:

http://www.folkworm.ceri.memphis.edu/ew/SCHEMA_DOC/compari

son/erd.htm

[6] R. Elmasri and S. B. Navathe, Fundamentals of databse systems 4th

Edition.

[7] C. P. PETER. (1976). The Entity-Relationship Model - Toward a

Unified View of Data. [Online].

Available:http://www.en.wikipedia.org/wiki/unified_modeling_langu

age

[8] S. Xu, Y. Li, and S. Lu, ERDraw: An XML-based ER-diagram

Drawing and Translation Tool.

[9] S. Sok and C. Scharff, “Work in Progress: Database Design with

TabletERD,” in Proc. of Frontiers in Education Conference, 36th

Annual, pp. 20-29, 27-31 2006.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.1085&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.1085&rep=rep1&type=pdf

