

DOI: 10.7763/IJCTE.2013.V5.663 138

Abstract—Businesses and research establishments are

increasingly turning to Free and Open Source software (FOSS)

as a means to lower software development, acquisition, and

deployment costs. However, software quality and security

remains key stumbling blocks to full scale FOSS adoption and

deployment. Yet improvement in the quality and security of

FOSS depends on the rate at which a community of volunteers

report and fix bugs. The aim of this research is to understand

the community governance of the bug reporting and fixing

process. We link data obtained from bug tracking systems,

source code repositories, and mailing lists and applied various

metrics to investigate the dynamics of bug communities in 285

projects. The results of our study show that the identity of bug

reporters or fixers, the size of the bug community and code are

key factors in ensuring quality software. The implications of

these findings for bugs governance, software and code quality,

empirical research difficulties, and future research directions

are also discussed.

Index Terms—Open source software projects, open source

communities, software bugs, software quality.

I. INTRODUCTION

A multitude of interrelated factors are contributing to the

upward trend in global adoption and utilization of Free and

Open Source Software (FOSS) [1]. Some of these factors

include: an alternative Bazaar style of developing software

which harnesses diverse talents of globally distributed teams

of developers, freedom from vendor lock-in, lower total cost

of ownership and hybrid business models opportunities, and

learning and knowledge sharing prospects [2]. However,

even though there is continued improvement in the quality of

FOSS [3], the adoption and integration of FOSS technologies

and services into the operation of businesses is largely

hampered because many users have little confidence and trust

in the quality and security of FOSS. Since the wish of every

software user is to have a reliable application which is free of

bugs, then the presence or lack of bugs is one among many

measures that can help us determine the quality and security

level of a given piece of software.

A bug is an undesirable companion of any software, and

the process of debugging has a crucial role in ensuring that

Manuscript received June 6, 2012; revised July 10, 2012. This research is

funded by the Japan Society for the Promotion of Science (JSPS),

Grant-in-Aid Number: P10807.

S. K. Sowe is with JSPS and United Nations University (UNU),

UNU-IAS, Yokohama, Japan (e-mail: sowe@ias.unu.edu).

R. A. Ghosh and K Haaland are with UNU-MERIT, Maastricht, The

Netherlands (e-mail: haaland@merit.unu.edu; haaland@merit.unu.edu).

the number of bugs is kept to minimum. Bugs and debugging

are an integral part of FOSS development and many projects

are hailed for the rate at which volunteers contribute to this

process. It is argued that the iterative nature of this process

leads to the evolution, improved quality, and reliability [3], [4]

of the software. The importance of finding, reporting, and

fixing bugs in FOSS is well captured in Linus’ law [5], which

states;”Given enough eyeballs, all bugs are shallow”. The

law assumes that for any bazaar-style project with large

enough testers or bug reporters and fixers, almost every

problem or bug in the software will be spotted and fixed

quickly.

A lot of research exist which sheds light on the FOSS bug

reporting and fixing process. However, most research

concentrates on a limited numbers of projects. We posit that

data from a single repository (e.g. bug tracking systems alone)

from one or two projects will most likely not give a

comprehensive picture of the dynamics of the debugging

process. As pointed out by Zhenmin Li, et al. [6], “small

number of bugs [and projects] may lead to non-representative

results”. Furthermore, depending on the project’s technical

infrastructure, bugs may be found in any repository, or even

as attachments to code snippets [7]. This makes it difficult not

only for researchers intending to link data from multiple

repositories but also for quality assurance teams to track both

bugs and people involved in bug reporting and fixing.

In this research, we obtained dumps and link data from

three repositories (bug tracking systems, source code

management systems (SVN), and mailing lists) maintained

by 285 FOSS projects in the FLOSSMetrics database [8].

Using various metrics we analyze the community structure

governing the bug reporting and fixing process. In this

structure, we expect the identity of individuals reporting and

fixing bugs, and the status of bugs are all related and will

affect, in some way, the dynamics of the bug reporting and

fixing process. Furthermore, we hypothesize that as the code

base of a project grows, so is the chance of the software

becoming buggy. The bug reporting and fixing activity may

also increase exponentially. Thus, we are also interested in

investigating whether there is any significant relationship

between project size in terms of Source Lines of Code

(SLOC) and the number of bugs reported and fixed.

The rest of the paper is structured as follows. In section 2

we provide the background and work related to our research.

Our research methodology and data sources are presented in

section 3. Our data analysis and results are discussed in

section 4. We conclude our research and present our future

work in section 5.

A Multi-Repository Approach to Study the Topology of

Open Source Bugs Communities: Implications for

Software and Code Quality

Sulayman K. Sowe, Rishab A. Ghosh, and Kirsten Haaland, Member, IACSIT

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

139

II. BACKGROUND AND RELATED WORK

The bug reporting and fixing process proves to be a

dynamic and complicated process involving both software

developers and users. Understanding the complex interplay

between bugs and community of volunteers may help us

better manage and allocate projects’ human resources, gauge

the quality of the software, improve bug triage, and design

new and improve existing tools for bug detection [9], [10]

and reporting.

Furthermore, this research will provide insight into the

FOSS development process by helping us understand who is

reporting what types of bugs, who is communicating with

whom and is fixing which bug. FOSS project managers and

quality assurance teams may find the results of this research

useful in helping them understand and plan software

debugging issues. For FOSS users and businesses, such

findings may increase their confidence and trust in the quality

and security of FOSS.

Many researchers contributed to FOSS body of knowledge

by investigating the relative time it takes to fix bugs [11], [12],

characterizing bugs according to types of errors [13],

classifying defect-prone files [14], helping us understand the

role of developers in the bug fixing process [15], proposing

ways of coping cope with problems associated with opening

up bug repositories [16], and investigating the structure and

the coordination practices adopted by development teams

during the bug-fixing process. However, while each project

is unique, data from one or two projects will most likely not

give us a comprehensive picture of the complex bug

reporting and fixing process. A review of the research

literature on FOSS bugs (Table I) shows that researchers,

with the exception of [15], study one or two, at most, nine

projects [17]. Thus, a relatively large sample of projects may

yield an added dimension that would have been difficult to

observe from a small number of projects. Furthermore,

researchers need to leverage the wealth of bug information

available across repositories and apply cyber-archaeology to

help them link bugs data available not only in bug databases,

but also in source code repositories and mailing lists.

TABLE I: SOME RESEARCH IN FOSS BUG REPORTING AND FIXING

Projects

studied
Bug tracking tool Summary

Mozilla/

Apache [6]

Bugzilla Cause of bug, software

component affected.

Nine

projects [17]

JIRA,SourceForge,

Bugs Sys+

Performance characteristics of

the bug fixing process.

Mozilla [14] Bugzilla Different bug fixing regimes.

JBoss [12] JIRA Effort spent fixing bugs.

Firefox [18] Bugzilla Bug report quality and triage

time.

Eclipse,

Firefox [19]

Bugzilla What is stored in and how bug

repositories are being used.

Eclipse [9] Bugzilla XML Predict the time to fix a bug.

300 projects

[15]

SourceForge bug and

issue tracker

Understand the role of core

developers in FOSS

development

III. RESEARCH METHODOLOGY

Fig. 1 outlines the methodology employed in this research;

showing datasources, metrics applied to each datasource, and

MySQL queries paths performed to obtain the metadata

required for our analysis. The primary data comes from the

FLOSSMetrics project database. FLOSSMetrics uses tools to

analyze and maintain three public repositories; source code

management systems (SCM), mailing lists, and bug tracking

systems (BTS). For each repository, MySQL dumps were

downloaded and restored into a local database. The metrics in

Table II were then composed from each datasource and

stored as n-tuples in four MySQL tables. Each table was

queried and the results compared to provide the data needed

for our analysis. From the FLOSSMetrics database, 285

projects with a complete set of data from the three

repositories were selected for our study.

Fig. 1. Outline of research methodology

TABLE II: METRICS DEFINITION

Metric name Description How calculated

N_bugs Number of bugs per

project.

From bugs table, for each

project, count the number of

bugs reported.

N_submitters The number of bug

reporters per project.

From changes table, for each

project, count the number of

bug reporters.

SLOC Total source lines of

code in a project.

Select SLOC count for each

project in the metrics table.

nposters Total number of

mailing lists posters

in a project.

From ml table, count all

posters in the mailing list of

each project.

The bugs table contains general information about bugs

(bugID, date submitted, status, priority, assigned to whom,

submitted by who). The changes table contains information

on the changes a unique bug (bugID) underwent during its

life cycle. For example, which field in the bugs table about

this bug has changed; what the old value was; the date the

changes were made; and who submitted those changes. The

SCM metrics table contains commits and committers as well

LOC and SLOC counts. For the mailing lists data, for each of

the 285 projects, *.sql files dumps were downloaded and

stored into the mailing list (ml) table. The methodology

described in [2] was used to list the total number of posters

for each project.

IV. RESULTS AND DISCUSSION

A. Exploratory Study

Few studies exist which attempts to link data from multiple

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

140

FOSS repositories of this nature. Thus, we begin our data

analysis with an exploratory study that leverages the

conceptual framework shown in Fig. 2. An exploratory study,

according to [20], is undertaken when not much information

is available on how similar research issues have been solved

in the past.

Fig. 2. Conceptual research framework for analyzing the dynamics of bugs in

foss projects.

The framework in Fig. 2 presupposes bugs can be found in

all of the three repositories. A ” bug community” is

composed of bug reporters and fixers and may involve the

participation, at varying degree, of passive and active users,

and developers and co-developers. As such, our analysis

explores bug reporting and fixing from the perspective of

three communities in bug tracking systems, source code

versioning systems (CVS/SVN), and mailing lists. These

communities and their activities are analyzed in this research.

It is hoped that our research results can be feedback to FOSS

projects and communities to improve resource management

and allocation, offer insight into software and code quality,

aid quality assurance teams in bug triage, help improve the

design of debugging tools, among others.

TABLE III: DESCRIPTIVE STATISTICS OF METRICS

 N_bugs N_submitters nposters SLOC

Mean 330.82 2.97 13.23 1128243.52

Median 110.00 2.00 2.00 89678.00

Std. Dev. 559.075 3.585 109.703 8295727.602

Kurtosis 14.533 35.264 3486.792 209.490

Maximum 4096 69 12699 130174261

N valid 94285 47653 996694 321549402

As shown in Table III, 996694 (mean=13.23) mailing lists

posters and 47653 (mean=2.97; Std. Deviation = 3.585) bug

reporters contributed a total sum of 94284 bugs (N_bugs) to

the 285 projects. The mean bug per project was 330.82 (Std.

Deviation = 559.075). The projects average over 1128

KSLOC per project (Std. Deviation = 89678.00). The box

plots in Fig. 3 compare the distribution and skewness of the

data in each metric. In comparison, it can be seen that the

SLOC and mailing lists data are much skewed, with extreme

values and outliers.

B. The Topology of Bug Communities

A lot of effort is invested in helping improve the

management, reporting, and resolution of bugs in FOSS

projects. Given that software is prone to bugs, perhaps we

can reduce the bugginess and speed up the debugging process

by understanding the way bug communities in various

projects work. Bug reports usually have the ”identity” of the

persons involved in bug triage; who submitted the bug, to

whom the bug is assigned to, and who fixes the bug. In

defining the topology of bug communities, we identified five

groups of people and computed their percentage presence in

the projects (Table IV):

 Group 1: Non anonymous bug submitters whose bugs
are assigned to non anonymous individuals;

 Group 2: Anonymous submitters;

 Group 3: Anonymous individuals whose bugs are
closed;

 Group 4: Anonymous bug submitters whose bugs are
assigned to anonymous individuals;

 Group 5: Anonymous individuals whose bugs get
deleted.

 Fig. 3. Distribution of the data (y-axis in log scale).

TABLE IV: IDENTITIES AND STATISTICS OF PEOPLE IN BUG COMMUNITIES

Identity Mean Median Std. Dev. Max. Sum % in

proj

Group 1 168.56 40.00 334.200 2738 37589 78.25

Group 2 92.97 20.50 208.896 1786 23428 88.42

Group 3 70.41 17.00 171.276 1643 16053 80.00

Group 4 67.43 14.00 166.654 1424 16183 31.92

Group 5 13.43 3.00 29.753 207 1222 84.21

Bug tracker community vs debugging activity: It is worth

noting, as shown in Equation 1, the almost mirror image (P)

of some of the groups. In 78.25% (N=223) of the projects non

anonymous bug submitters (known identities) have their

bugs assigned to non anonymous (Group 1).

5_

4_

3_

1_
:

Group

Group

Group

Group
P

The mean number of non anonymous bug submitters

whose bugs are assigned to non anonymous individuals is

168.56 (Std. Dev. = 334.200). Furthermore, over 92% of

those assigned bugs in this group were found to belong to

members listed in their respective project’s team. We suspect

that there is some kind of “bugs trading” between the core or

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

141

developer team members. The mean number of anonymous

bug submitters, Group 2, in 88.42% (N=252) of the projects

is 92.97 (Std. Dev. = 208.896). This means that most bug

submitters prefer to remain anonymous. However, in 80%

(N=228) of the projects anonymous bug submitters (Group 3)

have their bugs closed (mean= 70.41, Std. Dev. = 171.276).

While in 31.92% (N=91) of the projects anonymous bug

submitters, Group 5, (mean= 13.43, Std. Dev. = 29.753) had

their bugs deleted. Furthermore, in 84.21% (N=240) of the

projects, anonymous bug submitters (Group 4) have their

bugs assigned to anonymous individuals in the projects’ bug

communities.

Mailing lists community vs debugging activity: To study

the relationship between mailing lists community size and the

number of bugs reported, we first counted the total number of

posters in the developers’ mailing lists of all the 285 projects.

We obtained 5448 posters. The mean and mode poster per

project are, respectively, 19.12 and 3.00 (Std. Dev. = 86.598).

Second, for each project we compared the total number of

bugs reported with the total number of posters.

Nonparametric correlations shows a significant relationship

with ρ = 0.790 (p < 0.001). The scatter plot in figure 4 shows

the relationship fit with R2 = .922. This seems to indicate that,

even though not all mailing lists activities may involve bug

reporting [21], a project with a large poster community will

be better position to cultivate bug reporters.

Fig. 4. Relationship between number of bugs and mailing lists participants

(both axis in log scale).

C. Projects Size (in terms of SLOC) vs. Number of bugs

In investigating the relationship between projects SLOC

size and the number of bugs, we mapped each project’s

SLOC data with its corresponding bug’s data. The outcome

shows a significant correlation, with Pearson r = 0.636, and

Kendall’s tau_b = 0.998 for the ranked values (for both

values, p = 0.01). Furthermore, curve estimation regression

statistics was applied to model the relationship between the

two variables. Fig. 5 shows the regression, model fit, and

linearity equation for lnSLOC (transformed).

A linear and quadratic model explains 90% (R2=0.900) and

95.2% (R2=0.952), respectively, of the variability. Although

R2 for the quadratic model is larger, it is not clear whether this

is due to the model dependence on the extreme large SLOC

values or on chance with extra parameters in the model fit.

These results show that with increase growth in the code base,

the chance of the software becoming buggy also increases.

V. CONCLUSION

In this paper we have presented a methodology which

utilized data from multiple repositories (bug tracking,

CVS/SVN, mailing lists) and a conceptual framework to

investigate and map out communities involved in the bug

reporting and fixing process in 285 FOSS projects. Using

various metrics and statistical measures, we discussed the

topology of bug communities by revealing the identities

(anonymous and non anonymous) people assume in the bug

reporting and fixing process. Furthermore, we grouped

people in bug trackers and quantified their contribution to the

debugging process. Mailing lists community size was found

to correlate significantly with the number of bugs in a project

(r = 0.790). We established, with 90% certainty (R2=0.900),

that project size in terms of SLOC is highly correlated (r =

0.636) with the number of bugs.

While this study is not without its limitations, the results

may serve as an entry point in helping us understand the

dynamics of bugs’ communities in FOSS projects. Software

testing and debugging tools play a fundamental role in

software development. However, we believe that

understanding, nurturing, and supporting the activities of bug

communities is an essential endeavor project managers or

module maintainers must undertake to ensure quality

software is delivered to users. In this regard, our research

may serve as the starting point in helping us understand the

implications bug communities have for software and code

quality.

VI. FUTURE WORK

First, there are few large projects in our sample; some are

one-person endeavours. Therefore, we plan to repeat this

study with a large FOSS project (e.g. Apache) to see if the

finding in this research can be generalized. Second, we are

using this research as a base to investigate “bug networks” in

which two or more projects (say i and j) are linked by a bug

reporter (r) if s/he reports k bugs in both projects. Then we

can compute λ = k*i + k*j +…kn, to give us the number of

Fig. 5. Linear and quadratic regression models showing the

relationship between in SLOC and number of bugs.

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

142

bugs r contributes to projects i and j. Such a network will

enable us identify star or linchpin bug contributors and add

value to our understanding of the dynamics of bug

communities.

ACKNOWLEDGMENT

We are grateful to the FLOSSMetrics consortium for

providing us the data used in this research. We are greatly

indebted to the 3rd IEEE International Conference on

Information Management and Engineering (IEEE ICIME

2011) anonymous reviewers for their constructive comments

and suggestions which helped us improve the quality of the

earlier version of this manuscript.

REFERENCES

[1] S. K. Sowe, I. Stanelos, and I. Samoladas, Emerging Free and Open

Source Software Practices, Hershey, PA, USA: IGI Global, 2008, pp.

VIII.

[2] S. K. Sowe, I. Stamelos, and L. Angelis, “Understanding Knowledge

Sharing Activities in Free/Open Source Software Projects: An

Empirical Study,” Journal of Systems and Software, vol. 81, no. 3, pp.

431–446, March 2008.

[3] D. Spinellis, G. Gousios, V. Karakoidas, and P. Louridas, “Evaluating

the Quality of Open Source Software,” Electron. Notes Theor.

Computer Science, vol. 233, pp. 5-28, March 2009.

[4] J. M. Dalle and M. Besten, “Different bug fixing regimes? a

preliminary case for superbugs,” in Feller, J. Fitzgerald, B.; Scacchi,

W.; Sillitti, A. (Eds.), Open Source Development, Adoption and

Innovation, vol. 234, 2007, pp. 247–252.

[5] E. S. Raymond, The Cathedral & the Bazaar, O’Reilly, 1999.

[6] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things

changed now?: an empirical study of bug characteristics in modern

open source software,” in Proc. of 1st workshop on Architectural &

system support for improving software dependability, San Jose, CA,

USA, 2006, pp. 25–33.

[7] B. Christian, G. Alex, and D. Prem, “Detecting patch submission and

aceptance in oss projects,” in Proc. of 29th Int. Conf. on Software

Engineering Workshops, Washington, DC, USA 2007, pp. 26.

[8] xFLOSSMetrics database. (2012). [Online], Available:

http://www.melquiades.flossmetrics.org/wiki/doku.php

[9] D. L. Panjer, “Predicting eclipse bug lifetime,” in Proc. of 29th

International Conference on Software Engineering Workshops

(ICSEW’07), Washington, DC, USA, 2007, pp. 29.

[10] B. Scozzi and K. Crowston, “Bug fixing practices within free/libre

open source software development teams,” Journal of Database

Management, vol. 19, no. 2, pp. 1–30, April 2008.

[11] S. Kim and J. Whitehead, “How long did it take to fix bugs?” in Proc.

of the international workshop on Mining software repositories,

Shanghai, China, 2006, pp. 173–174.

[12] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it

take to fix this bug?” in Proc. of the 4th International Workshop on

Mining Software Repositories, IEEE Comp. Society, Minneapolis,

USA, 2007, pp. 1–8.

[13] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for

eclipse,” in Proc. 3rd Inter. Workshop on Predictor Models in Software

Engineering, Minneapolis, USA, 2007, pp. 9.

[14] M. English, C. Exton, I. Rigon, and B. Cleary, “Fault detection and

prediction in an open-source software project,” in Proc. 5th Inter. Conf.

on Predictor Models in Software Engineering, Vancouver, Canada,

2009, pp. 1–11.

[15] J. Long, “Understanding the role of core developers in open source

development,” Journal of Information, Information Technology, and

Organizations, vol. 1, pp. 75–85, May 2006.

[16] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug

repository,” in Proc. of the OOPSLA workshop on Eclipse technology

eXchange, San Diego, California, USA, 2005, pp. 35–39.

[17] C. Francalanci and F. Merlo “Empirical analysis of the bug fixing

process in open source projects” Open Source Development,

Communities and Quality, vol. 275, 2008, pp. 187–196.

[18] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in Proc.

of 22nd IEEE/ACM international conference on Automated software

engineering, Atlanta, USA, 2007, pp. 34–43.

[19] J. Anvik and G. Murphy, “Determining implementation expertise from

bug reports,” in Proc. of the 4th International Workshop on Mining

Software Repositories, Minneapolis, USA, 2007, pp. 1–8.

[20] U. Sekaran, Research Methods for Business: A Skill Building

Approach, Chichester, U.K.: Wiley, April, 2006.

[21] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T.

Zimmermann, “What makes a good bug report?” in Proc. of the 16th

ACM SIGSOFT International Symposium on Foundations of software

engineering, Atlanta, USA, 2008, pp.308–318.

Sulayman K. Sowe holds a PhD summa cum laude

in Informatics from Aristotle University, Greece,

Advanced Diploma and MSc in Computer Science

from Sichuan University, China, BEd in Science

Education from Bristol University, UK, and a Higher

Teachers Certificate in Physics and Chemistry from

The Gambia College, The Gambia. He is currently a

JSPS and UNU Research Fellow in Yokohama,

Japan, a Visiting Scholar at the National Graduate

Institute for Policy Studies (GRIPS) in Tokyo, Japan, and Adjunct

Researcher at Waseda University in Tokyo, Japan. Dr. Sowe previously

worked as a Senior Researcher at UNU-MERIT, The Netherlands, and as a

Research Fellow at the Dept. of Informatics, Aristotle University in Greece.

He is IACSIT, IEEE, FOSSFA, ACM member.

He has a wide teaching experience in Computer Science, Software

Engineering, Research Methods, ICT4D, Mathematics, and Physics. His

research interests include Open Source Software Development, Knowledge

Sharing, Information Systems Evaluation, Social and Collaborative

Networks, Software Engineering Education, and ICT4D. He has publications

in numerous journals, serves in a number of academic, review, and program

committees. He is the co-editor of the two books: “Emerging Free and Open

Source Software practices,” IGI Global, 2008 and “Free and Open Source

Software and Technology for Sustainable Development,” UNU Press, 2012.

Rishab A. Ghosh started “First Monday,” the most

widely read peer-reviewed journal of the Internet, in

1995 with Ed Valauskas, Esther Dyson and Vint

Cerf. In 2000 he started the Collaborative Creativity

Group at the University of Maastricht, the

Netherlands, the leading research group on the

economics of free/open source software, Wikipedia

and other forms of collaborative innovation.

He has researched and published on reputation

works in online communities for over 15 years, collaborating with numerous

think tank and academic institutions including; Stanford, Oxford,

Cambridge, Tsinghua Universities, with grants from the US National Science

Foundation and European Commission. He was a board member of the Open

Source Initiative until 2010.

Kirsten Haaland is a Researcher at the Maastricht

Economic Research Institute on Innovation and

Technology in the Netherlands. She is a member of

the Collaborative Creativity Group (CCG), a

leading research group on open source software,

open content, and collaborative creativity and

innovation.

She has extensive project experience, including

FLOSSIMPACT focusing on open source on

innovation and competitiveness of the European Union, the EU-funded

"Free/libre/Open source software metrics and benchmarking study

(FLOSSMetrics)" and the "QUALity in Open Source Software” (QualOSS)

project. As an economist her responsibilities covers socio-economic analysis,

such as business models and strategies, and community dynamics.

