
 

  

 

 

 

  

 

 

 

   

 

 

 

 

  

 

    

DOI: 10.7763/IJCTE.2013.V5.660 123

 

Abstract—The use of multithreading can enhance the 

performance of a software system. However, its excessive use 

can degrade the performance. For example, a thread-per-job 

approach might lead to a large amount of threads with 

increased associated overheads. 

In this paper we explore the use of the Parallelism Viewpoint 

to support one possible strategy to reduce the number of 

threads, namely finding candidate threads that can be replaced 

by thread pooling.  Thread pooling reduces the large number 

of threads by reusing threads from an existing pool. As an 

example we analyze the threads of a precision critical 

parallelism-intensive electron microscope software system. 

Results show that the viewpoint provides a profound insight 

into the threading structure of the system, which helps in 

reducing the number of threads in a cost-effective way. And, 

the total time gain along with such reduction is encouraging. 

 

Index Terms—Multithreading, architecture viewpoint, 

parallelism viewpoint, software performance, thread pooling. 

 

I.  INTRODUCTION 

Multithreaded applications are considered to be more 

efficient because of their better software and hardware 

resource utilization provided by the parallel execution of 

tasks. Despite potential benefits, system designers should be 

careful while designing a thread model of the system. The 

excessive use of threads can degrade the system 

performance by enlarging the associated overheads [1]. 

Among these overheads are thread creation and deletion, 

context switching and increased thread management 

complexity. In this paper, we focus on the thread creation 

and deletion overheads.  

These overheads can be diminished by using thread 

pooling, which is an efficient multithreading technique. In 

thread pooling, a set of worker threads is created at system 

startup and is reused for various tasks. An optimal use of 

this technique is possible by using worker threads for shorter 

tasks.  

We use the Parallelism Viewpoint to identify threads in 

parallelism-intensive legacy systems that can be replace by a 

pool of threads. The Parallelism Viewpoint is an architecture 

viewpoint supporting visualizing and analyzing the 

parallelism of a system.  

The description includes identification of parallelism 

specific concerns, corresponding stakeholders and a set of 

model kinds to model those concerns. The general 

information on this viewpoint is described in a technical 

report [2]. This paper adds a detailed example of using the 

 
Manuscript received June 13, 2012; revised August 29, 2012. 

Naeem Muhammad, Nelis Boucke and Yolande Berbers are with the 

Department of Computer Science, Katholieke Universiteit Leuven, 

Belgium (e-mail: naeemmuhammad@gmail.com). 

viewpoint to identify potential threads for pooling. 

The motivation behind using the Parallelism Viewpoint 

for thread analysis is two-fold. First, architecture level 

analysis is a proven cost-effective approach that provides an 

opportunity to find and fix issues up-front in the system 

development [3]. Second, the Parallelism Viewpoint 

provides an in-depth understanding, not only about the 

thread behaviour but also about associated concerns and 

stakeholders. Such understanding is essential while making 

any change in the thread model. 

In this paper, we describe with the help of an industrial 

case how the Parallelism Viewpoint can be used to identify 

threads that are suitable to be replaced with a thread pool. 

The case is a large and complex parallelism-intensive 

software system used for electron microscopes. It is a client-

server distributed system whose design follows a 

component-based architecture. It runs on the Microsoft 

Windows XP operating system. Because of the 

heterogeneous nature of the machine, its devices come from 

multiple domains such as electronics, mechanics and 

physics. The software is responsible for data acquisition and 

control of these devices.  It has a large code base with multi-

million lines of code and employs several hundred threads to 

perform various microscopy functions. We believe that the 

performance of the software can be enhanced by reducing 

the number of threads. This can be achieved by replacing 

them with a small sized thread pool, provided that accurate 

threads are selected for such replacement. 

The remainder of this paper is organized as follows. In the 

next section we briefly describe the building blocks of 

Parallelism Viewpoint. We outline the analysis approach in 

section III and apply it on an industrial case in section IV. 

Section V contains related work, and finally in section VI 

we draw conclusions and state our future work. 

 

II. PARALLELISM VIEWPOINT 

The Parallelism Viewpoint is a domain-specific form of 

the concurrency viewpoint. The concurrency viewpoint 

provides support mainly for describing concerns related to 

the communication and synchronization mechanisms of the 

concurrent systems [4]. The Parallelism Viewpoint extends 

this support for concurrent systems by providing support to 

describe parallelism behaviour. 

Essentially, a viewpoint must explicitly describe the 

concerns of a particular domain, identify the stakeholders of 

these concerns and specify a set of model kinds [5]. In 

compliance to these requirements the description of the 

Parallelism Viewpoint consists of parallelism specific 

concerns, corresponding stakeholders and a set of five 

model kinds to model these concerns.  

Following are the concerns for thread pool analysis, 

Using the Parallelism Viewpoint to Optimize the Use of 

Threads in Parallelism-Intensive Software Systems 

Naeem Muhammad, Nelis Boucke, and Yolande Berbers 

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013



 

 

 

 

 

 

 

 

 

 

 
 

 

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

124

which we identified through extensive interaction with 

various stakeholders of the electron microscope system, 

domain experts and researchers from the parallelism domain. 

Number of tasks: Total number of tasks (operations) 

performed by a thread in some selected scenarios. 

Total time: Total time consumed by a thread during its 

life in some selected scenarios. 

Number of threads: Total number of threads employed by 

a system to perform some functionality in some selected 

scenarios. 

Thread active/idle behaviour: Active and idle pattern of a 

thread during its life cycle for some selected scenarios. 

System architects, developers and testers are among the 

stakeholders who hold these concerns. System architects, 

while designing or altering the thread model should have a 

clear understanding about these concerns. It is vital for a 

developer to recognize these concerns as he is responsible 

for the actual realization of the thread model. Testers, on the 

other hand, look into the system for these concerns to 

identify possible performance bottlenecks caused by threads.  

The model kinds include: Time distribution, Task 

distribution, Thread behaviour, Task types and Thread 

management. We make use of the first three model kinds in 

this research work because they address the above concerns. 

In the following subsections we briefly describe these 

models whereas a comprehensive description covering all 

aspects of the viewpoint is given in [2].  

A. Time Distribution Model Kind 

Threads which are the basic units of execution use their 

quota of CPU time to perform their tasks [6]. Time 

distribution is a model kind that illustrates the total time 

used by every thread in a system over a period of time. 

Since the devised approach is scenario based, a single 

instance of this model kind shows the time distribution 

across threads for a particular scenario. Stakeholders can use 

this model to analyze a system for the total time and number 

of threads concerns. Fig. 1. shows an instance of this model 

kind. Along the horizontal axis it shows the threads running 

in the system, whereas a vertical bar represents the total 

amount of time consumed by a thread.  

 

Fig. 1 Time distribution model kind 

B. Task Distribution Model Kind 

A system makes use of multiple threads to distribute its 

workload. The task distribution model kind portrays this 

distribution. It shows the total number of tasks performed by 

every thread of the system. Similar to the time distribution, 

this model kind also depicts distribution for a particular 

scenario. Primarily, it addresses the number of tasks concern 

in the viewpoint. Task distribution can be analyzed to 

identify threads performing too many tasks and those with a 

very small number of tasks. Fig. 2. contains an instance of 

the task distribution model kind. The horizontal axis shows 

threads in the system, whereas vertical bars represent the 

total number of tasks performed by each thread. 

 

Fig. 2. Task distribution model kind 

C. Thread Behaviour Model Kind 

Along with the overall distribution of time across threads, 

it is important to understand the active/idle behaviour of the 

system threads. This determines how important a thread is, 

at least from the timing perspective. Thread behaviour is a 

model kind that portrays this behaviour by showing 

activities of a single thread performed during its life cycle. It 

is mainly used for analyzing a system for the thread 

active/idle behaviour concern of stakeholders. 

 

Fig. 3. Thread behaviour model kind 

Similar to the previous model kinds it also illustrates 

thread behaviour based on a particular scenario. An instance 

of this model kind is shown in Fig. 3. Horizontally, the 

model kind shows the sequence of Active (A) and Waiting 

(W) times of a thread whereas vertically it represents the 

total active and waiting times.  

 

III. USING THE PARALLELISM VIEWPOINT FOR THREAD 

POOL ANALYSIS 

Fig. 4. illustrates an overview of our analysis approach. 

The approach primarily consists of two processes, thread 

pool analyzer and validation. These processes utilize the 

Parallelism Viewpoint models to prepare a prioritized list of 

threads suitable to be replaced with a thread pool. Hereunder 

we discuss these processes, their inputs and outputs. 

 

Fig. 4. Thread pool analysis approach 



 

   

  

 
   

 

 
 

 

 

 

 

 

 

  

   

     

     

 
  

    

 

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

125

The analysis starts with developing the time distribution, 

task distribution and thread behaviour models; the process 

of developing them is described in [2]. Instances of these 

models for our example research case are shown in figure 1, 

2 and 3.  

We propose developing these models for multiple and 

related scenarios, in order to better understand the thread 

behaviour [7]. Multiple scenarios are important to 

understand the behaviour for various user actions. Whereas 

related scenarios help in distinguishing threads performing 

similar tasks from others. Such distinction is important and 

is used while designing thread elimination strategy.  

Thread pool analyzer: An automated process that uses the 

above models to prepare a candidate list of suitable threads. 

The list is prepared based on the total CPU time consumed 

and the number of tasks performed by a thread.  

An optimal use of thread pooling is possible with small 

sized tasks [13]. Furthermore, worker threads of a pool are 

efficient when used for a short period of time. Therefore, in 

this process the analyzer filters threads consuming a small 

amount of total time and performing very few tasks. 

Assigning values to these parameters is very specific to the 

application under investigation. The input from stakeholders 

discussed in the previous section is needed for this purpose. 

In this paper, for our example case we set a 100 

milliseconds (ms) limit for the total time consumed and 100 

for the total number of tasks performed per thread. These 

values are very small as compared to the average total time 

consumed and the total number of tasks performed by the 

threads in the system. 

The candidate list consists of all the threads meeting these 

timing and number of task limits. 

Validation: The validation process uses the thread 

behaviour model, developed for every thread in the list in 

the first step, to assign it a priority. For every thread, its 

behaviour models from all scenarios are analyzed together 

to find any change in its behaviour.  

In principle all threads in the list can be replaced with a 

pool consisting of a small number of threads because they 

meet the limits set in the previous step. However, these 

threads may vary in the degree of change in their behaviour 

for different scenarios. A thread is perfectly suited for 

elimination if its behaviour remains constant for every 

scenario, otherwise not. We introduce three levels of 

priorities for threads, which are assigned based on the level 

of change in their behaviour for all selected scenarios. Table 

I contains the description of these priorities. 

TABLE I: PRIORITY CRITERIA 

Priority Description 

3 
No change in thread behaviour (task & time) for all 
scenarios 

2 
Small increment in the total  number of tasks, regardless of 
any change in the total time 

1 

Major increment in the total number of tasks, regardless of 

the change in the total time. 

We assign priority 2 to those threads that have less 

increment in their tasks. Because, any increase in the 

number of tasks introduces extra thread scheduling, that 

represents an increase in thread activity. A thread with a 

major increment in the number of tasks will be assigned 

priority 1.  

We do not consider the total time as a varying factor 

because an increase in it will not produce any overhead as 

compared to any change in the total number of tasks. It is 

likely that a thread may consume additional time for one or 

more of its tasks, without requiring extra CPU allocation. 

The change in the total time and total number of tasks does 

not however exceed the defined limits, for our example case 

100 ms and 100 tasks. 

The outcome of this process is a prioritized list of threads, 

which can be used to eliminate threads in the list and replace 

them with a pool having a smaller number of threads. A 

thread with a higher priority of 3 is most suitable for 

elimination whereas a priority 1 thread is least fit. Priority 2 

threads, depending upon the agreement among stakeholders 

identified in section II, can either be eliminated along with 

priority 3 threads or spared. 

 

IV. THREAD ANALYSIS APPLICATION  

In this section we describe the use of the proposed 

analysis for our example case and discuss its results. 

We used a set of three related scenarios, (scenario A) 

system startup, (scenario B) moving the specimen to a 

certain position in the microscope and (scenario C) bringing 

it back to its home position. The startup scenario is 

significant because it helps in identifying unnecessary 

initialization of threads at inception stage. The other two 

representative scenarios represent a very important function 

of an electron microscope. That is, to move the specimen to 

various positions. 

As stated earlier the analysis starts with developing the 

time and task distribution models. Figure 1 and 2 show two 

of these models we developed for scenario B, for the 

electron microscope software. The models provide clear 

understanding about the time and task distribution of the 

system for scenario B. We can observer from these models 

that most of the threads are consuming no CPU time. 

Furthermore, majority of the threads are performing very 

few tasks. 

The thread pool analyzer uses these models to prepare a 

list of candidate threads. The list contains threads which 

consumed a total time less than or equal to 100 ms and 

performed a total number of task less than or equal to 100. 

The outcome of this process is a list containing all the 

threads meeting these limits, shown in Table II.  

TABLE II: NUMBER OF THREADS MEETING THE TIME AND TASK LIMITS 

 
Scenari

o A 
Scenari

o B 
Scenario 

C 
Tota

l 

Total Threads 17 29 30 76 

Threads  
(time<=100ms & task<=100) 

13 17 17 47 

We can observe from the candidate list that the total 

number of threads in the system increases as the utilization 

of the system advances. Interesting to note is the increase in 

the number of candidate threads, pointing out amplification 

of the thread creation and deletion overheads. In every 

scenario we find more than 50% threads meeting the set 

time and task limits. This behaviour remains consistent even 

when tightening the limits. 



 

   

 
 

 
 

    

    

    

    

    

    

    

    

    

 

 

  

 

 

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

126

The validation process assigns a priority to every thread 

in the candidate list by monitoring any change in its 

behaviour in all three scenarios. Such changes are monitored 

by using the thread behaviour model; figure 3 shows an 

instance of the model of our example case for scenario B.  

Table III contains a prioritized list for the electron 

microscope software. Thread ID represents the actual id of 

the thread given by the operating system whereas the 

Priority column represents the assigned priority.  

TABLE III: PRIORITIZED THREAD LIST 

Thread 
ID 

Priority Thread 
ID 

Priority 

708 3 3552 3 

1056 3 3776 1 

1660 3 3796 2 

2528 3 3808 2 

2536 3 3952 3 

2560 3 3964 3 

2592 3 3996 2 

3652 3 4080 3 

3676 3   

The majority of the threads in the list have priority 3, 

representing that their behaviour remains constant. For 

thread 3776 we found a major increase in the number of 

tasks it performed. It performed 5, 25 and 35 tasks in 

scenario A, B and C respectively. We assigned it priority 1, 

therefore is not eligible for replacement. Threads 3796, 3808 

and 3996 have a small increment in the number of tasks they 

performed as compared to the priority 1 thread. Therefore, 

they are assigned priority 2. Threads 3808 and 3996, 

although have priority 2, we observed that the change in 

their number of tasks is very small. Therefore, we find it 

suitable to replace these threads along with priority 3 threads. 

Thus, in total we find 15 threads suitable to be replaced with 

thread pooling. We show a limited prioritized thread list in 

table 3. In the complete list, more than 60% of the threads 

hold priority 3. Note that, any change in thread behaviour in 

the case of priority 1 and 2 threads, always remains within 

the defined time and task limits. 

Now that we have identified threads that can be replaced 

by a pool of threads, the next step is to find a suitable size of 

the pool. Finding an optimal size to maximize the expected 

gain is still a challenging task.  

We estimate the pool size based on the total number of 

tasks performed by all the eligible threads and the average 

number of tasks performed by a thread in the system. For 

our example case, the total number of tasks performed by all 

15 threads eligible for replacement is 209. And, the average 

number of tasks performed by a thread in the system is 268. 

The number of total tasks performed by all the threads 

that are to be replaced is less than the average number of 

tasks performed by a thread in the system. In principle a 

single thread can be employed to perform 209 tasks. 

However, in order to consider the concurrent execution of 

tasks we must have at least two threads. Therefore we can 

replace in total 15 threads (with priority 3 and 2) with a pool 

of 2 threads. 

We can estimate the total gain by using a formula given in 

[8]. Total Gain= c1.r-c2.n. Where c1 represents the thread 

creation and deletion time, c2 is the time taken for a single 

context switch, r is the current total number of threads in a 

system and n represents the number of threads in a pool. In 

our case r =15, the total number of threads we want to 

replace, and n =2 as we use a pool of two threads. Thus, 

Total Gain = c1.15-c2.2. 

The actual value of r for the electron microscope is very 

high as the total number of threads in it reaches several 

hundreds and we found that the number of threads eligible 

to be replaced is proportional to the number of threads in the 

system. 

Considering the fact that the context switch overhead is 

less than the thread creation and deletion overhead (c1> c2) 

we can observe a clear gain from the equation. The gain 

boosts as the number of threads in the system increases, 

such as in the case of our example system. 

The results of the analysis indicate that the Parallelism 

Viewpoint provides a profound insight into the thread 

structure of the system. Such insight can be used to analyze 

a system for many threading related concerns. 

 

V. RELATED WORK 

Performance optimization of multithreaded software 

systems is a well-established research area. A variety of 

optimization methods and techniques looking at different 

aspects of performance are available and/or being developed. 

Flanagan et al. [9] proposed a modular approach called 

Calvin for analyzing the thread behaviour of multithreaded 

software systems. They analyze the system behaviour by 

performing modular checking of each procedure call made 

by threads present in the system. Also, Li and Malony [10] 

diagnose the performance bottlenecks of parallel 

applications with the help of a model-based diagnosis 

framework called Hercule. In this paper, we also analyze the 

runtime behaviour of threads to optimize the software 

performance. In contrast to the above two approaches we 

perform the architectural level analysis by using the 

Parallelism Viewpoint. We believe that analyzing non-

functional requirements at architecture level is a cost-

effective approach. 

To achieve similar goals, Dean and Shen [11] presented 

an approach for integrating existing threads in order to 

reduce the total number of threads. In their work, they 

improve the performance of the system by overlapping the 

execution of multiple threads. To improve the performance 

by reducing the number of threads, our and Dean and Shen’s 

research work require a change in the thread model of the 

system. However, our work differs in that we replace 

existing threads with a pool of new threads instead of 

integrating them. 

Raissi’s research work given in [12] reinforces our 

proposal of utilizing thread pooling to enhance software 

performance. He analyzes the impact of using thread 

pooling for a cryptography framework called DSOCARE. 

The results of the study show that the performance improved 

by 78%. Such a high improvement however depends upon 

the right size of the pool. Zabatta and Ying [8] characterized 

the factors associated with the thread pool size. They 

provide an analytical method to determine an optimal pool 

size and a fairly simple way of calculating the total 

performance gain. We utilized their formula to calculate the 

performance gain for the electron microscope software 



  

 

 

 

 

  

 

 

  

 

 

 

 
 

 

 

 

 

 

 
 

 

 

International Journal of Computer Theory and Engineering, Vol. 5, No. 1, February 2013

127

system.  

 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we explored the use of the Parallelism 

Viewpoint to optimize the use of threads in legacy software 

systems. We put forward the use of a thread pool instead of 

thread-per-job. Based on the time utilization and number of 

tasks performed characteristics, we identified threads 

appropriate to be replaced with a small sized thread pool. 

We successfully applied our approach on an industrial case, 

a parallelism-intensive electron microscope software system. 

The generic nature of the viewpoint models that we used in 

this paper makes our approach applicable to other systems 

as well. The results encourage us to explore the use of the 

Parallelism Viewpoint to analyze parallelism-intensive 

software system for various aspects of threading. 

The two level filtering used in this paper makes sure that 

the right threads are picked for possible replacement with a 

thread pool. We found that the number of threads suitable 

for such replacement increases as the use of the system 

advances.  

We conclude that the number of threads in a system can 

be reduced to a large extent by employing the thread pooling 

technique. And, the total gain in performance is encouraging. 

The real benefit however lies in identifying the optimal size 

of the pool, which remains a challenging job.  

We identified the pool size based on the total number of 

tasks performed by the threads in the list and the average 

number of tasks performed by a thread in the system. In our 

future work we will extend this technique to identify a 

precise pool size. Furthermore, as a part of our research 

work, we are also building a flow-latency viewpoint to 

describe latencies of flow-intensive software systems. Our 

future work involves studying the impact of implementing 

thread pooling on latencies of the system flows. 

ACKNOWLEDGMENT 

This work has been carried out as a part of the Condor 

project (http://www.esi.nl/Projects->Condor) at FEI 

company under the responsibilities of the Embedded 

Systems Institute (ESI). This project is partially supported 

by the Dutch Ministry of Economic Affairs under the BSIK 

program. 

We would also like to thank our colleagues Sjir van Loo, 

Dries Langsweirdt and Auke van Balen for their valuable 

inputs and feedback for this research work. 

REFERENCES 

[1] D. Xu and B. Bode, “Performance Study and Dynamic Optimization 

Design for Thread Pool Systems,” presented at the International 

Conference on Computing, Communications and Control 

Technologies, 2004. 

[2] N. Muhammad, N. Boucke, and Y. Berbers. (2010). Parallelism 

Viewpoint: An Architecture Viewpoint to Model Parallelism 

Behaviour of Parallelism-Intensive Software Systems. [Online]. 

Available: 

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW589.abs.html 

[3] P. Clements, Kazman, and R. M. Klein, Evaluating Software 

Architectures: Methods and Case Studies, Boston, MA: Addison-

Wesley, 2002. 

[4] N. Rozanski, and E. Woods, Software Systems Architecture: Working 

with Stakeholders Using Viewpoints and Perspectives, Addison-

Wesley, 2005. 

[5] ISO/IEC 42010, “Systems and Software Engineering –Recommended 

Practice for Architectural Description Of Software-Intensive 

Systems,” 2007. 

[6] William Stallings; Operating System: Internals and Design Principles. 

Pearson Higher Education, 2009. 

[7] S. S. Somé, and X. Cheng, “An Approach For Supporting System-

Level Test Scenarios Generation From Textual Use Cases,” in Proc. 

of the ACM Symposium on Applied Computing, ACM, 2008, pp. 724-

729, New York. 

[8] F. Zabatta, and K. Ying, “A Thread Performance Comparison: 

Windows NT and Solaris on A Symmetric  Multiprocessor,” 

presented at the 2nd USENIX Windows NT Symposium, 1998. 

[9] C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia, “Modular 

Verification of Multithreaded Programs,” The oretical Computer 

Science, vol. 338, no. 1-3, June 2005, pp. 153-183. 

[10] N. L. Li and A. D. Malony, “Automatic Performance Diagnosis of 

Parallel Computations with Compositional Models,” presented at 

IEEE International Parallel and Distributed Processing Symposium, 

2007, pp. 211. 

[11] A. G. Dean and J. P. Shen, “Techniques for Software Thread 

Integration in Real-Time Embedded Systems,” in Proc. of the IEEE 

Real-Time Systems Symposium, IEEE Computer Society, 1998, pp. 

322. 

[12] J. Raissi, “Performance Impact of Thread Pooling in DSOCARE,” in 

Proc. of the IEEE, SoutheastCon, April 2005, pp.108-113. 

[13] L. Yibei, M. Tracy, and L. Xiaola, “Analysis of Optimal Thread Pool 

Size,” ACM SIGOPS Operating Systems Review, vol. 34 no. 2, April, 

2000, pp. 42-55. 

 

 


