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Abstract—Accounting color information in the texture 

description can help in the context of classification but the 

instability of color across illumination variations remains a 

problem since most practical applications are more likely to 

face varying illumination conditions. That is why we analyze 

the impact of such variations on the most classical texture 

features and we show that, from their structures, these features 

are not far from the lowest invariance degree required by most 

of the applications. Hence, applying classical color 

normalization on these features leads to unnecessary 

invariance that tends to decrease their discriminative power. 

Consequently, in this paper, we propose a feature 

transformation model and a deduced normalization step. We 

show that the resulted texture features do not depend on the 

illumination variations while preserving the maximum of the 

discriminative information. Our classification results 

outperform the existing texture descriptors available in the 

literature. 

 

Index Terms—Texture, color, illumination invariance, 

classification. 

 

I. INTRODUCTION 

The human visual system is able to perceive colors as 

unchanged even if the illumination color is varying but what 

seems very easy for our brain is still a puzzle in the field of 

digital image processing. To deal with this problem, many 

different but related research areas have been emerged. 

Illumination invariant texture description is one of these 

areas and has been shown useful in many different 

applications e.g. face recognition, content based indexing 

and retrieval. In this paper, we specifically address the 

problem of color texture classification across illumination 

temperature variations. For this purpose, we consider images 

of color textures acquired with the same viewpoint and the 

same scale factor but under different illumination colors. 

Different solutions can be found in the literature and we 

propose to distinguish two main approaches. The first one 

consists first, in applying a color normalization on the 

images such as the grey-world normalization [1], the 

comprehensive color image normalization [2] or the color 

constant color indexing approach [3] and second, in 

extracting classical texture features from the normalized 

images [4]. The second one consists in extracting directly 

specific invariant features from the images. Some of such 

invariant features exploit the rank measures [5] of the pixels 

[6], [7]. Healey et al. [8] have used spatial correlation 

function and shown that in case of change in the 
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illumination conditions, the change in the structure of the 

correlation function is linear and they have solved the 

problem by proposing an adapted distance function. In 

another work, Hanbury et al. [9] have employed 

mathematical morphology to address the problem. Finlayson 

et al. [10] have proposed a method known as angular color 

indexing and have shown that inter-band color vector angles 

of the laplacian edge map of each color band are invariant to 

illumination changes. Color ratio [3] histograms have also 

been tested by [4] as a potential invariant texture descriptor. 

Finaly, Muñiz et al. have used color ratio with gabor 

features, wavelet and co-occurrence matrices and shown 

improved results [11]. 

In the context of texture recognition, the aim is not to 

normalize the colors of the images so that these images look 

as if they had been acquired under a canonical illumination 

but rather to extract discriminant invariant features from the 

images. In order to be highly discriminative, we argue that 

these features must be as less sensitive as possible to 

illumination variation while preserving the maximum 

information about the material properties. In this sense, we 

have to make a trade-off between invariance across 

illumination changes and discriminative power of the 

resulted features. For example, a normalization that would 

be perfectly invariant to illumination colors would consist in 

setting all the colors to a single one (for example R = 1, G = 

1 and B = 1 for all the pixels). This normalization would 

provide features that are perfectly invariant to illumination 

variations but that are not at all discriminative. Thus, the 

optimal normalization, with respect to discriminative power, 

would be this which removes only the effect of the 

illumination on the colors without removing any information 

from the material properties. 

In this paper, we show that the classical texture features, 

which are based on frequency decomposition, remove a part 

of the effect of the illumination color variation. 

Consequently, when these features are used, it is very 

important to account this removal so that it is not done a 

second time by a useless normalization step. Indeed, we 

have just said that the addition of superfluous normalization 

decreases the discriminative power of the resulted features.  

Thus, three points have to be carefully analyzed in the 

context of color texture classification. First, we have to 

know how a change in the color of the illumination impacts 

the colors of the pixels. This is represented by, what we call 

a color transformation model. In the second section of this 

paper, we propose to present the most widely used color 

transformation models and to test them on a publicly 

available database. From this experiment, we deduce the 

most adapted color transformation model for our application 

and we show that this model can be explained in theory in 
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the third section. Second, if we consider that this model 

holds, we have to evaluate the impact of an illumination 

color variation on the extracted features. This is represented 

by, what we call a feature transformation model. The main 

contribution of this paper is to show that for the classical 

texture features based on frequency decomposition, the 

feature transformation model is different from the color 

transformation model and that this difference has to be 

accounted by the normalization step. Third, we have to 

normalize the features according to this knowledge while 

taking care that no interesting information is removed. 

These last two points are presented in the fourth section. In 

the fifth section, experimental results show that the 

application of these recommendations provide very good 

results in the context of color texture classification.  

 

II. COLOR TRANSFORMATION MODELS IN PRACTICE 

Classical color transformation models. Color 

transformation models describe how the intensities of Red, 

Green and Blue channels, commonly referred to as RGB, of 

a pixel in an image acquired under one illumination change 

to R’G’B’, the intensities of the pixel "observing" the same 

elementary surface in an image of the same scene acquired 

under another illumination. These models are based on 

assumptions on the parameters of the color formation, i.e. 

the scene illumination, the reflective model of the object and 

the camera sensor responses [12]. This problem is very 

complex by nature but thanks to these assumptions it is 

generally agreed that linear models are good fit for color 

transformation models. In literature, three different linear 

models have been widely used: the Diagonal model [13], 

[14], the Diagonal-Offset model [15], [16] and the Affine 

model [17], [18] respectively defined by: 
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There exists a lot of such models and the difference 

between them are the dependences of the parameters  and 

. The literature is not unanimous when the color 

transformation model is in question [14]-[18]. In the 

introduction, we have underlined that the choice of the 

colour formation model is very important in the definition of 

the texture features. We have to select the model from which 

we will deduce a normalization whose aim is to remove the 

effect of the illumination on the colors without removing the 

information about the material properties. On the one hand, 

if we want to be sure to remove the impact of the 

illumination on the colors, we should choose the most 

complex model, i.e. the Affine model (eq. (3)), on the other 

hand, if we want to be sure to preserve all the information 

about the material property, we should choose the most 

simple model, i.e. the Diagonal model (eq. (1)). However, 

Finlayson et al. have shown that for best fit of the canonical 

color gamut, addition of the offset terms to the Diagonal 

model are necessary [16] and Gros et al. have suggested that 

Diagonal-Offset model is a good compromise between 

complexity and accuracy [15]. Consequently, the first 

intuition is to move to the Diagonal-Offset model (eq. (2)). 

In the next paragraph, we propose to validate this intuition 

on the outex database [19]. 

Validation on the outex database. To measure the 

performance of the three models on real images, we propose 

to test them on some texture image pairs of outex database 

[19]. From outex texture database, random pairs of images 

acquired under two different illumination conditions are 

chosen. Since the camera have not moved between the 

acquisitions, the same elementary surfaces are associated to 

the pixels with the same spatial coordinates in the two 

images. Using a least square approach, it is possible to find 

the best global transform between the colors of the 

corresponding pixels from the first image to the second one 

by using one of the three models. Then, this transformation 

is applied on the first image and we calculate the residual 

root mean square error (RMSE) between this transformed 

image and the second original image of the pair. By 

applying this on 10 pairs of images, we have evaluated the 

mean RMSE for each model. We have obtained 2.11 for the 

Diagonal model, 0.42 for the Diagonal-Offset model and 

0.32 for the Affine model. As expected, this shows that 

when the complexity of the color transformation model 

increases (from Diagonal to Diagonal-Offset and to Affine), 

the residual error decreases, i.e. the invariance increases. 

Furthermore, the Diagonal model generates high errors 

comparing to the two other models whose errors are 

relatively close together. Since we know that the increasing 

of the complexity of the model can lead to a decreasing of 

the discriminative power of the resulted features, the best 

choice is the Diagonal-Offset model because it is the best 

trade-off between minimization of the residual errors 

(maximization of the invariance) and minimization of the 

complexity (maximization of the discriminative power). 

This is not a proof that the Diagonal- Offset model is the 

best in all situations, but this shows that this model also 

provides the best results for the Outex database. 

Furthermore, we obtain to the same conclusions as [15] and 

[16] who did experiments on other databases. In the next 

paragraph, we propose to show the theoretical meaning of 

this Diagonal-Offset model. 

 

III. THE DIAGONAL-OFFSET MODEL IN THEORY 

Considering the Lambertian  model, the color values 

{R
E , GE , BE} of a pixel in an image depend on three 

different factors which are the spectral power 

distribution of the illumination E(λ), the reflectance  of 

the surfaces observed by the camera S(λ) and the spectral 

sensitivity of the sensors QR (λ), QG (λ) and QB (λ). 

Shaffer proposed to add a ’diffuse’ light term L
E (λ) in 

order to account the inter-reflections, the infrared 

sensitivity of the camera sensors and the scattering 

property of the lens [12]: 
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𝐾𝐸 =  𝑆 𝜆 𝐸 𝜆 𝑄𝐾 𝜆 𝑑𝜆 + 
𝜆2

𝜆1
 𝐿𝐸 𝜆 𝑄𝐾 𝜆  𝑑𝜆,

𝜆2

𝜆1
       (4) 

where K = {R, G, B}. The integral is taken over the range 

of wavelengths λ
1 to λ

2 for which the sensor has non-zero 

sensitivity. 

By assuming that  each sensor Q
K , K = {R, G, B} is 

sensitive to only one wavelength  λK , we deduce that 

 𝑄𝐾
2

1

 
(λ)dλ = QK (λK ). In practice, although this 

assumption does not hold perfectly it leads generally to 

adequate models [20], [3] and it can be improved by 

spectral sharpening [21]. This assumption transforms  

equation (4) into: 

K
E  = S(λ

K
) E(λ

K
) Q

K
(λ

K
) + L

E (λK
) Q

K
(λ

K
)         (5) 

Then, if the spectral power distribution of the 

illumination  changes from E(λ) to E ' (λ),the color 

component of the same elementary surface is given by: 
 
K

E'   = S(λ
K
) E'(λ

K
) Q

K
(λ

K
) + L

E' (λK
) Q

K
(λ

K )            (6) 

From equations (5) and (6), we can obtain the color 

transformation model: 

 

K
E'   = 

K
 K

E
 + 

K   , 

where 

 
 
 

 
 𝐾 =  

𝐸′ 𝜆𝐾 

𝐸 𝜆𝐾 

𝐾 =  𝐿𝐸′ 𝜆𝐾 𝑄𝐾 𝜆𝐾  – 
𝐿𝐸  𝜆𝐾 𝑄𝐾 𝜆𝐾 𝐸′ 𝜆𝐾 

𝐸 𝜆𝐾 
 .

 (7) 

Thus, if we consider lambertian surfaces and narrow 

band sensors, the illumination variation can be modeled 

by the Diagonal-Offset model where the coefficients αK 

and β
K depend only on the two spectral power 

distributions of the illuminations E(λ) and E '(λ) and on 

the sensitivities of the sensors. Since they do not depend 

on the analyzed pixel, this transform is the same for all 

the pixels in the same image. This characteristic is 

important for the normalization step. 

 

IV. ILLUMINANT INVARIANT TEXTURE FEATURES 

Feature transformation model. In this section, we 

propose to determine the  feature  transformation model, 

i.e. how an illumination variation impacts the texture 

features. For this, we consider the classical texture features 

which are based on frequency decomposition. These 

features are based on the Discrete Fourier Transform 

(DFT), the Discrete Cosine Transform (DCT) or the 

Discrete Wavelet Transform (DWT). 

From the last section, we have shown that, if we 

consider a pixel Pi in one image acquired under the 

illumination E and the pixel Pi' in a second image 

acquired under t h e  illumination  E' so that  Pi and Pi'
   

observe the same elementary surface, then the relation 

between their respective color components K (Pi ) and K 

(Pi') is: 

K (Pi ) = α
K   K (Pi') + β

K ,  K = {R, G, B}       (8)                                

where α
K and β

K  do not depend on the considered pixel. 

Considering a set of N weights wi so that  𝑤𝑖𝑖 = 0 

and a set of pixels Pi  in the first image, the weighted 

sum: 

 

Σi  𝑤𝑖𝐾 𝑃𝑖 =  𝛼𝐾  Σi  𝑤𝑖  𝐾 𝑃𝑖 ′ + 𝛽𝐾  Σi𝑤𝑖  
                        =   𝛼𝐾  𝛴𝑖  𝑤𝑖  𝐾 𝑃𝑖 ′ ,   𝐾 =  𝑅, 𝐺, 𝐵 ,            (9) 

 does not depend  on the parameterβ
K
.  

This means that a weighted sum of the component 

levels of some pixels in an image transforms the Diagonal-

Offset model into a Diagonal model if the sum of the 

weights is 0. We know that the frequency decomposition 

used by the classical texture features like DFT, DCT or 

DWT is based on weighted sums of the component levels 

of some pixels so that the sums of the weights are 0. 

Thus, by using these  features, we transform the Diagonal-

Offset color transformation model into a Diagonal 

feature transformation model. The only part of these 

features which preserves the β
K is the one which 

represents the lowest frequencies. Consequently, the  

normalization of these kinds of texture features consists 

in removing only the α
K which represent the diagonal 

coefficients of the  transformation matrix. Since these 

coefficients are constant over the whole image, one good 

way to remove them is just to normalize the energy of the 

texture features, i.e. to divide the coefficients of the 

features by the mean value of the non-zero frequencies 

(because zero frequency coefficients still depend on the β
K
). 

The complete normalization is illustrated with the 

Fourier Transform in Fig. 1. It is worth mentioning that we 

can replace the Fourier  transform here with any other 

frequency decomposition transforms. 

Invariant Features. To demonstrate the effectiveness 

of our normalization  method, we have chosen two 

classical texture descriptors for feature extraction. Both of 

them are filtering based techniques and different in design, 

but exploit frequency decomposition transforms. They 

are, namely, Gabor filtering and local linear transform. 

1) Gabor filtering: Gabor filters are used to model the 

spatial summation properties of simple cells in the 

visual cortex and have  been adapted and popularly 

used in texture analysis [22] [23] [24]. In this paper, we 

have followed the approach proposed by Manjunath et. 

al. [24] to generate the filters. The idea of Gabor is to 

take the Fourier transform of the image, to multiply  it 

with a Gaussian window centered at various 

frequencies, and to take the inverse Fourier transform 

of this filtered Fourier. Then for each filter, they 

extract two features from this resulted image: the 

mean of the absolute values of this image and the 

standard-deviation of the image. Gabor4,6 considers 4 

scales and 6 orientations, that constitutes a set of 24 

filters. So, the dimensionality of the feature vector is 

48 for one channel and 144 for 3 channels (color 
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images). We know that the sum of the weights of the 

Fourier Transform is equal to 0 for each frequency, 

except for the zero-frequency term. Consequently, the 

non-zero frequency components of the Fourier 

transform are insentive to the β
K from equation (7). So, 

our normalization consists just in dividing the 

Fourier transform by the mean value of all its 

component, except the zero-frequency component, 

before applying  Gabor. 

 
Fig. 1. Graphical representation of the complete normalization process. 

We use FFT for Fast Fourier Transform and FT for Fourier Transform.  

is the mean value. 

2) Local linear transform: The original idea of Local 

Linear Transform(LLT) was proposed by Micheal 

Unser [25]. Unser proposed to characterize the texture 

by a set of statistical measures at the outputs of a filter 

bank of relatively small size. Each filter mask is tuned 

to capture a particular property of the texture. 

Drimbarean et al. [26] proposed Discrete Cosine 

Transform (DCT) to use with LLT. Except for the 

zero-frequency filter, the sum of the weights of each 

filter is 0. Consequently, the  resulted features are 

insensitive to the βK from equation (7). In order to 

remove the αK and reach full invariance, we propose 

to divide each filtered image by its mean. Finally, we 

obtain 24 dimensional  feature  vectors for 3 channels. 

 

V. RESULTS AND DISCUSSION 

For performance evaluation of our method, we are 

using ’Outex_TC _000014’ test suite as a classification 

problem [19]. This test suite has 68 different textures 

under three different illuminations. The textures 

illuminated by 2856K incandescent CIE A light source 

are used as training  data,  while the textures  illuminated 

by 2300K horizon sunlight and 4000K fluorescent TL84 

are the test samples. We have selected the training and 

test sets as recommended on the webpage of the Outex 

database. Furthermore, we have employed k-NN classifier 

with k = 3 like most of the research works on this 

database. Unfortunately, we can not  compare our results 

with  those of Hanbury et al. [9] or those of Seifi et al. [7] 

because they have used a different way to select the 

training  and test sets in Outex_TC _000014. 

Table I shows the effect of our normalization on the 

classification result for both the features. From the results 

of Table I we can clearly see that our normalization 

method provides a huge improvement in the classification 

results. We also see that the Gabor features clearly 

perform better than the local linear transform features. So, 

for the rest of the experiments, we propose to present 

only the results provided by Gabor  features. 

 
TABLE I: CLASSIFICATION SCORES  PERFORMED ON OUTEX_TC_000014. 

Feature Without normalization With our normalization 

Gabor4,6 35.4% 64.9% 

LLT 14.0% 51.4% 

TABLE II: CLASSIFICATION SCORES  PERFORMED ON OUTEX_TC  

_000013. 

Feature Without normalization With normalization 

Gabor4,6 84.8% 84.8%  (our  normalization) 

Gabor3,4 86.9% 84.0%       (Z-normalization) 

 
Table II shows that our normalization increases the 

invariance of the classical texture features based on 

frequency decomposition. That is one advantage of our 

normalization. The second advantage of this normalization 

is that it does not decrease too much the discriminative 

power of these resulted features. In order to prove that, we 

propose to use another test suite titled Outex_TC 

_000013 for which only one illuminant (incandescent one) 

was used for test and  training sets and to compare the 

classification scores with and without normalization. 

Furthermore, we propose to make the same comparison 

(with and without normalization) with the Z-normalization 

which consists in normalizing the images so that the 

mean value of each channel is 127 and the standard 

deviation is 20. It is easy to show that this normalization 

also removes the α
K and β

K from the image. The results 

of this normalization are taken from [4] where the 

Gabor3,4 features were used. They are based on different 

filters than  those of Gabor4,6 but usually provide similar 

results [4]. The results presented in Table II show that  

the application of our normalization does not decrease the 

results, because the accuracy remains the same before and 

after the normalization. This stable result shows that our 

normalization does not decrease the discriminative power of 

the texture features. However, the application of Z-

normalization  on Gabor3,4 filters decreases the results 

from 86.9% to 84.0%. This confirms our intuition that too 

much invariance decreases the discriminating power. 

Indeed, we know that Gabor filters cancel one part of the 

illumination impact on the colors since they remove the βK 

(see equation (7)). Then we also know that the Z-

normalization removes both the α
K and β

K
. Consequently, 

applying Z-normalization before Gabor filters is like a 

"double illumination normalization" and this reduces the 

discriminative power of the resulted features. 
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TABLE  III: CLASSIFICATION SCORES  PERFORMED ON OUTEX  _TC 

_000014. 

Feature Classification score 

Gabor4,6   RGB  Our  

normalization 
64.9% 

Gabor4,6   RGB  Greyworld  

Normalization   [27] 
58.3% 

Gabor3,4   RGB  

Comprehensive 

Normalization  [2] 

43.5% 

Gabor3,4   RGB  Z-

Normalization 
62.4% 

Gabor3,4   L*a*b* 55.2% 

Gabor  Opponent Color  

Space 
53.3% 

3D Histogram of Invariant 

Ratios [3] 
42.7% 

LBP8,1   RGB 53.9% 

LBP8,1   RGB  

Comprehensive 

Normalization  [2] 

43.8% 

LBP8,1   L*a*b* 60.1% 

LBP u2
16,2   L*a*b* 63.2% 

LBP 8,1 + u2
16,2 + u2

24,5  

L*a*b* 67.8% 

 
TABLE  IV: CLASSIFICATION SCORES PROVIDED ON LUMINANCE 

CHANNEL OF THE  TEXTURES IN OUTEX_TC _000014 TEST SUITE. 

Feature Classification score 

Gabor4,6   Our  normalization 71.25% 

Gabor4,6 66% 

LBP u2
16,2    69.3% 

LBP 8,1 + u2
16,2 + u2

24,5 69.5% 

 
TABLE  V: CLASSIFICATION SCORES FOR EACH ILLUMINATION 

SOURCES ON OUTEX_TC _000014  TEST  SUITE. 

Gabor4,6   Our  normalization TL84 Horizon Average 

Color 74.4% 53.6% 64.9% 

Luminance 69.2% 73.3% 71.25% 

 

We propose now to compare the classification score of 

our normalized Gabor with those of classical texture 

features on the Outex_TC _000014 test suite where the 

illumination is changing between test and training sets. 

The results of all these features are extracted from [4]. In 

Table III: we can find the results for several Gabor feature 

normalized by some classical illumination invariant 

approaches, the histograms of the invariant color ratios 

from Funt et al.  [3] and some variants of the well known  

Local binary Pattern (LBP). We can see that LBP(8,1 + 

u2
16,2 + u2

24,5) provides the best results. However, the 

determination of the transformation from RGB to 

L * a * b *  requires the knowledge of illumination  

conditions and sensor sensitivities. 

These data are available for the outex database and the 

use of the L* a* b* color space is possible but for 

practical applications where the illumination conditions 

and the sensor sensitivity are unknown, the default 

transformation leads to less accurate results. We can see 

that Gabor features obtained from our normalization 

provide the second best results among all the classical 

texture features and classical illumination  normalizations. 

Finaly, we propose to test our normalization on grey-

level images. Indeed, Table IV shows the classification 

scores by considering only the  luminance channel of the 

textures of ’Outex_TC_000014’ test suite. The luminance 

channel was calculated using Y = 0.6534R + 0.3190G + 

0.0277B as recommended by [4] for the sake of 

comparison. We can see from the results that Gabor 

features with our normalization provides the best results 

among all the methods. Indeed, we have shown that our 

normalization has to be applied independently on each 

channel, so in case of grey-level textures, we consider 

that the luminance channel is one channel and that it can 

be normalized exactly the same way. 

T h u s , in this section, we have shown that Gabor 

filters obtained after the application of our normalization 

provide very good results in the context of texture 

classification across illumination changes. 

 

VI. CONCLUSION 

In this paper, we have proposed a way to normalize 

the classical texture features based on frequency 

decomposition in case of illumination  variations. For that, 

we have introduced a feature transformation model that 

represents the way how the texture features vary in case of 

illumination changes. This model is deduced from the 

Diagonal-Offset color transformation model whose 

efficiency has been assessed on a publicly available 

database and compared with two other well-known color 

transformation models. Then, we have shown that with 

this knowledge, we can design texture features which 

depends as less as possible on the illumination used for 

the image acquisition while preserving almost all the 

information about the material properties. The Gabor 

filters obtained after the application of our normalization 

provide very good results in the context of texture 

classification across illumination changes. We have not 

addressed the problem of rotation invariant features in our 

work, but there exist  many modifications of these 

classical descriptors to make it invariant to rotation [28] 

[29]. This will be one of our future works. 
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