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Abstract—Camera calibration in an outdoor environment 

often relies on natural landmarks, and algorithms that are 

computational expensive. This paper presents a fast camera 

calibration method that uses robots themselves as landmarks to 

each other. The active landmark made of LEDs, mounted on the 

robots, can be turned on/off through available wireless link. 

Experimental measurements and validation were conducted 

using a low-resolution, low-computation power smart camera, 

the CMUcam3 camera. The experimental results show that the 

estimates of the intrinsic camera parameters converge to the 

correct values as the robot moves and more measurements are 

used. 

 

Index Terms—Computer vision, robot sensing, data fusion, 

sensory networks. 

 

I. INTRODUCTION 

The paradigm used in this paper is similar to the one 

employed in [1] where a group of mobile robots equipped 

with sensors measure their positions relative to one another. 

In [1] the problem being addressed is self-localization 

whereas our objective here is to have a fast camera 

calibration procedure. Camera calibration in a mobile robotic 

network in an unknown environment often relies on 

landmarks. Landmarks can be natural or artificial. Natural 

landmarks are selected from some salient regions in the scene. 

The processing of natural landmarks is usually a difficult 

computational task. Artificial landmarks are manmade, fixed 

at certain locations, and of certain pattern, such as circular [2], 

[3], patterns with barcodes [4], or color pattern with 

symmetric and repetitive arrangement of color patches [5]. 

Compared with natural landmarks, artificial landmarks 

usually are simpler; provide a more reliable performance; and 

work great for the indoor environment. However it’s not an 

option for most outdoor applications due to the complexity 

and expansiveness of the fields that robots traverse. Since the 

robots travel together, one possible solution is to use each 

other as landmarks. 

Using passive landmarks with invariant features such as 

circular shapes [3] or with simple patterns [4] that are quickly 

recognizable under a variety of viewing conditions is one 

option. Whereas these methods have provided good results 

within indoor scenarios their application to unstructured 
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outdoor environments is complicated by the presence of time 

varying illumination conditions as well as dynamic objects 

present in the images. To overcome these drawbacks we 

propose the use of active landmarks. The current state of LED 

technology allows for low-power and relative high luminance. 

Depending on the constraints imposed by the robot’s shape 

and dimensions one or more LEDs can be located on its outer 

surface. Through wireless links the robots can schedule when 

the LEDs can be turned on and off to match the periods when 

the cameras are capturing images for image differencing. 

Camera calibration is an important step in computer vision 

applications, in particular when it is wanted to extract metric 

information from the 2D images. There is a large body of 

work on camera calibration techniques developed by the 

photogrammetry community as well as by computer vision 

researchers. Most of the techniques assume that the 

calibration process takes place on a very structured 

environment, i.e. laboratory setup, and rely on well defined 

2D or 3D calibration objects. The use of 1D objects as well as 

self calibration techniques usually comes with the price of an 

increase in the computation complexity. 

Our work is along the lines of the one described in [6] 

where closed-form solutions are developed for a calibration 

method that uses a 1D object. In [6] numerous observations 

of a 1D object are used to compute the camera calibration 

parameters. The 1D object is a set of 3 collinear well defined 

points. The distances between the points are known. The 

observations are taken while one of the end points remains 

fixed as the object moves. Whereas the method proposed in 

[6] is proven to work well in a structured scenario it has 

several disadvantages if intended to be used in an 

unstructured outdoors scenario. Depending on the nature of 

the outdoor scenario, e.g. planetary exploration, having a 

moving 1D object of a particular length might not be cost 

effective or even feasible. Our method makes use of a 

network of robots that can communicate with each other. 

Thus, it can be implemented in a variety of outdoor 

environments.  

The remainder of the paper is organized as follows. 

Section II describes the proposed mathematical camera 

calibration model. Section III presents the validation 

experiments and the results. Finally the discussion and 

conclusions are given in Section IV.  

 

II. CAMERA CALIBRATION MODEL 

A. Notation 

For the pinhole camera model (Fig. 1) a 2D point is 

denoted as 𝒂𝑖 =  𝑎𝑖𝑥 𝑎𝑖𝑦  𝑇 . A 3D point is denoted as 

𝑨𝑖 =  𝐴𝑖𝑥 𝐴𝑖𝑦 𝐴𝑖𝑧  𝑇 . In Fig. 1  𝒑 =  𝑝𝑦 𝑝𝑦  𝑇  is the 
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point where the principal axis intersects the image plane. 

Note that the origin of the image coordinate system is in the 

corner. 𝑓is the focal length. 

 
Fig. 1. Normalized camera coordinate system 

 
Fig. 2. Changes in the image coordinated when the reference camera or the 

landmark moves 

The augmented vector 𝒂 𝑖  is defined as 

𝒂 𝑖 =  𝑎𝑖𝑥 𝑎𝑖𝑦 1 𝑇 . In the same manner 𝑨 𝑖  is defined as 

𝑨 𝑖 =  𝐴𝑖𝑥 𝐴𝑖𝑦 𝐴𝑖𝑧 1 𝑇. The relationship between the 3D 

point 𝑨𝑖  and its projection 𝒂𝑖  is given by, 
 

𝑧𝑨𝑖
𝒂 𝑖 = 𝑲 𝑹 𝒕 𝑨 𝑖 (1) 

 

where 𝑲 stands for the camera intrinsic matrix, 

𝑲 =  
𝛼 𝛾 𝑢0

0 𝛽 𝑣0

0 0 1

  (2) 

and 

𝑲−1 =

 
 
 
 
 
 1

𝛼
−

𝛾

𝛼𝛽
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𝛼𝛽

0
1

𝛽
−

𝑣0

𝛽
0 0 1  

 
 
 
 
 

 (3) 

 𝑢0 𝑣0  are the coordinates of the principal point in 

pixels, 𝛼  and 𝛽  are the scale factors for the image 𝑢  and 

𝑣axes, and 𝛾  stands for the skew of the two image axes. 

 𝑹 𝒕 stands for the extrinsic parameters and is the rotation 

and translation that relates the world coordinate system to the 

camera coordinate system. Without loss of generality we can 

assume for our analysis that 𝑹 = 𝑰and 𝒕 = 𝟎.  

If 𝛾 = 0 as it is the case for CCD and CMOS cameras then, 

𝑲 =  
𝛼 0 𝑢0

0 𝛽 𝑣0

0 0 1

  (4) 

 

and 

𝑲−1 =

 
 
 
 
 1

𝛼
0 −

𝑢0

𝛼

0
1

𝛽
−

𝑣0

𝛽
0 0 1  

 
 
 
 

 (5) 

 

The 𝑲 matrix can also be written as,  

 

𝑲 =  

𝑚𝑥𝑓 0 𝑚𝑥𝑝𝑥

0 𝑚𝑦𝑓 𝑚𝑦𝑝𝑦

0 0 1
  (6) 

where 𝑚𝑥 , 𝑚𝑦  are the number of pixels per meter in 

horizontal and vertical direction. 

B. Mathematical Model 

The model described in this section is illustrated in Fig. 2. 

The reference camera is at position 𝑹𝑖  while the landmark is 

located at position𝑨𝑖 .The projection of the landmark in the 

image plane of the reference camera changes when the 

camera moves from position 0 to position 1 as illustrated in 

Fig. 2. This motion is represented by the vector 𝑫01 . If 

instead the landmark moves according to −𝑫01, as shown in 

Fig. 2. and the reference camera does not move, then both the 

location of the landmark, 𝑨1, and its projection on the image, 

𝒂1, would be the same as in the case when the reference 

camera moves. 

For any location of the landmark, 𝑨𝑖 , and its projection on 

the image, 𝒂𝑖 , If 𝑎 𝑖 =  𝑎𝑖𝑥𝑎𝑖𝑦   1 
𝑇

  with 𝑹 = 𝑰and 𝒕 = 𝟎 

from eq. (1), then 
 

𝐴𝑖 = 𝑧𝐴𝑖
𝐾−1𝑎 𝑖 (7) 

 

also define 
 

𝐷𝑖𝑗 = 𝐴𝑗 − 𝐴𝑖 =  𝑑𝑖𝑗𝑥𝑑𝑖𝑗𝑦𝑑𝑖𝑗𝑧 
𝑇

 (8) 

 

The magnitudes of 𝐴𝑖 , 𝐴𝑗 , and𝐷𝑖𝑗  ( 𝐿𝐴𝑖
, 𝐿𝐴𝑗

, and𝐿𝐷𝑖𝑗
, 

respectively) can be estimated using the strength of the 

received signal. Also for 𝐷𝑖𝑗  it is possible to estimate 𝐿𝐷𝑖𝑗
 

using the data from the robot navigational systems. Both 

estimation methods, signal strength on a wireless link and 

navigational system, have certain amount of error that should 

be taken into account in the overall estimation process. 
 

𝐿𝐴𝑗

2 = 𝐴𝑗
𝑇𝐴𝑗 =  𝐴𝑖

𝑇 + 𝐷𝑖𝑗
𝑇  𝐴𝑖 + 𝐷𝑖𝑗 = 

(9) 

       =  𝐴𝑖
𝑇𝐴𝑖 + 𝐴𝑖

𝑇𝐷𝑖𝑗 + 𝐷𝑖𝑗
𝑇𝐴𝑖 + 𝐷𝑖𝑗

𝑇𝐷𝑖𝑗  
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              = 𝐷𝑖𝑗
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𝑎𝑖𝑥
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Define 𝛿𝑖𝑗  as, 
 

𝛿𝑖𝑗 =
𝐿𝐴𝑗

2 − 𝐿𝐴𝑖

2 − 𝐿𝐷𝑖𝑗

2

2
= 

(12) 

       = 𝑧𝐴𝑖
 𝑑𝑖𝑗𝑥 𝑑𝑖𝑗𝑦 𝑑𝑖𝑗𝑧   

𝑀1 0 𝑀2

0 𝑀3 𝑀4

0 0 1
  

𝑎𝑖𝑥

𝑎𝑖𝑦

1
  

 

where, 

 

𝑀1 =
1

𝛼
𝑀2 = −

𝑢0

𝛼
𝑀3 =

1

𝛽
𝑀4 = −

𝑣0

𝛽
 (13) 

 

for   0 ≤ 𝑖 < 𝑗 ≤ 𝑁 
 

where N is the number of locations where the landmark 

moves to 
 

𝛿𝑖𝑗 =  𝑧𝐴𝑖
 𝑎𝑖𝑥𝑑𝑖𝑗𝑥𝑀1 + 𝑑𝑖𝑗𝑥𝑀2 +   

(14) 
 𝑎𝑖𝑦𝑑𝑖𝑗𝑦𝑀3 + 𝑑𝑖𝑗𝑦𝑀4 + 𝑑𝑖𝑗𝑧  

𝑧𝐴𝑖
is the projection of the vector 𝐴𝑖  on the z-axis. The 

value of 𝑧𝐴0
 itself can be using the navigation system as the 

robot takes the first measurement position. Then 𝑧𝐴𝑖
can be 

calculated using the mobile robot’s navigation system by 

adding the movement along z-axis from one location to 

another. Assuming then that 𝑧𝐴𝑖
 has been estimated, 

𝛿𝑖𝑗

𝑧𝐴𝑖

− 𝑑𝑖𝑗𝑧 =  𝑎𝑖𝑥𝑑𝑖𝑗𝑥𝑑𝑖𝑗𝑥𝑎𝑖𝑦𝑑𝑖𝑗𝑦𝑑𝑖𝑗𝑦  

𝑀1

𝑀2

𝑀3

𝑀4

  (15) 

 

Let’s define 𝜆𝑖𝑗  as, 

𝜆𝑖𝑗 =
𝛿𝑖𝑗

𝑧𝐴𝑖

− 𝑑𝑖𝑗𝑧 (16) 

 

for   0 ≤ 𝑖 < 𝑗 ≤ 𝑁 
 

Then, 

𝜆𝑖𝑗 = 𝒄𝑖𝑗
𝑇𝒙   (17) 

 

where 𝒄𝑖𝑗 =  𝑎𝑖𝑥𝑑𝑖𝑗𝑥 𝑑𝑖𝑗𝑥 𝑎𝑖𝑦𝑑𝑖𝑗𝑦 𝑑𝑖𝑗𝑦  
𝑇
 

 

and 𝒙 =  𝑀1𝑀2𝑀3𝑀4 
𝑇 

 

If the landmark moves to 𝑁 locations, 𝐴1, 𝐴2,⋯ , 𝐴𝑁, the 

corresponding equations can be written as, 
 

𝚲 = 𝐂𝒙 (18) 

where 𝚲 =  𝜆12𝜆13 ⋯𝜆1𝑁𝜆23 ⋯𝜆 𝑁−1 𝑁 
𝑇

 

 

and   𝐂 =  𝒄12𝒄13 ⋯𝒄1𝑁𝒄23 ⋯𝒄(𝑁−1)𝑁 
𝑇
 

 

The N locations are cross-listed to generate a number of 

𝑁(𝑁 − 1) 2  points in the equations as shown in Fig. 3. The 

least-squares solution for 𝒙is, 
 

𝒙 =  𝐂𝑇𝐂 −1𝐂𝑇𝚫 (19) 
 

Once 𝒙 is estimated the camera intrinsic parameters can be 

easily computed.  

 

 
Fig. 3. Cross-listed locations 

 

III. EXPERIMENTAL VALIDATION 

To test the calibration method itself, we used common 

construction tools, such as tape measures, rulers, plumb-blob, 

to carefully measure the coordinates of each landmark 

location in the camera coordinate system and distances 

between the reference camera and the landmark. Using a 

laser range finder we estimated that the errors incurred using 

those construction tools are in the order of ±  2 or 3 cm. The 

same range of estimate error is incurred when using wireless 

communication technology such as Ultra-wideband (UWB). 

When this calibration method is implemented in a mobile 

robotic network, the actual coordinates of each location 

cannot be known. In our mathematical model, the known 

variables are the vectors between the landmarks’ locations in 

the reference camera coordinate system and the image 

coordinates of each landmark. In our experiments, the 

measurements of the landmarks’ coordinates are not used 

directly in the calculation. Instead these measurements are 

used to calculate the vectors between the landmarks. When 

this calibration method is used in a mobile robotic network, 

these vectors are obtained by the robots’ navigation system. 

The smart-camera we used in the experiments is a 

CMUcam3 [7]. The image sensor is an Omnivision OV6620 

CMOS camera board that outputs a stream of 8-bit RGB or 

YCbCr color pixels. The OV6620 supports a maximum 

resolution of 352x287 at 50 frames per second. The focal 

length of this camera is 2.8~4.9mm.  𝑚𝑥 is 1/9.0m and 𝑚𝑦  is 
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1/8.2m. 

The CMUcam3 was mounted in a regular office 

environment. A wood frame was built to support the camera 

in a way that the z-axis (principle axis) is in the horizontal 

direction. Fig. 4. below shows the front and top view of the 

CMUcam3 and the mounting structure. 

 

(a) Front view 

 

(b) Top view 

Fig. 4. The CMUcam3 

 

The active landmark was formed using the metal structure 

parts from the VEX robotics design system [8] and LEGO 

bricks with holes. With the possible wireless communication 

capabilities, the robots can turn on and off the LEDs 

whenever needed to form visible landmarks. Fig. 5 shows the 

pictures of the robot frame where the LEDs are in ON and 

OFF state. 

The metal frame with the active landmark was placed in 

different locations in the room. For our experiment twelve 

locations were chosen so that the landmarks were spread out 

in the image plane. A newly developed efficient blob finding 

algorithm [9] was used to automatically find the landmark 

anywhere in a scene and then calculate the centroid of the 

landmark. Fig. 6. shows the pictures of one of the landmark 

locations with the LEDs turned on/off and the output from the 

blob finding algorithm. 

The measurements of the landmarks in the twelve 

locations are shown in Table I. Ax, Ay, and Az are the 

coordinates in the camera coordinate system. L is the 

magnitude of the A vector. ax and ay are the image coordinates. 

To make most use of measurements taken 𝑛 locations they 

can be used to generate a number of 𝑛(𝑛 − 1) 2  equations as 

shown in Fig. 3. Thus the twelve points can be used to 

generate a maximum of (12 x 11)/2=66 equations. In order to 

compare the results of the calibration model using different 

numbers of measurements, our calculation used 5~12 

locations that generates 10~66 equations. The calculation 

results are shown in Table II. In the datasheet of the 

CMUcam3, a range was given for the focal length f 

(2.8~4.9mm). With the value of 𝑚𝑥and 𝑚𝑦 , we can calculate 

the range of α (311.1~544.4) and β (341.5~597.6). It is 

difficult to know what the exact value of f is, thus the exact 

values of α and β cannot be known either. However, the ratio 

of α/β is known and is equal to 𝑚𝑥/𝑚𝑦 (0.91). The relative 

errors of the estimation of the intrinsic parameters are shown 

in Fig. 7. The estimation results show that the estimates of the 

parameters converge to the correct values as more 

measurements are used. 
 

 

 

(a) LEDs OFF (b) LEDs ON 

Fig. 5. Active landmarks 

 

(a) Landmark OFF 

 

(b) Landmark ON 

 

(c) Centroid of the landmark 

Fig. 6. Pre- and post-processed imaged by the CMUcam3 
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TABLE I: MEASUREMENT 

 Ax (cm) Ay (cm) Az (cm) L (cm) ax(pixels) ay(pixels) 

1 -3.4 -41.0 184.5 188.0 166 45 

2 -61.0 -41.0 189.0 199.0 47 49 

3 -21.0 -41.0 230.0 232.0 145 63 

4 -66.0 -41.0 229.0 239.0 61 65 

5 -10.0 2.0 176.6 176.6 153 149 

6 -74.0 2.0 177.8 189.6 11 147 

7 -12.0 2.0 224.0 224.0 151 148 

8 -67.0 2.0 228.4 235.2 56 147 

9 33.0 -46.0 264.4 271.5 228 70 

10 29.0 -3.0 287.0 287.7 218 143 

11 50.0 31.5 272.5 281.3 251 197 

12 -66.0 36.5 223.5 232.7 60 215 

TABLE II: CALIBRATION RESULTS 

# of Data points 
Image sets 

used 
α β 𝒖𝟎 𝒗𝟎 α/β 

10 1→5 391.9 440.0 174.6 143.0 0.89 

15 1→6 392.6 368.1 175.4 128.3 1.07 

21 1→7 394.0 386.1 175.5 132.0 1.02 

28 1→8 393.3 371.2 175.3 130.0 1.06 

36 1→9 395.0 452.6 175.2 145.3 0.87 

45 1→10 396.0 451.0 175.0 145.4 0.88 

55 1→11 397.5 442.0 175.3 144.4 0.90 

66 1→12 399.7 442.5 176.0 144.0 0.90 

Intrinsic 

parameters 
   176 143 0.91 

 
Fig. 7. Relative error of the intrinsic parameters 

 

IV. CONCLUSION 

In this paper, a new method for fast camera calibration in 

outdoor environments is presented and tested using a 

smart-camera, the CMUcam3 camera. This method can be 

implemented in a camera-equipped wireless mobile robotic 

network, where the robots themselves are used as each 

other’s landmarks. The distances between the robots can be 

estimated using wireless communication links supported by 

standard protocols. Active landmarks made of LEDs, which 

can be turned on and off through wireless communications, is 

proposed to realize fast calibration computation.  
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