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Abstract—In this paper a new approach for representing and 

evolving deformable contour or snake model to accurately 

detect pupil boundary for improving the performance of iris 

recognition systems is proposed. The proposed model extracts 

the boundary with computationally efficient Laplacian of 

Guassian (LoG) mask. The LoG mask is obtained from the set 

of polynomial basis operators derived from Orthogonal 

Polynomials Transform. Two types of controlling force models, 

introduced as internal and external forces are designed to 

properly activate the contour and locate it over the pupil 

boundary. The internal forces are designed to smooth the 

contour as well as to keep it close to a boundary by pushing the 

contour vertices towards the boundary of interest. The external 

forces are responsible for pulling the contour vertices towards 

the pupil boundary and the contour is deformed into a new 

shape in response to the effective force. A revised contour 

estimate of the selected boundary based on the execution of the 

contour tracing algorithm is generated. The results are highly 

encouraging to capture the contour of non-circular shaped 

pupil of iris. Experimental results on the CASIA v1.0 iris 

database demonstrate that the proposed snake model 

outperforms in both accuracy and speed. 

 
Index Terms—Active contour, orthogonal polynomials, iris 

segmentation. 

 

I. INTRODUCTION 

Iris based biometric recognition outperforms other 

biometric methods in terms of accuracy. One of the most 

important steps in iris recognition systems is iris localization, 

which is related to the detection of the exact location and 

contour of iris in an eye image. Obviously, the performance 

of the identification system is closely related to the precision 

of the iris localization step [1-2]. For iris localization, most 

segmentation methods reported in the literature assumed that 

the inner and outer boundaries of the iris were circular. The 

initial stage of iris recognition system deals with iris 

segmentation. The best known iris segmentation algorithm is 

perhaps due to the work of Daugman [3]. He proposed the 

Integro-differential operator which assumes that pupil and 

limbus have circular shapes and searches for large circular 

variations in the image to detect these boundaries. The Hough 

transform has been another successful alternative for 

localizing pupil in an image [4]. In this method, a binary edge 

map is created by thresholding the magnitude of image 

intensity gradient and the desired boundaries are detected by 

maximizing the defined Hough transform. Trucco et al. [5] 

tried to find the optimal circle parameters of the iris 

 

 

 

boundaries using simulated annealing algorithm. The results 

of the circle based method are sensitive to the image rotation, 

particularly if the angular rotation of the input image is more 

than 10 degrees. 

Due to shape deformation within the object classes of iris, 

a number of segmentation techniques are reported to extract 

pupil boundary such as region based, knowledge based and 

deformable contour model. One of the most popular and 

successful approaches has been the deformable contour due 

to its ability to accurately recover the shape of pupil boundary. 

Deformable contour involves the formulation of a 

propagating interface, which is a closed curve in 2-D or a 

closed surface in 3-D, and moves under a speed function 

determined by local, global and independent properties. 

Existing deformable contours are parametric deformable 

model and geometric models. Parametric deformable models 

originating from the active contour model, introduced by 

Kass et al.[6] that explicitly represent the interface as 

parameterized contour in a Lagrangian framework and 

Geometric deformable models originating from the Level Set 

method introduced by Osher and Sethian[7] are popular  

segmentation techniques. The goal of the contour model is to 

effectively extract the boundary of the pupil without any 

circularity constraint. N.J.Ritter et al. [8] proposed a method 

based on the concept of circular active contour, which 

searches for pupil and limbus boundaries by finding the 

equilibrium of two defined forces: internal forces and 

external forces. Sun et al. [9] proposed iris localization with 

low frequency information of the wavelet transform and also 

localize iris with a different integral operator. Arvacheh et al. 

[10] and Abhyankar et al. [11] proposed active contour 

models to localize the pupillary and limbic boundaries using 

Level set. Daugman’s recent work [12] also uses an active 

contour model for more precise boundary detection.   

The performances of the traditional snake model depend 

heavily on the location of the initial contour, and modulation 

of the weigh coefficients. It is not flexible to use because 

many complex methods are adopted to evolve contours.  In 

order to reduce the influence of the location of initial contour 

to the final result, the snake formulation can be extended to 

include these challenges and to recover irregular boundary of 

pupil based on deformable contour. Hence in this paper, we 

propose a new deformable contour that uses a physics-based 

system to model the pupil segmentation [13-14], to achieve 

very good localization results and hence can be used to 

enhance the performance of any iris recognition system, 

since all the downstream processes strongly depend on 

successful localization. In this approach there is no need for 

approximation of the spatial derivatives by finite differences. 

The internal energy is performed entirely in the frequency 

domain and is significantly faster when compared to the 
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solution in spatial domain. 

The remainder of this paper is organized as follows: In 

Section II class of orthogonal polynomials for obtaining 

point-spread operator for different sizes and the generating 

formula for the set of polynomial functions are presented.  

The proposed frame work for pupil localization is presented 

in Section III. Experimental results and comparison with 

existing techniques are presented in Section IV and Section V 

concludes the paper. 

 

II. ORTHOGONAL POLYNOMIALS TRANSFORM 

In this section we describe the proposed orthogonal 

polynomials for analyzing the pupil localization. The 

orthogonal polynomials that have already been well 

established for image compression [15] are extended in this 

proposed active contour model. 

In order to find the boundary of a pupil, a linear 2-D image 

formation system is considered around a cartesian coordinate 

separable, blurring, point spread operator in which the image 

I results in thesuperposition of the point source of impulse 

weighted by the value of the object function f. Expressing the 

object function f in terms of derivatives of the image function 

I relative to its cartesian coordinates is very useful for 

analyzing the low level features of the image. The point 

spread function M(x, y) can be considered to be real valued 

function defined for (x, y)є X Y, where X and Y are ordered 

subsets for real values. In case of gray-level image of size(n × 

n) where X(rows) and Y(columns) consists of a finite set, 

which for convenience can be labeled as {0,1, ….n-1}, the 

function(x, y) reduces to a sequence of functions. 

 

M(it)=ui(t),  i, t=0,1,….., n-1                 (1) 

 

The linear two dimensional transformation can be defined 

by the point spread operator M(x, y)M(I, t) = ui(t), as: 

                 

( , ) ( , ) ( , ) ( , )
x X y Y

M x M y I x y dxdy
 

      
      (2) 

 

Considering both X and Y to be a finite set of values {0, 1, 

2,…n-1}, equation(2) can be written in matrix notation as 

follows.    

         ' T

ij M M I                            (3) 

 

where   is the outer product and I  is the image and 
'

ij        

are the coefficients of transformation and the point spread 

operator M  is 
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We consider the set of orthogonal polynomials u0(t), 

u1(t),….un-1(t) of degrees 0, 1, 2,….n-1, respectively to 

construct the polynomial operators of different sizes from 

equation(4) for n≥2 and ti=i. The generating formula for the 

polynomials is as follows, 

                     ui+1(t)=(t-μ)ui(t)-bi(n)ui-1(t)  for(i>1),           (5)                                       

         

                      ui(t)=t-μ   and  uo(t)=1.                                                
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and            
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Considering the range of values of t to be ti = i, i=1, 2, 

3,…n, we get 

2 2 2

2
1

( ) 1 1
( ) ,

4(4 1) 2

n

i

t

i n i n
b n t

i n




 
  


           (7) 

A. Orthogonal Polynomials  Basis 

For the computational simplicity, the finite Cartesian 

coordinate set X, Y is labeled as {1, 2, and 3}. The point 

spread operator in equation (3) that defines the linear 

orthogonal transformation for the image can be obtained as 

MM  , where M can be computed and scaled from 

equation(4) as follows. 
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The set of polynomial basis operators 
n

ijo (0≤i, j≤n-1) can 

be computed as 

ˆ ˆt

ij i jO u u                               (9) 

where iû  is the (t+1)st column vector of M . It can be shown 

that a set of (n × n) (n≥2) polynomial operators forms a basis, 

i.e. it is complete and linearly independent. It is also proved 

that the orthogonal transformation defined by the orthogonal 

system M  is complete. Having designed the Orthogonal 

Polynomials Transform, the proposed framework for pupil 

localization is presented in the next section. 

 

III. PROPOSED FRAMEWORK FOR PUPIL LOCALIZATION 

Assuming that the pupil boundary is non-circular, a 

rectangular contour is defined within the pupil to detect the 

pupil boundary with pupil center as the seed point. The 

contour may evolve from any arbitrary position of pupil and 

reaches the desired boundary. The proposed Orhtogonal 

Polynomials Transform (OPT) based deformable model is 

basically emerged from the traditional active contour model. 

The segmentation of the arbitrarily shaped pupil is designed  

with low pass filter in OPT domain and the image force is 

assigned with the image gradients. The contour region is a 
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function of 2 spatial coordinates and is represented by a set of 

orthogonal polynomials. In this representation, the contour 

region is considered to be a linear combination of 

uncorrelated(orthogonal) effects that reperesents the 

presence of edges and noise. The edges are detected and 

seperated from noise using second derivative of 

Laplacian[16]. The Laplacian of Guassian(LoG) ),(2 yx  

is given by 

 

2 2

2

12 2 ( )
2 2

4 2

1
( , ) (2 )

2

x y
x y

x y e 

 




         (10) 

 

where σ is the standard deviation representing the width of 

the Gaussian distribution and (x, y) represents kernel mask 

along x, y direction. The LoG operator is represented in terms 

of the proposed polynomial basis operators. The equivalent 

βijs for LoG(3 3) operator is  

1( )
t t

ij M M M LoG   

  = 
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



                 (11)

        

Hence the operator LoG is now represented as  

3 3 3

02 20 2210.7( ) 20.3O O O                  (12)  

The contour region is convolved with the LoG operator by 

sliding a window and extract the width of the contour region 

is same as the width of the operator. After applying the LoG 

operator, the discontinuties or bending represents the 

theoretic internal forces that smooth the contour region. To 

evolve the contour towards the desired boundary using 

interpolation the governing force E is computed from the 

equation (10) as follows:                                               

( , )E x y                          (13) 

where E is the function of the gradient in the x and y direction 

which is the spatial coordinates  of  contour vertex 

corresponds to   the   edges  in   LoG.   From E, the time step 

for the contour is calculated, in order not to cross over 

possible edges of interest is computed as: 

 2

2 2
max maxx y

h h
t

E E E
  



         (14) 

where Exand Ey are the governing force along x and y axes, 

Emax is the maximum governing force and h is the grid 

spacing. The contour motion is achieved by computing the 

distance dx and dy from equation (13) and (14) and its 

propagation is further restricted by half grid spacing as: 

max 2

x
x

E h
d

E
  ; 

max 2

y

y

E h
d

E
                   (15) 

External forces of the image region are computed that is 

responsible for guiding the snake toward the boundary of 

interest using the image gradient potential as follows:  

                 

max

( , ) ( , )
( , )img

G x y I x y
x y

G I






 

 
 

                  (16)

                                                                                                               (16)          

where   is a weighting factor ( 0≥) to adjust the image 

gradient potential,  is the gradient operator, Gσ(x,y) is a 

2-D Gaussian function with standard deviation σ and I(x,y) is 

the image region. The image potential in equation (16) is 

incorporated into governing force by defining the effective 

force in order to deform the contour to new shapes as:  

 

ˆ( )eff eff imgE E               (17)                        

where Ê  is the normalized governing force and 
img  is the 

external force respectively. Boundary of the contour 

deformation is detected from initial contour by setting initial 

boolean value to each corresponding pixel in the initial 

contour based upon the following rules: true if it was inside 

the initial contour and false if it was outside. True pixels were 

reset to the position of the new contour during contour 

deformation. The entire deformation is converged with the 

following inequality and hence the object of interest is 

detected.            
ˆ

total

total







                     (18) 

where 
total̂ the total amount of pixels in the overall system 

and  
total  is the amount of pixels in the contour.  After 

regressive experiment conducted over several images the 

selection of γ in the range 0.01  γ 0.03 is suggested. The 

true boundary of ROI is somewhere inside the final 

propagating contour. The final contour of pupil localization 

is obtained by computing sub pixel precision and advancing 

the contour to a real distance by substituting the effective 

force into (15).              
 

IV. EXPERIMENTS AND RESULTS 

 The proposed scheme for pupil localization has been 

experimented with CASIA V.1 iris datasets. The location of 

initial contour is drawn with pupil center as seed point 

(superimposed on original sample image) is presented in fig. 

1(b) for the original test image shown in fig. 1(a). The 

polynomial basis operators are obtained from the Orthogonal 

Polynomials Transform as given in section II and are used for 

generating the (3x3) LoG mask as given in equation (12). The 

contour region is partitioned into (3x3) block size in a sliding 

window and (3x3) LoG mask is applied to obtain the edge 

components of contour region. The theoretic internal force 

are represented from the edge components and the contour 

motion distance is obtained by calculating the governing 

force E from the spatial coordinates of edge components as 

given in equation (13). The external force is computed with 

image gradient for different values of . Increasing the value 

of α increase the effect of external forces and makes the 

contour to move toward the pupil boundary in a faster pace. 

The contour is deformed into various shapes and reached the 

desired pupil boundary with internal and external forces and 

these results are presented in fig.1(c). The proposed method 

for pupil localization is tested with different values of   and 


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the results are presented in table 1. To evaluate the proposed 

method quantitatively, the sensitivity (SN) and particularity 

(KP) parameters are measured as given in [13].  For the   

value of 0.5, the proposed method achieves 94.00 % SN and 

80.00 % KP.  Similarly for the  value of 0.8 the proposed 

method achieves 98.40% SN and 89.00% of KP are obtained.  

The final contour of the proposed pupil localization method 

is shown in fig.1 (d) for 0 .8 that accurately extracted 

the pupil boundary, and it is superimposed over the original 

image is shown in fig. 1(e). However, α should be smaller 

than 1.2 in orders to prevent the contour from oscillating 

around the pupil boundary due to the definition of the 

external forces. After conducting several experiments, the 

value of  above 1.2 enhances the noise in the image based 

on the image gradient in equation (16). Figure 2 shows the 

result of the another sample image with the proposed method 

in which the pupil boundary is non-circular.  

In order to measure the performance of the proposed 

method, the pupil boundary is detected using the existing 

active contour model. For the   value of 0.5, the active 

contour method achieves 85.00 % SN and 94.00 % KP. 

Similarly for the   value of 0.8, the active contour model by 

[9] gives 97.50% SN and 96.00% KP are obtained using 

active contour model. The outputs of two sample eye images 

using active contour model with  = 0.8 are shown in fig 4 

and fig.5 for normal and rotated eye images respectively. The 

effectiveness of the proposed algorithm is also measured with 

accuracy and computation time required for pupil 

localization. The proposed algorithm achieves 99.5% 

accuracy with 1.83 milliseconds (ms) computation time for 

detecting the pupil area for the sample images and the same is 

presented in table 2. These pupil localization performance are 

compared with existing Daugman[11] and Geodesic [17] 

methods and the results are incorporated in table 2. From the 

table, it is evident that, the proposed method achieves more 

accuracy with lesser computation time as compared with 

existing techniques. 
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(d)                                (e) 

Fig. 1. Evolution of  contour  with  proposed pupil localization. (a) Original 

test image (b) Location of initial contour (c) Contour  deformation (d) Final 

pupil contour. (e) pupil localication. 

 

 

 

 

 

 
(a)                                        (b)                                   (c) 

                  (a)                                         (b)                                  (c) 

 

      

 

  

 

 
 (d)                                    (e) 

Fig. 2.   Evolution of contour with proposed pupil localization. (a) Original 

test image (b) Location of initial contour (c) Contour  deformation (d) Final 

pupil contour. (e) pupil localization. 
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                                       ( c)                                         (d) 

Fig. 4. Evolution of contour with existing model (a) Normal eyel image (b) 

Location of initial contour (c) Contour deformation (d) Final pupil contour. 
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                        (c)                                                       (d) 

Fig. 5. Evolution of contour with existing model (a) Origianl eye image (b)   

Location of initial contour (c) Contour deformation (d) Final pupil 

contour. 

 

TABLE I: STATISTICAL ANALYSIS OF THE PERFORMANCE MEASURES FOR  

SENSITIVITY AND PARTICULARITY TEST ON DB USING DIFFERENT VALUES 

OF   

Parameter 
  

Proposed method Active Contour 

SN(%) KP(%) SN(%) KP(%) 

0.5 94.00 80.00 85.00 94.00 

0.6 96.00 83.00 95.00 96.00 

0.7 98.00 84.00 97.00 94.00 

0.8 98.40 89.00 97.50 96.00 

 

TABLE II: SEGMENTATION TIME TO DETECT PUPIL BOUNDARY 

Method Accuracy Computation Time 

(Milli Seconds) 

Sample 1 Sample 2 

Proposed 99.5% 1.83 3.89 

Daugman 98.6% 3.56 4.94 

Geodesic 98.3% 4.59 6.12 



  

V. CONCLUSION 

A set of orthogonal polynomials which were used to 

investigate low level features such as edge and texture, have 

been utilized to propose a new snake model. The model 

employs a low-pass filter with OPT as the internal force, 

which could smooth the contours. The proposed method 

exhibits some important characteristics such as much less 

sensitivity to initialization than snakes and only one effective 

parameter   is used. The proposed approach also addresses 

the issue of processing iris images where pupil boundaries 

are not necessarily perfect circle. The experimental results 

show that the proposed method outperforms the existing 

methods both in terms of accuracy and computation time.  
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