
  

 

Abstract—This study addresses the statistical texture features 

as methods for texture classification. It compares its 

performance on two benchmark data sets: Brodatz and PID, 

which permit to gain better understanding how those methods 

deal with texture rotation and lighting changes. Moreover, few 

simple feature techniques are introduced in order to compare 

their performance with those already known (e.g. first order 

features, co-occurrence matrix, run length matrix, grey-tone 

difference matrix, local binary pattern). Finally, exploiting 

structures designed in methods like co-occurrence matrices as a 

feature vector is suggested. 

The gathered results show the correct classification ratio in 

range of 92-100%. However, worse performance is noticeable 

on data set with changing lighting conditions. Moreover, the 

experiments prove that the introduced simple techniques 

classify with similar accuracy as well as known methods. It is 

also interesting that exploiting the structures as feature vector 

proved to improve the classification results.  

Additionally, due to lower classification calculation 

complexity the feature vectors length have been diminished 

with the application of principal component analysis. This 

experiments showed that exploiting 95% of original 

information considerably reduces the feature vector length and 

does not influence the correct classification ratio of all tested 

methods. 

 
Index Terms—Image classification, image processing, texture 

operators.  

 

I. INTRODUCTION 

Each object in the surrounding world has a texture. It 

might be plain or coarse one, but for human eye it is a 

descriptive mean for object recognition. Therefore, a lot of 

efforts have been taken to allow exploitation of texture 

information in machine vision. From early beginning, the 

researchers dealt with this problem designing many different 

texture descriptors, which could be applied for segmentation 

[1] in image preprocessing stage or to derive the feature 

vectors for classification needs. There could be also 

distinguished many attitudes to this problem, as those 

methods are based on statistical information gathered in the 

images [2-13] model based, or exploiting texture spectrum 

[14], etc. The field of application is also very broad especially 

in medicine [15, 16]. But there are also other domains, for 

instance painted strokes recognition [17]. During pursuing of 

texture descriptive features it was noticed that finding a 

description invariant on any arbitrary rotation of texture or 
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the lightning brings the solution of the problem. 

In this study, the statistical texture features are addressed. 

The aim is to compare the invariance of well-known 

algorithms on texture rotation and change of the lighting 

condition within an image. Although, we are not only 

interested in comparison of the designed feature vectors 

described by the authors, but also we suggest exploiting the 

data structures as feature vectors. Additionally, very simple 

from the theoretical point of view and with low 

computational demands techniques for texture description 

are introduced and their performance is compared, too. 

Finally, the principal component analysis is exploited to 

remove the redundant information and limit the size of 

feature vectors. 

 

II. TEXTURE OPERATORS 

This section presents methods for image texture 

description. In the literature there are four main branches of 

texture processing methods [12]: statistical, geometrical, 

model based, and signal processing. This study concentrates 

on the statistical methods. First of all, the well-known 

methods are presented. However, in some cases novel 

approach for its application is suggested. Next, simple, local 

texture statistic operators are introduced. Mainly, to compare 

the classification efficiency between methods of different 

feature complexity. 

A. Literature Overview 

The first order features (FOF) are derived from the 

intensity distribution in an image. They describe the general 

quality of the image. Let I(x,y) represents an image function 

of two space variables x and y, where x = 0,...,M-1 and y = 

0,...,N-1. This function can take values i = 0,...,G-1, where G 

represents total number of intensity levels in the image. The 

normalized histogram creates the base for mean, variance, 

skewness, kurtosis, energy, and entropy features definition 

recalled by Materka in [8]. 

Next, the second order features consider additionally the 

spatial relations between the luminance intensities within 

image. As a consequence, they contain information about the 

spatial properties that is important in image description. 

The spatial relation has been introduced by Haralick et al. 

[6] in the definition of spatial dependence matrix, which later 

becomes called a co-occurrence matrix [13]. Generally 

speaking, the co-occurrence matrix (COM) stores the 

information about the illumination values co-appearance in 

image. For given G luminance levels the COM has a 

resolution GxG. Each cell com(i,j) contains information of 

co-occurrence of intensity levels of value i and j in given 
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direction θ at given distance d. Starting from this data 

structure 14 features have been described [6] and in order to 

assure rotation independence the final feature vector consists 

of its averaged values with standard deviations calculated 

over all directions. 

It is assumed that texture of good quality is characterized 

by a small number of consecutive pixels of similar luminance.  

Run length matrix (RLM) has been proposed [5] to verify this 

finding. For image the run length matrix RLM(i,j) is defined 

as the number of runs of pixels of luminance i and length j. 

Where the maximal pixel value is G and the maximal run 

depends on the image resolution M and N. Starting from this 

structure description, there have been suggested many 

features which describe different aspects of the texture. For 

its equation please refer to [2, 4, 5, 11]. 

There were also attempts to define texture measures 

correlated with human perception of textures. One of the 

examples of such techniques is grey-tone difference matrix 

(GTDM) [3]. It is a vector containing G elements. Its entries 

are computed as the measurement of difference between 

intensity level of pixel and average intensity over a square, 

sliding the window centered at the pixel. Similarly, as in 

previous cases, this structure is then exploited to calculate 

texture describing operators like: coarseness, contrast, 

busyness, complexity, and texture strength. 

Finally, authors of local binary patterns (LBP) [9, 10] 

understand texture as a two-dimensional phenomenon 

characterized by two orthogonal properties: spatial structure 

(pattern) and contrast (the „amount‟ of local image texture). 

The joint distribution of grey values over a circularly 

symmetric neighbour set of pixels in a local neighbourhood is 

a starting point of the definition. Then the operator invariant 

against any monotonic transformation of grey scale is derived. 

Rotation invariance is achieved by recognizing that this grey 

scale invariant operator incorporates a fixed set of rotation 

invariant patterns. All these characteristics are calculated 

locally in order to summarize the texture quality in joint 

distribution of calculated features. The performance, 

however, depends on chosen parameters describing the 

radius of the neighbourhood and number of descriptive pixels 

(in this research it was 3 and 24, respectively). Moreover, 

usually better results are achieved when the information of 

LBP is supported by the information concerning local 

variation of data VAR. 

B. Structure Based Texture Operators 

In case of RLM it has been noticed [2] that instead of 

calculating all the parameters and creating from them the 

feature vector, similar results are achieved when the 

exploited data structure is used as a feature vector. 

The descriptive property of the RLM is obvious, however 

the only drawback which probably restrained its creators 

from using it in straight forward form were its dimensions. In 

case of this research the number of considered grey scale 

values is quantized into 16 and the maximal run length is 

assumed 40. 

Since it is possible to take advantage of RLM structure 

similar effects should be achieved when the basic structures 

created for other techniques are exploited. Therefore, in this 

study except of the feature vectors mentioned in previous part 

additionally the data structures created by the methods are 

also used for texture description. That results in two novel 

feature vectors based on following structures: 

1)     co-occurrence matrix calculated for images with 

quantized illuminance into 16 values and  

2)     grey-tone difference matrix achieved for original 

images of 256 grey shades. 

Moreover, the normalized histogram (NH) of 64 bins is 

also regarded as a feature vector.  

C. Local Texture Statistic Operators 

This section presents simple texture operators, which 

according to our knowledge have not been described 

elsewhere yet. All represent joint distribution of local 

statistical features calculated on the image. The locality is 

defined by a sliding window which side is equal to 7 pixels. 

Application of this neighbourhood allows also assuming the 

rotation invariance of the achieved operators. Following 

operators are introduced: 

1)     mean histogram (MH) - for each pixel the mean value 

in the window is calculated and the results are 

presented as a histogram of 64 bins; 

2)     min-max histogram (MMH) - for each pixel the 

minimal and maximal value in the window are found 

and its absolute difference is the value stored in the 

histogram of 64 bins; 

3)     mean-variance histogram (MVH) - for each pixel the 

mean and variance in the window are calculated and 

the result indexes two dimensional histogram (16x16 

bins). 

 

III. DATASETS 

There have been exploited two data sets to evaluate the 

performance of all this methods. The Brodatz data set with 

introduced rotation of the texture and the Photometric Image 

Database was exploited as it not only contains images of 

rotated texture but also with different lighting conditions. It 

assures that the achieved results will correspond to those 

found for real data analysis. 

A. Brodatz 

The Brodatz data set exploited in this study is based on the 

database prepared in [9] and [10]. It consists of images from 

16 classes photographed from Brodatz album [18]. Each 

class originally was represented by 7 images of 180 x 180 

resolutions. The images were rotated by the angle of 0, 20, 30, 

45, 60, 70, 90, 120, 135, and 150 degree. Additionally, each 

image was partitioned into 9 images of 60 x 60 pixels. That 

resulted in 700 (630 small and 70 original) images 

representing each class. Examples of the classes are 

presented in Fig. 1. 

B. Photometric Image Database 

The Photometric Image Database (PID) was prepared by 

Jerry Wu [19] in the Texture Lab, Heriot-Watt University in 

Scotland. It consists of 39 classes of different textures. Each 

class is represented by 57 images of 512 x 512 pixel 

resolution. The texture in each class is rotated as well as the 

lighting changes and rotates. For this research 16 classes 
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have been chosen (for examples see Fig. 2 and as in case of 

Brodatz database each image was divided into 9 images (170 

× 170) that gives 570 representatives for each class. 

 
Fig. 1. Brodatz data set examples. 

 
Fig. 2. Photometric image database examples. 

 

IV. RESULTS 

In this section firstly the performance of each presented 

methods is given for both data sets. Then the feature vector 

length is diminished with application of principal component 

analysis (PCA) and the influence of data transformation on 

the classification efficiency is considered. Instead of methods 

names the abbreviations are used. In cases where both the 

features and matrices are exploited as features vectors the 

subscript F or M is added, respectively. 

A. Methods Comparison 

The aim of this experiment was to compare the efficiency 

of the classification of all described methods. The k nearest 

neighbour (kNN) classifier was applied. The number of 

neighbours used for classification was chosen to be 15, 25, 

and 35. Larger neighbourhoods were not considered. Since 

the training set consists of 10% of all data, what gives 70 

elements for each class from Brodatz data set and 57 for PID. 

Therefore, using larger neighbourhood would involve bigger 

number of votes from neighbourring classes, what in 

consequence would increase the probability of erroneous 

classification.  

Fig. 3. and 4. present graphical interpretation of achieved 

results. It is worth to notice that the results for all tested 

methods are very high. In case of Brodatz data set the 

weakest GTDMF method correctly classified around 93% of 

data. While considering the 15 object neighbourhoods there 

were 3 methods which classification efficiency was 100% 

(COMM, MVH, NH) and next 6 which performance exceeds 

99% (MMH, LBP, RLMM, GRTDM, MH, COMF). As 

supposed increasing neighbourhood used for classification 

resulted in diminishing accuracy of correct classification 

ratio. 

 
Fig. 3. Classification of brodatz data set with kNN classifier applied to all 

methods. 

 
Fig. 4. Classification of PID data set with kNN classifier applied to all 

methods. 
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The performance of all classifiers on the PID data set was 

slightly worse, as none of the methods achieved 100% 

correct classification. The best efficiency here is for LBP on 

the level of 99.15% for neighbourhood equal to 15 elements. 

However, the lower efficiency of the methods on this data set 

results probably from the additional lighting changes which 

are introduced in data. Moreover, noticeable is the tendency 

of losing classification efficiency when the increasing 

neighbourhood is kept.  

Additionally, it is also notable that the sophisticated 

techniques (e.g. LBP, COM, RLM) do not outperform the 

simple ones (MMH, MVH). The bigger difference is visible 

only in case of PID data set. It seems that, however they are 

prone to lighting changes, they describe the texture 

characteristics well. 

Finally, in both cases the better performance was achieved 

by techniques based on the structures (e.g. COMM) in 

comparison to that achieved by features derived from this 

data structures (e.g. COMF). Hence, as considered the 

information in the structure is sufficient. Therefore, it is an 

effective competitor for features, which other drawback is 

time needed for calculation. On the other hand, the structures 

store probably redundant data. Moreover its high 

dimensionality influences also the classification time 

performance. In consequence, further consideration to 

address these problems is described in next experiment.  

B. Dimension Reduction 

As noticed, many of the texture feature vectors are built 

from very big structures. The information stored in them is 

redundant and the size influences the classification procedure 

time consumption. Therefore, PCA was applied to the feature 

vectors in order to extract the most descriptive part of the 

data.  

 
TABLE I: FEATURE VECTOR LENGTH FOR 100, 95, AND 90 % OF 

INFORMATION SUSTAINED WHEN APPLYING PCA. 

Information 100 95 90 

Method  PID Brodat

z 

PID Brodatz 

 Len. [%] [%] [%] [%] 

RLMM 640 9.38 6.72 7.03 5.16 

LBP 416 3.13 4.57 1.44 1.92 

COMM 256 3.91 5.47 2.73 3.13 

MVH 256 3.13 4.69 2.34 3.52 

GTDMM 256 43.36 41.02 28.91 34.77 

MH 64 28.13 17.19 17.19 10.94 

MMH 64 17.19 34.38 6.25 26.56 

NH 64 25.00 39.06 15.63 31.25 

COMF 28 3.57 7.14 3.57 7.14 

RLMF 12 16.67 8.33 16.67 8.33 

FOF 6 16.67 16.67 16.67 16.67 

GTDMF 5 20.00 20.00 20.00 20.00 

 

TABLE I presents the length of each feature vector, which 

consists of all gathered information (see 2nd column). Next 

columns show the percent of the original number of features 

exploited to describe 95 and 90 % of original information. 

The application of PCA allowed diminishing the feature 

vector length considerably for all methods. However, in case 

where the feature vector has already been rather short (less 

than 20 features) this operation may influence the 

classification results a lot. 

performance achieved by kNN classifier for the 

neighbourhood equal 15, which in previous case gave the 

best results. In this graph the comparison of performance 

depending of the percent of original information (100, 95, 90) 

is depicted.  

The reduction of feature vector length in order to assure 

remaining 95% of information almost did not change the 

results. In some cases they even become better (Brodatz: 

MMH, LBP, GTDMM, MH; PID: GTDMM, MH, LBP, MMH, 

RLMM, RLMF). However, in case of Brodatz the 

classification was impossible for FOF, RLMF, and GTDMF 

methods, while for PID for COMF, FOF, and GTDMF. 

Therefore, results for these methods are not presented. It is 

interesting, that in case of PID the improvement in 

performance allows to achieve 99.77% for GTDMM  method. 

Still the performance of the simple techniques do not differ 

considerably when compared to that of more sophisticated 

methods and the structure based methods classify better than 

methods based on features.  

 
Fig. 5. Influence of feature vector length dimension on classification 

performance on Brodatz data set. 

 
Fig. 6. Influence of feature vector length dimension on classification 

performance on PID data set. 
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V. CONCLUSIONS 

This study concentrates on the problem of texture 

description for classification needs. The comparison of 

well-known textural features with simple texture descriptors 

is presented. 

In order to assure that the results will correspond to data 

acquired in real world two benchmark data sets are exploited: 

Brodatz and PID. In Brodatz the texture rotation is 

introduced, whereas PID data set has already photographed 

the texture data with different rotation and under different 

lighting conditions. 

Classification experiments on both data sets proved that all 

methods distinguish textures very well, as the correct 

classification results are in the range 92-100%. Although, the 

performance was lower in case of PID data set that suggests 

that there are still problems when dealing with changing 

lighting conditions. Moreover, the results reviled that the 

sophisticated methods do not outperform the simple ones. 

Furthermore, application of the structures as feature vectors 

return better results than exploiting the features derived from 

those structures.  

It was also analyzed whether reducing feature vector 

length by applying PCA influences the classification results. 

It was proven that using 95\% of original information 

however diminishes the feature vector length considerably 

does not influence the classification performance. 
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