



Abstract—One of image compression algorithms is block

truncation coding that has lower efficiency in compare with

some other algorithms, for example, JPEG and JPEG2000, but

also has low cost and complexity and can be used in many

applications. Many of image compression algorithms were

implemented using FPGAs to work in fast digital systems. In

this paper, BTC is implemented using some parallel

microcontrollers that have acceptable speed and very low cost.

AVR microcontroller has many applicable instructions, but has

not the division instruction. Using the proposed division

algorithm in this paper, this operation can be executed very

fast.

Index Terms—BTC, block average, bit map, AVR

microcontrollers, division.

I. INTRODUCTION

In many digital image systems, specially in surveillance

systems, one image compression algorithm used to reduce the

image size to increment the use of memory. This image

compression algorithm must have suitable efficiency and

high speed. JPEG and JPEG2000 are examples of these

compression algorithms that have high efficiency and

compression ratio, but also have high complexity and

cost[1],[2].

In every application, the way of hardware implementation

is selected based on acceptable speed, fault tolerancy, cost

and circuit size. There are two main ways to implement

hardware based systems. The advent of high-density field

programmable gate arrays (FPGAs), in combination with

new synthesis tools, has made it relatively easy to produce

programmable custom hardware[3]. Implementations on

FPGAs can provide high performance within certain design

constraints, demonstrating speedups of orders of magnitude

over conventional machines [4]. In FPGA based systems,

circuits are designed as block diagrams and connections

between them. Then, by using of hardware description

languages(for example,VHDL) or prepared circuit blocks,

the system is implemented. FPGAs have high speed and

many facilities, but because of high cost, are not acceptable in

many applications. One of these implemented algorithms is

block truncation coding (BTC) [5],[6]. BTC is a simple and

effective technique for image compression that applies lossy

compression principles [7]. another way is microcontroller

based systems that can accept instructions in their memory

and execute them. One of the main problems of low cost

Manuscript received August 15, 2012; revised October 6, 2012.

The authors are with the Department of Computer Engineering, Young

Researchers Club, Roudsar and Amlash Branch, Islamic Azad University,

Roudsar, Iran (e-mail: sajed.dadashi@ yahoo.com, sahar_zdp@yahoo.com).

microcontrollers is their low speed in compare with FPGAs.

In some applications, using of some parallel and pipelined

microcontrollers can overcome this problem.

In Section II, the BTC algorithm is explained. Section III,

explains the design of the system using some processing units.

Section IV, is about the new proposed division operation in

AVR microcontrollers. In Section V, the system is

implemented and the speed analysis is described in Section

VI. Finally, section VII, explain the conclusion.

II. BTC IMAGE COMPRESSION ALGORITHM

The BTC algorithm [7] divides the image into small

rectangular blocks of pixels(for example, 8×8). The

compression is achieved by producing a bit map for the

quantized block and two 8-bits quantization levels.

Increasing the block size will increase the compression ratio

at the cost of reduced quality of the restored image.

For each block, the average value is calculated. A

two-level quantization is performed for the entire block so

that a „0‟ value is stored for the pixels with values smaller

than the average, and the rest of the pixels are represented by

the value „1‟.These „0‟s and „1‟s produce the bit map of

image block. Therefore, one „0‟ or „1‟ is exist in bit map

instead of 8 bits in original image.

 Moreover, two gray levels(low and high) are produced for

each block. One of them is low average that represents the

average of the gray levels for the pixels whose gray level is

less than the block average. The other is high aveage that

relates to the average of the gray levels for the pixels have

greater value than the block average. Therefore, for each

block that have 64 pixels(64 bytes), 10 bytes are stored in the

compressed version, 8 bytes that relates to the bit map of the

block(one bit for every pixel) and 2 bytes that represents the

block low average and block high average. As a result, the

compression ratio is 6.4.In image reconstruction process, „0‟

is replaced by block low average and „1‟ is replaced by block

high average.

III. SYSTEM DESIGN

A. Using of Parallel Microcontrollers

Suppose that there is only one block compression unit in

the system. When this unit gets the pixels of one block, must

process the operations and produce the bit map, block low

average and block high average. therefore, in the time of

compression of this block, receiving of another block is

delayed. Even if this unit can receive all blocks of this image,

receiving of another image is delayed. For this reason,

Very Low Cost Design and Implementation of Block

Truncation Coding for Image Compression

Sajed Zadeh Dadashi and Sahar Zadeh Dadashi, Member, IACSIT

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

1039

several processing units are used to improve the system

efficiency. The designed system is shown in Fig. 1.

The presented system can receive input images(for

example, from a camera) consecutively. There are four

compression units that act in the same way. The control unit

informs four units consecutively to receive their related block

with 64 bytes of data.

B. Operations

Compression unit 1 receives the 64 bytes of data related to

block 1 and saves them in it‟s internal SRAM memory.

Simultaneously, the sum of block values is calculated. Then

while the compression unit 1 operates next calculations(for

example, division of block sum by 64 to produce the block

average), the compression unit 2 receives the 64 bytes of

block 2. Then while unit 1 operates next required operations

and unit 2 finishes the receiving and starts the operations, unit

3 receives the 64 bytes of data related to block 3. Finally,

while unit 1 starts to send compressed data to MMC memory,

unit 2 operates last operations, unit 3 operates next operations

and unit 4 receives the 64 bytes related to block 4. This cycle

repeated again and again to receiving data with four units

consecutively.

Fig. 1. The system designed for BTC image compression algorithm.

When one unit receives all data related to one block, the

block sum is calculated. The sum of block must be divided by

64 to get the block average. For this operation, the sum of

block is shifted to the right by 6 bits that executed very fast.

Then the unit reads 64 bytes stored in internal SRAM

consecutively and compare them with block average. if the

pixel value is smaller than the block average, adds it to the

block low sum and adds 1 to the low counter. Otherwise, adds

it to the block high sum and adds 1 to the high counter. In the

end of this stage, we have the sum of pixel values smaller

than block average in block low sum and the sum of pixel

values equal or greater than block average in block high sum.

we also have the number of smaller values in low counter and

the number of greater values in high counter. Low counter

and high counter can have arbitrary values between 0 and 64

based on the related block. Therefore, we cannot use right

shift to divide block low sum by low counter to calculate

block low average and to divide block high sum by high

counter to calculate block high average.

The number of compression units is configured in a way

that no interruption take place in the operations of units and

also no confusion exist in the receiving data from input and

sending compressed data to MMC memory.

The control unit sends a signal to units 1 to 4 and inform

them for receiving data from input. While one unit is

receiving data, input lines of other units are in high

ampedance state. Also when one unit is sending compressed

data to MMC memory, output lines of other units are in high

ampedance state.

IV. PROPOSED NEW DIVISION ALGORITHM

We use AVR microcontrollers in the implemented system,

because they have very low cost, but they cannot execute the

division operation. We can use the continuous subtraction to

calculate block low average and block high average, but this

calculation is very time consuming. therefore we must find

another way.

We propose the new division algorithm that named it

hierarchical subtract based division(HSD). This new

algorithm can decrement the division time and have

important role to increment the number of images that can be

received in one second. In HSD, initially some coefficients

are selected based on the divisor that here is low counter and

high counter. Because the divisor is between 0 and 64, we

select 3,8,25,55 as four coefficients. We can select arbitrary

coefficients but, it should be noted that the difference

between them must not be small. Then, the multiplication of

divisor and every coefficient are calculated. Maybe this work

waste time a little, but speedups next stages. In AVR

microcontrollers, the multiplication is executed in one cycle.

Then, the dividend is compared with the greatest product. If

the dividend is equal or greater than the greatest product, we

add the greatest coefficient to the quotient and subtract the

greatest product from dividend. This operation continues

with comparing the decremented dividend and the greatest

product again and again and when the dividend becomes

smaller than the greatest product, in the next stage, the

dividend is compared with the next greater product and so on

Fig. 2 shows the stages of this algorithm.

If we use continuous subtraction, after every comparison

and when the dividend is greater than the divisor, the quotient

is incremented one unit and the number of comparisons and

increments is almost equal to quotient, but if we use HSD,

several comparisons and subtractions are done in one stage.

For example, if the result of division(quotient) is 59, in the

first stage, 55 is added to quotient and in the second stage, 3 is

added to the quotient. Therefore, the processing that is done

in two stages is equal to 58 stages in continuous subtraction.

In the final stage, dividend compare with the divisor and 1

added to the quotient and the result is 59.

Compression

Unit 1

Compression

Unit 2

Compression

Unit 3

Camera

Interface

MMC Memory

Control

Unit

Compression

Unit 4

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

1040

Fig. 2. HSD algorithm four coefficients: p, q, r, s dividend: A divisor: B

quotient: R four products: P, Q, R, S.

V. SYSTEM IMPLEMENTATION

A. Microcontrollers and Connections

In this sysem, we use one ATmega 8 for control unit and

four Atmega 32 for compression units. Pin configuration of

these microcontrollers are shown in Fig. 3.

When the data ready line that is connected to portc pin 0 of

control uint, becomes high, control unit informs one of the

compression units to receive 8 bit data related to one pixel of

image block. When control unit informs one unit for 64 times

to receive 64 bytes, in the next stage, informs another unit to

receive 64 bytes and so on. At first, compression unit 1 is

busy. Then, compression units 1 and 2 are busy for different

stages of compression algorithm. This process continues until

compression unit 4 starts to receive data. In this time and until

the system is on, all units are busy and therefore, only at small

time in the system start, maximum use of units is not possible.

Fig. 3. Pin configuration of control unit and compression units.

B. MMC Memory

We decided to save compressed images in MMC memory

that requires 3.3 volts to work, while AVR microcontrollers

require 5 volts. The data must be sent from output port of

microcontrollers to MMC, has 5 volts and must be decrement

to 3.3 volts to connect to MMC input lines. This problem is

solved by resistant network that is shown in Fig. 4.

Fig. 4. Connection between microcontrollers and MMC.

AVR microcontrollers have the SPI interface and can

connects to the MMC memory. Microcontrolle is master and

the MMC memory is slave. Four lines are required for SPI

connection as shown in Fig. 4.

The implemented system is shown in Fig. 5. It should be

noted that the large size of circuit is because of using the

microcontrollers in the PDIP package and placing the system

in the 1000 holes board. If we use the microcontrollers in the

TQFP package and place them on the printed circuit board,

the circuit size will be very small.

VI. SPEED ANALYSIS

In this system, the maximum frequency(16MHZ) is used

for microcontrollers via external oscillator. All instructions

are written in assembly language using AVR Studio

Synthesis tool. The number of required cycles for any

instruction is obvious. Our calculation shows that receiving

64 bytes of data related to one block takes 1040 cycles. In

each second, 16 million cycles exist and therefore 15384

blocks can be received in one second. We test the system with

256×256 images that have 1024 blocks. If we divide the

number of received blocks in a second by 1024, the speed of

15 images per second can be achived that is practically

observable.

VII. CONCLUSION

As shown in this paper, we can use several parallel

microcontrollers and divide jobs between them to create

different systems with acceptable speed and very low cost

that can be used instead of expensive FPGAs in applications

that the time of processing is not very critical.

start

P = B * p

Q = B * q

R = B * r

S = B * s

 A = A – P

 R = R + p

 n
A < P

 y

 A = A – Q

 R = R + q

 n
A < Q

 y

 A = A – R

 R = R + r

 n
A < R

 y

 A = A – S

 R = R + s

 n
A < S

 y

 A = A – B

 R = R + b

 n
A < B

 y

stop

Compression

Unit

1

P
O

R
T

 A

P
D

2

Compression

Unit

2

P
O

R
T

 A

P
D

2

Compression

Unit

3

P
O

R
T

 A

P
D

2

Compression

Unit

4

P
O

R
T

 A

P
D

2

Control

Unit

1 P
C

0

PD3
PD2
PD1
PD0

8 Input

Image

Interface

D
at

a
re

ad
y

1
.8

K
Ω

1
.8

K
Ω

1
.8

K
Ω

Compression

Units

1 to 4

P
B

2

P
B

3

P
B

4

P
B

5

3.3 KΩ

3.3 KΩ

1
0

0
n

F

V
O

V

I

G
N

D

3.3 KΩ

R
eg

u
la

to
r

3
.3

V

5V

 SS

DIN

GND

VS

SCK

GND

DOUT

M

M
C

 m
em

o
ry

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

1041

Fig. 5. The implemented system.

ACKNOWLEDGMENT

This paper is a result of the research plan “Design a

hardware system for the JPEG2000 image compression

algorithm”. In fact, while working on this research plan, we

decided to use some parallel AVR microcontrollers to have

suitable speed and very low cost. At first, we used this

approach for the simpler image compression algorithm

“BTC” and motion detection to test our way.

REFERENCES

[1] B. O. Hanen and M. Wisan, JPEG Compression, 2005.

[2] JPEG 2000: Image Compression Fundamentals, Standards and

Practice (The International Series in Engineering and Computer

Science), Springer.

[3] F. Vahid, “Digital design with RTL design,” VHDL and Verilog,

Second Edition, 2007, J ohn Wiley and Sons

[4] D. Abramson, P. Logothetis, A. Pstula, and M. Randall, “FPGA based

custom computing machines for irregular problems,” in Proc. Fourth

Int. Symp. on High-Performance Computer Architecture, Las Vegas,

Nevada, 1998, pp. 324-333

[5] S. M. Saif, S. Nassar, and H. M. Abbas, “FPGA implementation of

block truncation coding algorithm for gray scale and color images,” in

Proc. IEEE Canadian Conf. Electrical and Computer Engineering,

(CCECE 2003), vol. 1, pp. 23–26, 2003.

[6] S. M. Saif, S. Nassar, and H. M. Abbas, “An FPGA implementaion of a

neural optimization of block truncation coding for image/video

compression,” Elsevier Microprocessors and Microsystems, 2006

[7] E. Delp and O. Mitchell, “Image compression using block truncation

coding,” IEEE Transactions on Communications vol. 27, no. 9, pp.

329-336, 1979.

Sajed

Zadeh Dadashi received his bachelor degree in Computer

Engineering(Hardware) from the

Department of Computer Engineering,

Shahid Bahonar University of Kerman in 2005 and M.Sc. Degree in

Computer Engineering(Computer Architecture) from the Department of

Computer Engineering, Arak Branch, Islamic Azad University in 2009. His

research interests include computer architecture, digital design, image

processing, fault tolerant systems.

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

1042

