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Abstract—Salsa20 uses a single set of rotation distances 

within its core function. To our knowledge, no design rationales 

on the choice of rotation distances are given on the Salsa20 core 

function. This is the first paper that analyzes rotations influence 

over the output sequence in the Salsa20 image encryption 

scheme. We focus on the Salsa20/8 image encryption scheme 

and use recent developments in the analysis of the Salsa20 core 

function to evaluate the security implications of using different 

sets of rotation distances in the core function. Finally, we give 

some observations on the some sets of rotation distances used in 

the Salsa20/8 image encryption scheme.  

 
Index Terms—Salsa20, image encryption, rotation distance.  

 

I. INTRODUCTION 

 Along with the rapid growth of image transmission 

through communication substructures such as mobile 

networks and the Internet, the security of digital images has 

become a major concern. So, Image encryption is urgently 

needed to make visual communication incomprehensible to 

those who do not possess the right keys. 

Image encryption is quite different from text encryption 

due to some intrinsic features of images such as bulky data 

capacity and high correlation among pixels, which are 

generally difficult to handle by traditional techniques. In the 

last two decades, a growing number of image encryption 

algorithms, adopting some related nonlinear theories, have 

been proposed for use in cryptographic applications. Most of 

these systems were subject to cryptanalytic attacks and many 

of them were shown to suffer from a lack of security. 

Recent studies have shown that stream ciphers are 

potential candidates for image encryption [1]–[3]. Stream 

ciphers play an important role in cryptographic practices such 

as medical and military applications. A critical point in the 

design of a stream cipher is to generate a long unpredictable 

binary sequence from a short secret key. Unpredictable 

sequences are desirable in cryptography because it is rather 

impossible, given a reasonable segment of binary sequence, 

to find out more about them. Generally, the security of stream 

ciphers cannot be proved. Instead, the trust in a cipher is 

merely based on the fact that no weaknesses have been found 

after a long and thorough evaluation phase. 

Recently, as a response to the lack of efficient and secure 

stream ciphers, The European Network of Excellence for 

Cryptography, ECRYPT, issued a call for stream cipher 

proposals named eSTREAM project to find suitable stream 

 

ciphers for widespread adoption. This is a good opportunity  

for the cryptographic community to settle on a new 

encryption standard that simultaneously provides higher 

confidence and higher speed than AES. The hope is that, by 

doing so, the algorithms and methods that are likely to be 

standardized at some point during the next years or so will be 

subjected to rigorous inspection by the cryptographic 

community. Salsa20, one of the e STREAM candidates, is a 

synchronous stream cipher proposed by Bernstein [4]. The 

author justified the use of very simple operations (addition, 

XOR, constant-distance rotation) and the lack of 

multiplication or S-boxes. This helps to develop a very fast 

primitive that is also, by construction, immune to timing 

attacks. There are still several open questions about the 

design of Salsa20 core function. One of these questions is 

about choice of rotation distances in the design of Salsa20 

core function. The rotations provide the diff usion between 

the various bit positions in the state words. In [5], Bernstein 

answered to this question and stated that the exact choice of 

distances does not seem very important. 

In [1], we surveyed a successfully efficient 

implementation of three variants of Salsa20 stream cipher: 

Salsa20/8, Salsa20/12 and Salsa20/20, for digital image 

encryption and compared the results. In this paper, we 

describe an observation about the effect of choosing different 

set of rotation distances in the Salsa20/8 image encryption 

algorithm. We show that choosing different rotation 

distances causes a change in the statistical properties of 

output cipher-image and alters the encryption speed. To our 

knowledge this is the first article which deals with the issue 

of rotation distances in Salsa20 core function. The outline 

and main contributions of this article are as follows. In 

Section 2, we give a short description of the Salsa20/8 image 

encryption scheme. Afterwards, in Section 3, we describe our 

test method. In Section 4, we analyze the efficiency of the 

Salsa20/8 image encryption scheme using different sets of 

rotation distances. Finally, Section 5 concludes the paper. 

A. Used Notation and Terminology   

Table I contains a description of symbols used throughout 

this article. 

TABLE I: USED NOTATION 

Notation Description 

x y Addition of x and y modulo 2 (XOR) 

x + y Addition of x and y modulo 232 
x n Bit-rotation of x by n positions to the left, 0 ≤ n ≤ 31 

x  
 

The largest integer not greater than x 

erfc (x)  The complementary error function for the value of x 
igamc (a, x) The incomplete gamma function as defined in [6] 
P-value The probability of obtaining a test statistic at least as 

extreme as the one that was actually observed, assuming 
that the null hypothesis is true 

Pr (x) Probability of observing event x 
H Number of rows in the image matrix 
W Number of columns in the image matrix 
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II. SALSA20/8 IMAGE ENCRYPTION ALGORITHM 

The Salsa20/8 image encryption algorithm is defined as 

follows [1]: 
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Image matrix is a binary sequence of 8×H×W length. The 

plain-image is first partitioned into blocks of 8×8 pixels. 

Then, Salsa20/8 algorithm generates a set of pseudo-random 

64-byte stream known as keystream, equal length to image 

matrix size. Afterwards, each 64-byte block is XOR-ed with 

its corresponding 64-byte block in the plain-image as 

follows: 

( ) ( ) ( )Plain image i Keystream i Cipher image i        (5) 

where,
64{0,1, 2,..., 2 1}.i   This procedure is shown in Fig. 

1. As it is shown in Fig. 1, each 8×8 block (64-byte) of 

keystream is XOR-ed with its corresponding 8×8 block of 

plain-image to produce cipher-image. For decryption, 

cipher-image is XOR-ed with keystream. The Salsa20 key is 

a uniform random sequence of bytes, and the same nonce is 

never used for two different blocks of messages. 

 
Fig. 1. Salsa20/8 image encryption scheme 

 

III. TEST METHOD 

In this section, we briefly describe our test method. A gray 

image of size 512×512 (= 2,097,152 bits), called “Couple”, is 

selected as the plain-image that is shown in Fig. 2. The 

experiments are all performed using MATLAB 7.10 on a 

personal computer (PC) with a 2.0 GHz Intel dual-core 

processor and 2 GB RAM. We use K = 

0x0123456789abcdef0123456789abcdef as the secret key 

and IV = 0 as the initial vector. The default rotation distances 

in the Salsa20/8 encryption scheme are 7, 9, 13 and 18. So, 

we encrypt the plain-image using all other possible choices of 

fewer rotation distances in the encryption scheme, i.e. 

7×9×13×18 = 14742 number of options, and analyze the 

randomness of corresponding cipher-images’ bit strings 

using frequency test and frequency test within a block. Then, 

we analyze the uniformity of cipher-images using Pearson’s 

chi-square test. Our purpose is to find out whether there is 

any other possible choice of rotation distances that leads to a 

faster and more efficient design compared to the design with 

the default rotation constants. 

 

Fig. 2. Plain-image 

We used the following code in our test method to encrypt 

plain-image using all possible fewer rotation distances. 

Counter = 0; 

for i = 1:7 

  for ii = 1:9 

    for iii = 1:13 

      for iiii = 1:18 

       rotation distance=(i,ii,iii,iiii); 

    Cipher=Salsa20/8(plain-image,  

                        rotation distance); 

    Counter = Counter + 1; 

 end 

    end 

  end 

end 

A. Frequency Test (Monobit Test) 

This test focuses on the proportion of zeroes and ones for 

the entire cipher-image bit sequence. So, it counts the number 

of zeros and ones in a sequence and determines whether the 

proportion of zeros and ones in a sequence are approximately 

the same as would be expected for a truly random sequence. 

Note that given a random generated bit string, we would 

expect approximately half the bits in the string to map to ones 

and approximately half to map to zeros. Let the length of the 

encrypted bit string be n and let the generated bit sequence be 

given as ε = ε1, ε2,…, εn. Where εi
 {0, 1}. The entire 

encrypted bit strings are added together to produce Sn = X1 

+ … + Xn, where    Xi = 2εi – 1. Now, the P-value can be 

computed as follows [6]: 
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If the computed P-value is < 0.01, then conclude that the 

sequence is non-random. Otherwise, conclude that the 

sequence is random. Fig. 3 shows the P-value of monobit test 

for the bit string of the final encrypted image of the 

cryptosystem under study. Due to saving a large scale data, it 

is rather difficult to distinguish the exact results from the 

figure. So, for a better comparison, we have selected some set 

of rotation distances and listed their corresponding monobit 

test P-values in Table II. According to the monobit test 

results, there are other sets of rotation distances, if chosen; we 

can get a random bit string with fewer rotations. 

 

Fig. 3. Monobit test results 

TABLE II: MONOBIT TEST RESULTS FOR SOME SETS OF ROTATION 

DISTANCES 

Rotation distance set Counter P-value Result 

[7, 9, 13, 18] 14742 0.1020 Pass 

[7, 8, 12, 16] 14488 0.5334 Pass 

[7, 8,   8, 12] 14412 0.0853 Pass 

[7, 7,   2,   7] 14065 0.3693 Pass 

[6, 9,   6,   2] 12494 0.8445 Pass 

[6, 7, 10, 15] 12111 0.5489 Pass 

[4, 5,   6,   7] 7351 0.2306 Pass 

[2, 8,   2,   4] 3766 0.3227 Pass 

[2, 6,   9,   8] 3428 0.0035 Fail 

[1, 3,   2, 12] 498 0.9329 Pass 

[1, 1,   4,   5] 59 0.4239 Pass 

[1, 1,   3,   4] 40 0.0070 Fail 

[1, 1,   1,   1] 1 0.0152 Pass 

B. Frequency Test within a Block  

This test focuses on the proportion of one's within M-bit 

blocks of cipher-image bit sequence. The purpose of this test 

is to determine whether the frequency of ones in an M-bit 

block is approximately M/2, as would be expected under an 

assumption of randomness. For block size M = 1, this test 

degenerates to the monobit test. Let the length of the 

encrypted bit string be n and let the generated bit sequence be 

given as   ε = ε1, ε2, …, εn. The chi-square is computed as 

follows [6]:  

2 2

( 1)

1 1

4 ( )
2

n

M M

test i M j

i j

M
 

 
 
 

 
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Now, the P-value can be computed as follows [6]: 
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If the computed P-value is < 0.01, then conclude that the 

sequence is non-random. Otherwise, conclude that the 

sequence is random. This test depends on the passing of 

monobit test. Let M = 3. Fig. 4 shows the P-value of 

frequency test within a block for the bit string of the final 

encrypted images of the cryptosystem under study. Due to 

saving a large scale data, it is rather difficult to distinguish the 

exact results from the figure. So, we have selected some set of 

rotation distances and listed their corresponding P-values in 

Table III. According to the results of the frequency test within 

a block, there are a lot of rotation distance sets, if chosen; we 

can get a random bit string with fewer rotations. 

 

Fig. 4. Results of frequency test within a block 

TABLE III: THE RESULTS OF THE FREQUENCY TEST WITHIN A BLOCK FOR 

SOME SETS OF ROTATION DISTANCES 

Rotation distance set Counter P-value Result 

[7, 9, 13, 18] 14742 0.2793 Pass 

[7, 8, 12, 16] 14488 0.8982 Pass 

[7, 8,   8, 12] 14412 0.0040 Fail 

[7, 7,   2,   7] 14065 0.4009 Pass 

[6, 9,   6,   2] 12494 0.1466 Pass 

[6, 7, 10, 15] 12111 0.1802 Pass 

[4, 5,   6,   7] 7351 0.2049 Pass 

[2, 8,   2,   4] 3766 0.5242 Pass 

[2, 6,   9,   8] 3428 Monobit test failed 

[1, 3,   2, 12] 498 0.0003 Fail 

[1, 1,   4,   5] 59 0.5051 Pass 

[1, 1,   3,   4] 40 Monobit test failed 

[1, 1,   1,   1] 1 0.1846 Pass 

C. Chi-square Test  

Digital image is a two-dimensional matrix and its smallest 

unit is a byte (pixel) not a bit. Also, in the image matrix each 

pixel is adjacent to 8 surrounding pixels. So, unlike the 

textual data, there exists a lot of correlation among image 

pixels. Despite the randomness of cipher-image bit sequence, 

there should be no appearance of pattern or textured zone 

recognized by visual inspection. Appearance of 

homogeneous zones in the cipher-image is a security 

weakness and prevents image to reach the maximal entropy. 

In statistics and probability theory, the discrete uniform 

distribution is an equally likely probability distribution 

whereby every one of n observed values has equal probability 
1/n. Uniformity caused by an encryption function may be 

justified quantitatively by the Pearson's chi-square test [7]. 

The chi-square distribution is a very powerful statistical test. 

Its distribution can be used to compare the goodness-of-fit of 

the observed frequencies of events to their expected 

frequencies under a hypothesized distribution [8]. The test 

statistics for this test is given by 
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where k is the number of gray levels (256), ok is the observed 

occurrence frequencies of each gray level (0–255), and ek is 

the expected occurrence frequency of each gray level. For 

example, if plain-image size is H×W then ek = H×W/256. 

Assuming a significant level of 0.01, 2 (255, 0.01) = 

310.4574. For any cipher-image if 2
test < 2 (255, 0.01), then 

it implies that the null hypothesis is not rejected and the 

distribution of the encrypted image histogram is uniform. Fig. 

5 shows the chi-square test value for the final encrypted 

image of the cryptosystems under study. Due to saving a 

large scale data, it is rather difficult to distinguish the exact 

results from the figure. So, for a better comparison, we have 

selected some set of rotation distances and listed their 

corresponding chi-square values in Table IV. Test results 

show that there are other choices of rotation distances, if 

chosen; we can get a random cipher-image with fewer 

rotations.  

 

Fig. 5. Chi-square test value 

TABLE IV: CHI-SQUARE TEST VALUES FOR SOME SETS OF ROTATION 

DISTANCES 

Rotation distance set Counter Chi-square Result 

[7, 9, 13, 18] 14742 245.5020 Pass 

[7, 8, 12, 16] 14488 253.0605 Pass 

[7, 8,   8, 12] 14412 Frequency test within a block failed 

[7, 7,   2,   7] 14065 353.3379 Fail 

[6, 9,   6,   2] 12494 355.1484 Fail 

[6, 7, 10, 15] 12111 231.9316 Pass 

[4, 5,   6,   7] 7351 252.6836 Pass 

[2, 8,   2,   4] 3766 343.7148 Fail 

[2, 6,   9,   8] 3428 Monobit test failed 

[1, 3,   2, 12] 498 Frequency test within a block failed 

[1, 1,   4,   5] 59 323.0176 Fail 

[1, 1,   3,   4] 40 Monobit test failed 

[1, 1,   1,   1] 1 228.0234 Pass 

 

IV. ANALYSIS 

In this section, we performed a series of tests to justify and 

compare the efficiency of the Salsa20/8 image encryption 

scheme using different sets of rotation distances. The 

evaluation consisted of theoretical derivations and practical 

experimentation. 

A. Entropy Analysis 

Information theory is the mathematical theory of data 

communication and storage founded in 1949 by Shannon [9]. 

Shannon redefined the entropy as a measure of the amount of 

information in a source [10]. The concept of entropy is 

associated with the amount of disorder and uncertainty in a 

physical system. Today, the modern information theory is 

concerned with error-correction, data compression, 

cryptography, communications systems, and related topics. 

The entropy of an image is an estimation of randomness and 

it is frequently used to measure sharpness of the histogram 

peaks, which is directly related with better defined structural 

information. It is well known that the Shannon entropy H(s) 

of a message source s can be calculated as: 

2 1

20

1
( ) Pr( ) log

Pr( )

N

ii
i

H s s
s




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(10) 

The entropy is expressed in bits. Let us suppose that the 

source emits 2N  symbols with equal probability, i.e.,

1 2 2
{ , ,..., }Ns s s s . After evaluating equation (10), we 

obtain its entropy ( )H s N , corresponding to a truly 

random source. Actually, given that a practical information 

source seldom generates random messages, in general, its 

entropy value is smaller than the ideal one. However, when 

the messages are encrypted, their entropy should ideally be 8. 

If the output of such a cipher emits symbols with entropy less 

than 8, there exists certain degree of predictability, which 

threatens its security. Let us consider the cipher-image of test 

image, the number of occurrence of each gray level is 

recorded and the probability of occurrence is computed. The 

entropy test results are listed in Table V. The values obtained 

are very close to the theoretical value of 8. This means that 

the information leakage in the encryption process is 

negligible and the encryption system is secure upon the 

entropy attack. Experiments show that there is a negligible 

difference between information entropy of cipher-images of 

surveyed image encryption algorithm using different sets of 

rotation distances. This shows that we can approach the 

maximal entropy using fewer rotations. 

TABLE V: ENTROPY VALUE FOR SOME SETS OF ROTATION DISTANCES 

Rotation distance set Counter Entropy 

[7, 9, 13, 18] 14742 7.9994 

[7, 8, 12, 16] 14488 7.9993 

[6, 7, 10, 15] 12111 7.9992 

[4, 5,   6,   7] 7351 7.9993 

[1, 1,   1,   1] 1 7.9994 

B. Correlation Coefficients Analysis 

In the image data, each pixel is highly correlated with its 

adjacent pixels. An ideal encryption algorithm should 

produce the cipher-images with no such correlation in the 

adjacent pixels. Following equations are used to study the 

correlation between two adjacent pixels in horizontal, 

vertical and diagonal orientations [11]. 

( , )
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xy

Cov x y
r

D x D y

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where x and y are intensity values of two neighboring pixels 

in the image and N is the number of adjacent pixels selected 

from the image to calculate the correlation. We consider Lena 

as correlation test image that is depicted in Fig. 2. Fig. 6 

shows the correlation distribution of two adjacent pixels in 

the plain-image and cipher-image. It is observed that 

neighboring pixels in the plain-image are correlated too much, 

while there is a little correlation between neighboring pixels 

in the encrypted images. Table VI shows the results for 

correlation coefficients of surveyed cryptosystem. The 

correlation coefficients of cipher-images are far apart from 

plain-image. Results show that the Salsa20/8 image 

encryption scheme can dissipate the correlation among pixels 

using fewer rotations. 

 

 
Rotation 

distance set 

Correlation coefficients 

Vertical Horizontal Diagonal 

C
ip

h
er

-i
m

a
g

e
 

[7, 9, 13, 18] 

   

[7, 8, 12,16] 

   

[6, 7, 10, 15] 

   

[4, 5, 6, 7] 

   

P
la

in
-i

m
a

g
e 

 

   

Fig. 6. Correlation analysis and distribution of two adjacent pixels  

TABLE VI: CORRELATION COEFFICIENTS OF TWO ADJACENT PIXELS IN PLAIN-IMAGE AND CIPHER-IMAGE. 

Image Rotation distance set Counter 
Correlation coefficients 

Vertical Horizontal Diagonal 

Cipher-image 

[7, 9, 13, 18]  14742 0.0182 -0.0452 -0.0217 

[7, 8, 12, 16]  14488 0.0395 -0.0714 0.0464 

[6, 7, 10, 15] 12111 -0.0294 0.0852 -0.0268 

[4, 5,   6,   7] 7351 0.0805 -0.0730 -0.0285 

[1, 1,   1,   1] 1 -0.0073 -0.0876 0.0143 

Plain-image          – – 0.9384 0.9798 0.9260 

 

C. Performance Analysis  

Apart from the security consideration, some other issues 

on image encryption are also important. This includes the 

encryption speed for real-time processes. In general, 

encryption speed is highly dependent on the CPU structure, 

memory size, OS platform, the programming language and 

also on the compiler options. So, it is pointless to compare the 

encryption speeds of two ciphers without using the same 

developing environment and optimization techniques. 

Despite of the mentioned difficulty, we have undertaken an 

analysis for the explicit comparison between the encryption 

speeds of the cryptosystems using different set of rotation 

distances. 

We evaluated the performance of the surveyed image 

encryption scheme with an un-optimized MATLAB code. In 

addition, to improve the accuracy of timing measurements, 

each set of the timing tests was executed 10 times, and the 

average of the times was reported. Table VII summarizes the 

encryption speeds for the encryption scheme under study on 

images of different sizes. According to the performance 

analysis, employing fewer rotations leads to a faster 

encryption. 
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TABLE VII: EXPLICIT COMPARISON BETWEEN THE ENCRYPTION SPEEDS OF 

CRYPTOSYSTEMS USING DIFFERENT SETS OF ROTATION DISTANCES 

Plain-

image 

size 

(Pixel

) 

Type 

Encryption time (sec) 

[7, 9, 13, 18] [7, 8, 12, 16] [6, 7, 10, 15] [4, 5, 6, 7] [1, 1, 1, 1] 

128×128 Gray 0.4541 0.4453 0.4323 0.4173 0.3992 
256×256 Gray 1.6340 1.6063 1.5905 1.5146 1.4055 
512×512 Gray 6.4123 6.2436 6.1193 5.8311 5.4424 

1024×1024 Gray 25.2552 24.7106 24.3122 23.1552 21.6083 

 

V. CONCLUSION AND FUTURE DIRECTIONS 

In this paper, we have analyzed the effect of choosing 

different rotation distances in the Salsa20/8 image encryption 

scheme and compared them to the default set of rotation 

distances used in the cryptosystem. According to the 

performed analysis, we have finally observed that choosing 

most of the fewer rotations in the encryption scheme provide 

the same security as the default scheme. So, based on our 

limited analysis, the specific choice of rotation distances does 

not have a strong impact on the security of the Salsa20/8 

image encryption scheme. The benefit of choosing fewer 

rotations is the encryption speed. The future research 

directions will be directed to a more detailed study of security 

analysis of the Salsa20/8 image encryption scheme using 

fewer rotation distances. We plan to use standard 

cryptanalytic tools, such as differential and linear 

cryptography to further assure the safety and robustness of 

the Salsa20/8 image encryption scheme that use fewer 

rotations. Finally, we hope that this paper will spur additional 

research in the analysis of image encryption stream ciphers. 
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