
  

  
Abstract—MPSoCs are gaining popularity because of its 

potential to solve computationally expensive applications. 
MPSoCs frequently use two kinds of memories; on-chip SRAMs 
and off-chip DRAMs. Processors in multi-core systems usually 
take many clock cycles for the transfer of data to/from off-chip 
memories which affects the overall system performance. While 
on-chip memory operation takes one or two clock cycles, an 
off-chip memory access takes significantly more number of 
clock cycles. Memory access delays largely depend on the ways 
of memory allocation and array binding. In this paper, memory 
delay modeling for finding accurate delays and two effective 
techniques,  memory allocation and slack time management, are 
proposed for memory access optimization of off-chip DRAMs. 
 

Index Terms—Memory allocation, binding, scheduling, 
memory access optimization, memory management.  
 

I. INTRODUCTION 
For years, increasing clock speed delivers high 

performance for wide range of applications. Many 
applications become more and more complex and require a 
large amount of computation, so that a single processor 
cannot frequently satisfy the performance criteria and the 
designer needs to use multiple processors. A heterogeneous 
MPSoC consists of two or more independent and distinct 
microprocessors (cores), i.e., heterogeneous multi-core 
processors.  

Multi-core systems typically use two kinds of memories; 
on-chip memories for local access and off-chip memories for 
a global access. Computationally expensive applications 
involve large amount of data and need to store them in cheap 
and large capacity off-chip memories. Each processor in 
multi-core system frequently accesses the global memory 
which takes many cycles (latency) for the transfer of data. 
Latency in digital systems has become a critical parameter. 
An important class of digital systems includes applications 
such as video image processing which is extremely memory 
expensive. In such applications, a significant amount of delay 
and power is consumed during memory access especially for 
off-chip dynamic random access memories (DRAMs). We 
need accurate methods for modeling and optimizing 
inter-core memory operations. Some part of work related to  
analyze the access time model for on-chip cache memories is 
reported in literatures [1], [2] while there is not adequate 

 
Manuscript received July 20, 2012; revised September 20. 
S. D. Khan is with the Computer Engineering Department, Umm   

Al-Qura  University, Makkah, Saudi Arabia (e-mail: sgkhan@ uqu.edu.sa).  

work on analyzing the access time model for off-chip 
memories. We developed memory delay model that finds 
cyclic accurate delays and optimize the memory access 
latency for off-chip DRAMs.  

Several techniques have been introduced to optimize the 
memory bandwidth. To improve access bandwidth, modern 
memories are provided with access modes like page mode 
and read-modify-write mode. Different access modes of 
modern day memories (e.g., page-mode) are exploited in [3] 
to alleviate the memory bandwidth bottleneck. The memory 
access can be optimized to some extent by exploiting page 
and read-modify-write mode as in [4]. Ordering of memory 
operations determines possibility of exploiting the page and 
read-modify-write mode. Maximizing page and read-modify 
-write mode belongs to the class of NP-Complete problems 
[5]. Loop transformations are interesting alternatives to 
optimize the memory access latency. Techniques like code 
rewriting and loop transformations were used in performing 
data and memory related optimizations in embedded systems 
[6]. Techniques like loop morphing; loop fusion and loop 
alignment were reported in [7], [8], [9]. These techniques 
cannot utilize memory access latency optimally. As there are 
high variations in memory access delay depending on the 
ways of designing memory configuration and assigning 
arrays to memories, a technique for memory allocation and 
array binding is proposed in [10]. After memory allocation 
and binding, scheduling of operations is applied in [10] to 
exploit the page mode. In [11], a new method for memory 
allocation and assignment is proposed using multi-way 
partitioning. They use dual port memories which are 
expensive. In [11], the authors did not describe the method 
how to use partition algorithm to resolve the conflicts in 
conflict graph. For small applications, Branch & Bound and 
integer linear programming can be used to find the optimum 
solutions. But if the size of the application gets larger, these 
algorithms take a huge computation time to produce an 
optimum solution.  

For such applications, heuristic algorithms can find the 
near optimum solutions with reasonable CPU time. In this 
paper, we use modified min-cut partitioning algorithm from 
[12] for memory allocation and assignment. The min-cut 
algorithm tends to find minimum cuts in conflict graph. We 
modified the conflict graph to maximize the cuts. 

 Maximizing the cuts results in resolving the maximum 
number of conflicts in the conflict graph. Furthermore, we 
apply slack time management technique in addition to 
exploiting the page mode for  memory access optimization. 

Effective Memory Access Optimization by Memory Delay 
Modeling, Memory Allocation, and Slack Time 

Management 

Sultan Daud Khan, Member, IACSIT 

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

897



  

II. MEMORY DELAY MODELING 
Most of streaming applications are data dominated. The 

data for such applications are usually stored in off-chip 
double data rate synchronous DRAMs (DDR SDRAMs). 
DDR SDRAMs use double data rate architecture to achieve 
high speed operations. The memory address is split internally 
into a row address and a column address. Read and Write 
accesses to the DDR memories are burst-oriented. The burst 
length determines the maximum number of column location 
that can be accessed for a given READ or WRITE command. 
Before accessing the memory, PRECHARGE command is 
issued to a bank. The bank becomes idle after pre-charge 
delay (tRP) is met. Access to the memory starts with the 
registration of an ACTIVATE command which is then 
followed by READ or WRITE command. The address bits 
registered with ACTIVATE command are used to select the 
bank and row to be accessed. The address bits registered with 
READ or WRITE command are used to select the column to 
be accessed. CAS latency (CL) is the delay in clock cycles 
between the registration of a READ/WRITE command and 
the availability of the first bit of output data. The latencies 
calculated in [10] are based on the assumed values which 
may not be accurate. We have developed Memory Delay 
Model for DDR SDRAMs that finds accurate latency and 
also optimize the memory access latency.  

Our Memory Delay Model receives each command and 
calculates the delay on the basis of certain rules in Fig. 1. For 
example, If the READ or WRITE command occurs within 
the row address to column address delay (tRCD) time, then it 
is shifted by the (tRCD- t) value. If two commands occur at 
the same clock cycle (collision), then the later command is 
shifted by one cycle. If two consecutive WRITE commands 
occur, the gap must be greater than or equal to two clock 
cycles according to a DDR DRAM data sheet. Commands are 
scheduled at the clock cycles where there is no violation of 
rules. In this way, all the memory operations are scheduled 
and the cyclic accurate delay is computed.  

 

Fig. 1.  Rules for delay modeling 

Fig. 2 shows a block of codes that contains the arrays 
stored in an off-chip memory. Assume that the size of each 
array in Fig.2 is 16 × 1024 and that all the arrays are of the 
same size, residing in different rows of the same memory, 
and Read/Write latency are 5/4 cycles respectively. Fig. 3(a) 
shows delay models for op1. In the simple delay modeling, 
the next command is executed after first command is 
completed. When READ X[i] command occurs, the next 
READ X[i+1] command cannot be executed during 5 clock 
cycles. In the cycle accurate delay modeling shown in Fig. 

3(b), READ X[i] lies within the time slot of tRCD, so 
according to rules for delay modeling (STEP 1) in Fig.1 , it 
should be shifted by (tRCD – t = 3 – 0 = 3) clock cycles. After 
shifting, READ X[i] is rescheduled at the 3rd  clock cycle. 
Next, READ X[i+1] occurred at 2nd clock cycle. As it also 
lies within the time slot of tRCD, it is shifted in the same way 
by (tRCD – t = 3 – 2 = 1) clock cycles.  READ X[i+1] cannot 
be scheduled at the 3rd clock cycle because READ X[i] is 
already scheduled at the same clock cycle. READ X[i+1] is 
thus shifted and rescheduled at the 4th clock cycle to avoid a 
collision. As shown in Fig. 3(b), the total delay can be 
reduced from 19 to 12 clock cycles (36.8% reduction) by 
using our cycle accurate delay model, instead of the simple 
worst case delay model. 

 
Fig. 2.  Motivational example 

 

Fig. 3(a).  Simple delay modeling for op1 

 

Fig. 3(b). Cycle accurate delay modeling for op1 

If the arrays are allocated to a single memory module, it 
results in limiting parallel access to the memory and hence 
increases the overall latency. But, if the arrays are allocated 
to distinct memory modules, it allows the parallel access and 
results in reducing latency. This shows that there is a tradeoff 
between the area and latency. 
 

III. MEMORY ALLOCATION 
In streaming application, the size of arrays is very large 

and usually stored in off-chip memories. In most memory 
intensive applications, array access is a dominant factor in the 
total memory access latency. Usually arrays within body of 
loops accessing off-chip memory result in overall memory 

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

898



  

access latency. We identify those blocks of source codes 
which result in frequent access to off-chip memory 

TABLE  I: MEMORY MODULE LIBRARY 

Memory 
Module Size (Bits * Words) Area(mm2) 

M0 16 × 1024 5.432 

M1 16 × 2048 7.658 

M2 16 × 4096 10.830 

M3 32 × 2048 21.661 

As shown in Fig. 4, the memory access latency is 65 clock 
cycles when the arrays B[], C[], D[], X[] are allocated to 
Module 1(M2) and array Y[] is allocated to Module 0(M0). The 
M2 and M0 are memory module types from the memory 
module library shown in Table I. The total area is the sum of 
module sizes of M0 and M2. We assume that Normal Read 
(NR), Normal Write (NW), Page Read (PR), Page Write 
(PW) take five, eight, two, and three clock cycles, 
respectively, as in [10]. 

  

Fig. 4. An example of memory binding and allocation 

Our approach is to analyze those blocks that result in 
overall memory access latency and to optimize memory 
access for these arrays. We group together two or more arrays 
and find the number of instructions in which the arrays in the 
selected group are simultaneously accessed. Table II shows 
the access information of all the arrays in Fig. 2. The second 
column of the table shows the most frequently accessed 
elements of arrays and the last column shows the total 
number of accesses of the arrays. After getting all the access 
information, the arrays are sorted on the basis of total number 
of accesses in decreasing order. {D [], C [], X [], Y [], B []} is 
the access order of the arrays in Fig. 2. We now group the 
arrays and find the number of instructions in which these 
arrays are simultaneously accessed. Table III shows the 
group of arrays and the number of instructions which contain 
the arrays in a group. In order to maximize the parallel access, 
we place the arrays in separate  memories that belong to the 
same group with large number of instructions. At the 
beginning, we make a group of two arrays. By using the 
access information table and array grouping, we generate the 
conflict graph. The memory bandwidth requirement can be 

modeled as a conflict graph as shown in Fig.  5(a). The nodes 
in graph represent application arrays and edges connect 
arrays  accessed in parallel. The weight of an edge represents 
the number of instructions in which these arrays are accessed 
in parallel. In the Fig. 5, arrays C and D should not be placed 
in the same memory because there is conflict between them. 
However, there is no edge between B, X and Y, hence we can 
place these arrays in same memory without conflict. Fig. 5 
shows that there are five conflicts in conflict graph. We need 
to find techniques to resolve maximum conflicts using 
min-cut partitioning algorithm. For this purpose, complement 
of the conflict graph with weight re-adjustment is proposed. 
To obtain the complement graph, we readjust the edge 
weights. Let m be the maximum edge weight in the original 
graph, then each edge weight e is replaced by (m-e) in the 
complement graph. The adjusted weights of the complement 
graph are as shown in Fig. 5(b). If we use 2-way partitioning, 
the cost is 7 and we can resolve all conflicts except (D, Y) as 
shown in Fig. 5(b). If we use 3-way partitioning, as in Fig. 
5(c), the min-cut algorithm made the maximum cut and hence 
all the conflicts are resolved as arrays X, B and Y are allocated 
to one memory module and C and D are allocated to other 
two modules. So the designer can select the number of 
memory modules considering area constraints and hardware 
cost. Fig. 5(c) shows memory allocation and binding results 
using min-cut partitioning algorithm for the example in Fig. 2. 
Fig. 6 shows that memory access latency is reduced to 46 
clock cycles; by parallelizing the array access resulted from 
partition algorithm in Fig. 5(c). We see that, memory access 
latency is reduced from 65 clock cycles to 46 clock cycles 
(25.8% reduction) by maximizing the parallel access. 

TABLE II: ACCESS INFORMATION TABLE 

Array 
Groups 

Array 
Elements 

# of Read 
Access 

# of Write 
Access 

Total # of 
Access 

D[ ] D[i] 4 2 7 D[i+1] 1 0 

X[ ] X[i] 1 0 2 X[i+1] 1 0 
B[ ] B[i] 0 1 1 

Y[ ] Y[i] 1 0 2 Y[i +1] 1 0 

C[ ] C[i] 1 1 4 C[i +1] 1 1 

TABLE III:  ARRAY GROUPING 

Array Groups # of Instructions Array Groups # of Instructions

{ D, C } 2 { D, Y } 1 
{ D, X } 1 { C, Y } 1 
{ D, B } 1 { D, C, Y } 1 

 
Fig. 5. (a) Original conflict graph. (b) Complimented 2-way partitioning 

result.  (c) Complimented 3-way partitioning result. 

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

899



  

 
Fig. 6. Proposed array binding and memory allocation using partitioning 

algorithm using the complement graph 
 

IV. SLACK TIME MANAGEMENT 
In this section, slack time management is introduced to 

further optimize the memory access latency. Arrays are 
assigned to memories after memory allocation, in order to 
maximize the parallel access and resolve the conflicts up to 
maximum extent. After memory allocation, we exploit the 
page mode as much as possible. The memory access latency 
can be reduced to some extent by exploiting the page mode as 
reported in [3], [4]. But exploiting the page mode is 
NP-Complete [4]. In some cases, exploiting the page mode 
cannot optimize the memory access up to maximum extent as 
shown in Fig. 7 (a). Fig. 7 (a) shows worst case example 
where memory access latency remains same after exploiting 
the page mode. In this way, we introduce slack time 
management technique to further optimize the memory 
access latency. During execution of streaming applications 
different arrays are accessed at different times. Therefore, 
some of memories remain idle while other memories are 
accessed. The memories remain idle when no memory 
operation is issued. 

We can utilize this idle time to further optimize the 
memory access latency. As shown in Fig. 6, Module 2 
remains idle as no memory operation is issued during the 
execution of op1. We can utilize this idle time, by issuing 
memory operations to the idle memory and reading or writing 
the data which can be used later for other operations. As 
shown in Fig. 7(a), during the execution of op2, Module 2 
remains idle. We can issue the read operation (Read C [i+1]) 
that can be used by op4 as shown in Fig. 7(b). In this way, we 
can further reduce memory access latency from 46 to 44 
clock cycles. Slack time management requires additional 
registers and can be restricted by dependencies among 
operations. 
 

V. EXPERIMENTAL RESULTS 
We tested our proposed approach with the set of random 

examples. Table IV shows the benchmarks and the conflict 
resolving ratio by using proposed partitioning algorithm with 
two, three, or four memory modules for allocation. 

Experimental results show that proposed approach resolves 
75%, 95%, and 97% of conflicts when two, three, and four 
memory modules are used, respectively. After memory 
allocation and exploiting the page mode, we apply slack time 
management technique to further optimize the memory 
access latency. In Table V, we can see the exploiting the page 
mode optimizes the memory access by up to 16% (avg. 2% to 
8%). After applying slack time management technique, the 
memory access latency is reduced by up to 32% (avg. 17% to 
20%) with additional register requirement. 

 
(a) 

 

Fig. 7. (a) Exploiting the page mode. (b) Exploiting page mode with 
slack/idle time management. 

TABLE IV:  SUMMARY OF BENCHMARKS 

Bench 
marks 

# of 
array

s 

Total # 
of 

conflict

Using min-cut 
partitioning 

Proposed 
approach 

Conflicts 
resolved 

Conflic
t 

resolve
d 

Cost 

Conflic
t 

resolve
d 

Cost

IBM01 4 3 1 2 3 6 100% 
IBM02 6 7 1 2 6 15 85% 
IBM03 8 14 4 9 12 22 85% 

TABLE V:  ACCESS INFORMATION TABLE 

Bench 
marks 

# of 
arrays

Memory 
allocation 

(cycle) 

Exploiting  
Page Mode 

Slack Time 
Management 

Clock 
cycle Reduction Clock 

cycle Reduction

IBM01 4 42 31 26% 19 38% 
IBM02 6 139 115 14% 100 13.04%
IBM03 8 215 188 12.5% 169 10% 
IBM15 15 2085 1855 11% 1613 13% 

Avg    12.5%  11.5% 

 

VI. CONCLUSION 
We have developed memory delay model for finding the 

cycle accurate latency for off-chip memories and optimizing 
the memory access latency. We have developed an effective 
technique for memory allocation by using modified conflict 
graph. Furthermore, we introduced slack time management 

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

900



  

technique to further optimize the memory access time. 
Experimental results show that memory access latency can be 
reduced by effective memory allocation techniques which 
maximize parallel access. Memory access latency can be 
further optimized by exploiting the page mode and by using 
slack time management techniques. 

REFERENCES 
[1] T. Wada, S. Rajan, and S. A. Przbylski, An Analytical Access Time 

Model for on-Chip Cache Memories, vol. 27, pp. 1147-1156, 1992. 
[2] S. J. E. Wilton and N. P. Jouppi, CACTI: An Enhanced Cache Access 

and Cycle Time Model, vol. 31, pp. 667-688, 1996. 
[3] P. R.  Panda, N. D. Dutt, and A. Nicolau, “Incorporating DRAM access 

modes into high-level synthesis,” IEEE Transaction on Computer- 
Aided Design, vol. 17, pp. 96-106, Feb. 1998. 

[4] P. R. Panda, N. D. Dutt, and A. Nicolau, “Exploiting off-chip memory 
access modes in high-level synthesis,” International Conference on 
Computer-Aided Design (ICCAD '97), pp. 333, 1997. 

[5] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. 
Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and memory 
optimization techniques for embedded systems,” ACM Transaction 
Design Automation Eletron. Syst, vol. 6, no. 2, pp. 149-206, Apr. 2001. 

[6]  J. I. Gomez, P. Marchal, S. Verdoorlaege, L. Pinuel, and F. Catthoor, 
“Optimizing the memory bandwidth with loop morphing,” 15th IEEE 
International Conference on Application-Specific Systems, 
Architectures and Processors (ASAP'04), pp. 213-223, 2004 

[7] P. Marchal, J. I. Gomez, and F. Catthoor, “Optimizing the memory 
bandwidth with loop fusion,” IEEE International Conference on 
Hardware/Software Codesign and System Synthesis (CODES + 
ISSS’04), pp. 188-193, 2004. 

[8] A. Fraboulet, G. Huard, and A. Mignotte, “Loop alignment for memory 
access optimization,” 12th International Symposium on System 
Synthesis, pp. 71, 1999. 

[9] T. Kim and J. Kim, “Integration of code scheduling, memory allocation, 
and array binding for memory access optimization,” IEEE Trans. CAD, 
vol. 26, no. 1, pp. 142-151, 2007. 

[10] N. Kim and R. Peng, “A memory allocation and assignment method 
using multiway partitioning,” IEEE International SoC Conference, 
2004. 

[11] H. Shin and C. Kim, “A simple yet effective technique for 
partitioning,” IEEE Transaction on Very Large Integration (VLSI) 
System, pp. 380- 386, 1993. 

 
 
 

 
 

 

International Journal of Computer Theory and Engineering, Vol. 4, No. 6, December 2012

901

Sultan Daud Khan received the BS degree in 
Computer Engineering from University of Engineering 
& Technology, Peshawar, in 2005 and MS degree in 
Electronics and Communication Engineering from 
Hanyang University, South Korea, in 2010.During his 
MS studies, his research was mainly focused on 
Off-Chip memory access optimization for MPSoCs. He 
was a member of Digital System Laboratory 

(DSL).Currently he is a Lecturer and Research Assistant in Department of 
Computer Engineering of Umm Al-Qura University, Saudi Arabia since 
Jan,2011 where he is working on Hajj Core (high funded project). His main 
responsibilities are developing computer vision's applications for detecting 
and estimating number of people in high density crowds. He worked as a 
Design Engineer in And Or Logics, a renowned multi-national company, pvt, 
Pakistan where he worked on military projects. He was also a part-time 
Design Engineer in North-West Research Company, Pakistan. He is a 
member of IACSIT.


