

Abstract—Up till now Science and technology has introduced

a pointing device at almost every place where user interfaces

with digital world. For example Mouse in desktop Computers,

touchpad in laptops, touch screen in smart phones. In this paper

a pattern extraction and matching based behavioral Biometric

system which recognizes pattern made by the user using his

pointing hardware device is proposed. The system distinguishes

the authenticated from mimicked signature by the

longestcommon subsequence (LCS) pattern matching technique.

The system does not require any extra scanning hardware too.

Index Terms—Pointing devices, pattern matching, biometric,

longest common subsequence (LCS), authentication,

verification.

I. INTRODUCTION

Biometrics, the application of statistical analysis to

identify individuals through their biological or physiological

characteristics, is emerging as a key aspect in new security

systems.Using biometrics it is possible to avoid pitfalls

encountered with traditional security systems where users are

required to keep information, such as passwords, safe [1].

Biometric data can be classified as physiological or

behavioral [2]. Physiological data remains stable over time

(barring injury), examples include fingerprints [3], iris and

retinal scans [4], [5], and hand geometry measurements [6].

Behavioral data may change over time typical examples

include signatures [7], [8], [9], [10], voice prints and typing

styles.

In this paper, I present a behavioral biometric verification

system that will be used inplace of standard password match

system. The biometric system improves upon the security

level provided by password matching while greatly reducing

the risk of dictionary-based attacks. The system uses no

specialized equipment, requiring only a pointing device such

as mouse, touch-pad or touch screen and a computer or a

laptop or a touch-screen mobile device; other systems require

specialist equipment such as scanners (e.g., fingerprint, iris,

retinal) and microphones.

A. Basic Concept

Basic concept is to draw a pattern using mouse or touch

pad which you can draw again later. The pattern can be

anything like your signature, somebody’s name, a drawing or

a symbol. Later on you will draw the same thing and get

authenticated. The system will recognize it as a sequence of

patterns known as Tokens. These tokens have a unique token

code which is saved in the sequence in which they occurred,

Manuscript received June 16, 2012; revised August 2, 2012.

B. Singh is with the Department of Information Technology Shri

Ramswaroop Memorial College of Engineering and Management Uttar

Pradesh Technical University, Lucknow, India

(e-mail:binit_singh111@yahoo.com)

for future authentication.

Although exactly the same pattern cannot be made every

time but the sequence of occurrence of curves, turns, lines,

circles, clicks etc in the pattern will be similar and the system

bothers about that only.For example, see Fig. 1.0; a) it is

made by touch screen and b) is made by a touch-pad. Though

they both do not look alike because in touch-screen we can

release the mouse and start drawing from another point but in

touch-pad system, when we release the mouse and move to

another location on the touch-pad, the screen pointer do not

move to another place, it remains there where we left it. So it

starts from the same position where we left. But the

sequences of making the shapes are same in both the cases.

The sequence is;

1) Draw the outer circle.

2) Draw the left eye.

3) Draw the right eye.

4) Draw a nose (line).

5) Draw a smile.

Fig. 1

II. SYSTEM OVERVIEW

System is based on the writing style of the user. As shown

in Fig. 2.0, (a) shows the signature on paper, (b) shows the

same word on computer using mouse and (c) shows the same

word on computer using touch pad. All these have

approximately same subsequence of tokens.

Fig. 2

Unlike other systems [12], [7], [8], [13], [14], [15], [16],

[17], [18], we use the mouse as the input device. We take this

pattern as input to our biometric

System and match it with the original pattern in our

database.

As shown in Fig. 2.1 the system takes the coordinates i.e.

(x, y) coordinate of the pointer and then do pre-processing in

which the change in angle of the vector joining the original

pointer position and the previous pointer position and the

Pointer Based Authentication System

Binit Singh

821

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

vector joining the original pointer position and next pointer

position is recorded. This recorded data is sent to the next

stage of feature extraction where we analyze and convert the

pattern into token (pre-define standard simpler patterns). This

refined data is sent for template generation. In template

generation phase token codes are analyze and template file is

generated which is stored for future authentication. When any

data comes for authentication we call this file from store into

matcher and perform matching with current data.

Fig. 2.1

A. System Function

The system functions in two distinct modes: registration

and verification. During the registration phase, new users are

required to select a username and input a chosen pattern

multiple times (5 in our assumption). The gathered biometric

data is processed to extract salient information. The details of

the salient information, specifically, the feature points used

for the authentic user are then stored in a template file.

During verification, the user logs into the system by a

username and signature. The user template file, retrieved

from the store, contains details of the authentic user’s salient

features; these features are then extracted from the input

biometric data and sent to matcher for verification.

B. Data Acquisition

Data acquisition is done in form of pointer coordinates (x,

y) which keeps on refreshing as the pointer moves. So we can

easily track the position of pointer and get to know the

patterns.

C. Preprocessing

Here system extracts tokens from the pattern in a

sequential order irrespective of whether they are large or

small and a rough time taken to make it. In this step we

analyze the behavior of the pointer i.e. in which direction it is

turning.

As you may see in Fig. 2.2 that we are analyzing the

movement of pointer by the change in angle of the vector

joining the original pointer position and the previous pointer

position and the vector joining the original pointer position

and next pointer position is recorded. The angle between v1

and v2 decides the movement of pointer. This data tells us

what token it is building so that in next step we could easily

build the token based replica of this pattern.

Fig. 2.2

D. Feature Extraction

It is possible to represent a pattern using all information

obtainable from the raw pattern trace.This is, however,

undesirable because much of the data will not provide a

significant degree of uniqueness or consistency. The usage of

such information could, therefore, prove to be contradictive.

Storing all of the information is also costly (in terms of space)

and has implications for processing overheads when

verifying signatures. A signature may be represented by a set

of extracted features rather than all of the raw data. This

system adapts a technique of token generation. In this the data

is coded in form of already know pattern (refer to table I)

which makes our matching work consistent.

TABLE I

In Fig. 2.3 token interpretation of a pattern is shown. This

signature involves 28 sequential tokens and the pattern code

for the signature will be

―0B02AB021595D504065B0596FF0D‖.

Fig. 2.3

E. Template Generation

The signature code obtained from feature extraction

process is actually a hexadecimal code which is easy to store.

During registration part, system asks for the same pattern

five times from the new user. Of course the signature patterns

will differ from each other. The System will take the Longest

Common Subsequence of their pattern code and keep the

weight of the LCS data into another array, let’s call it as

Weight[]. Weight[] array contains 1’s in the beginning. Every

time when Compute-Weight() function is called it will

increment the respective bits of LCS in Weight[] by 1. This

means that in the end, the pattern bits which are common in

all 5 signatures will have it’sWeight[]bits equal to 5. Lets call

it as strong bit and the Weight[] bits which are equal to 1 as

822

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

fault bit as it has not been encountered even twice.

The ordinary LCS algorithm cannot be used here because

there can be more than one longest common subsequence in

the pattern code, so in that case the ordinary LCS algorithms

[25],[26],[27],[28] will take the one which occurred in the

end but we have to take the one with greater sum of

LCS-weight. So I modified and priorities it on the basis of

weight. In Fig. 2.4 the procedure followed by LCS-weight()

algorithm is shown; the LCS obtained is [B→D→A→B]

whose length is 4 and weight is 8 but in ordinary LCS

algorithm the LCS obtained would be [B→C→B→A]

whose length is also 4 and weight is 3, which is not

acceptable.

Let X and Y be two samples of signature, then;

LCS-Weight(X, Y)

1. m ← length[X]

2. n ← length[Y]

3. for i ← 0 to m

4. do c[i, 0] ← 0

5. b[i,0]="←"

6. for j ← 0 to n

7. do c[0, j] ← 0

8. b[0,j]="↑"

9. for i ← 1 to m

10. do for j ← 1 to n

11. do if xi = yj

12. then c[i, j] ← c[i − 1, j − 1] + weight[i]

13. b[i, j] ←―↖‖

14. else if c[i − 1, j] ≥ c[i, j − 1]

15. then c[i, j] ← c[i − 1, j]

16. b[i, j] ← ―↑‖

17. else c[i, j] ← c[i, j − 1]

18. b[i, j] ← ―←‖

19. return c and b

LCS-Weight() algorithm will compute the longest

common subsequence with maximum weight. The running

time complexity of LCS-weight() algorithm is O(mn). The

following method will increment the respective Weight[] bits

of the LCS.

Compute-Weight(b, X, i, j, Weight[])

1. ifi= 0 or j = 0

2. then return

3. ifb[i, j] = ―↖‖

4. thenWeight [xi]+=1

5. Weight-LCS(b, X, i − 1, j − 1)

6. elseifb[i, j] = ―↑‖

7. thenWeight-LCS(b, X, i − 1, j)

8. elseWeight-LCS(b, X, i, j − 1)

The running time complexity of Compute-weight()

algorithm is O(m). Next algorithm is Merge-array() which is

used during registration phase. This algorithm merges two

pattern codes who’s LCS has been computed in order to

reduce data loss due to LCS. The running time complexity of

Merge-arrays() algorithm is O(k), where k is m+n-l. In this

way the next LCS will be computed between the merged

pattern code and new pattern code.

Merge-arrays(X, Y, b)

1. i ← length[X]

2. j ← length[Y]

3. k= m+n-(LCS-length(X,Y))

4. while(k!= 0)

5. do if b[i,j]= "↖"

6. then c[k]= X[i]

7. weight[k]= weight[i]

8. i--

9. j--

10. else if b[i,j]= "←"

11. then c[k]= y[j]

12. weight[k]= 1

13. j--

14. else c[k]= X[i]

15. weight[k]=weight[i]

16. i--

17. k--

Repeating these algorithms for all five pattern codes, at last

we get a combined pattern code and computed weight[].The

running time complexity of whole registration phase will be

O(mn). For reducing time and memory complexity one may

avoid fault bits in combined pattern code, but for the purpose

of this research paper I leave it intact now.

The overall signature will be termed strong if:

1>it has at least 3 strong bits in Weight[].

2>the length of the pattern code is >12 bits.

If the pattern satisfies these two conditions then it’s time to

create a file containing user’s salient features.

File (user, X, weight[], time)

{

 USER_NAME = user

 PATTERN_CODE = X

 PATTERN_WEIGHT = weight[]

 TIME_LIMIT = time

}

This file is stored and later on called by the user name field

for authentication.

F. MATCHING

The system asks for the user-name and signature each time

the user logs on to the application. The user-name is searched

in the store for a match, if match is found then the respective

file is extracted for verification. Now user will enter his

signature which goes from stage 2.2, 2.3, 2.4, 2.5 to 2.6 i.e.

till matcher. In template generation phase (i.e. 2.5) only

LCS-weight() algorithm is called. Here LCS-weight()

algorithm is used in different manner than during registration

period. Taking a close look at the algorithm you will find that

c[n,m] value is actually containing the sum of the longest

common subsequence. So LCS-weight() serves two purpose,

firstly, finding the LCS and secondly, calculating the sum of

LCS-weight bits.

Matcher-LCS() algorithm return’s a Boolean value which

determines whether the user is authentic or fake. It compares

the sum of LCS weight bits with the total sum of the weight[]

array. It should be minimum 85% of the total Sum of all

Weight[] values. Moreover it also checks that all strong bits

are matched. The running time complexity of Matcher-LCS()

algorithm is O(m).

Matcher-LCS(file, Y, c, b, time)

1. s = sum(file.PATTERN_WEIGHT)

2. m = length(file.PATTERN_CODE)

3. n = length(Y)

4. iffile.TIME_LIMIT ≈ time

5. then if c[m,n] ≥ (0.85 x s)

6. thenif Is-SPM(b,file.PATTERN_WEIGHT,m,n)

7. return TRUE

8. return FALSE

823

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

Is-SPM() algorithm checks for all Strong Points Matched.

Is-SPM(b, weight, i, j)

1. if i = 0 and j = 0

2. then return TRUE

3. if b[i, j] = ―↖‖

4. then Is-SPM(b, weight, i − 1, j − 1)

5. elseif b[i, j] = ―↑‖

6. then if weight[i] = 5

7. then return FALSE

8. else Is-SPM(b, weight, i − 1, j)

9. else Is-SPM(b, weight, i, j − 1)

The System do not expect that whole pattern will match. it

see that:

1> All the strong bits are matched.

2> The Sum of all Weight[] values corresponding to the

LCS (Output of LCS-weight()) should be 85% or above of

the total sum of the Weight[] array values.

3> Time taken in making the pattern should be

approximately near to the original time taken.

If these three conditions satisfy, we say that the signature is

authentic and access is granted.

III. APPLICATIONS

The authentication system can be customized with any

desktop based, internet based and mobile based applications

requiring secure authentication. In addition to it cryptography

and other biometric system or password authentication can

also be customized with it.

The performance of implementation of the system will be

best with touch-screen applications because the accuracy

level in taking the signature is very high and the use of stylus

makes it moreover like writing with pen. The performance of

implementation with mouse will be poor. A mouse-based

signature test done by Ross A.J. Everitt and Peter W.

Mcowan [19], achieves a fraudulent access rate of≈4.4

percent, while authentic users access with a rate of≈99

percent. They made use of ranking and genetic approach for

their findings.

The data acquisition and preprocessing has language based

constrains, so that may be a problem area while customizing

with any application. As the application can be in any

language so integration is also tuff. So on the basis of

statistical analysis of patterns on the particular application we

may change the features extraction and matching constrains.

IV. COMPARE AND CONTRAST WITH OTHER BIOMETRIC

SYSTEM

This Biometric system do not require any extra scanning

device as required by fingerprints [3], iris and retinal scans

[4], [5], and hand geometry measurements [6]. The pointer

devices which are required are generally in-build with

desktop, laptop and touch screen devices. So this seems to be

the best authentication system we may have in near future.

The on-paper signature is easy to copy because it is visible,

so one may practice and may get perfect in copying it, but the

pointer signature are neither visible nor has it copy saved.

The user signs on blank screen with no mark of the pointer

movement. It seems like the user is shaking his mouse like

that only.

It is protected from Dictionary based attacks and key

loggers, so it provides better authentication than password

protection. Moreover it will provide better level of security in

doing transactions in cyber cafes.

It provides extreme level of flexibility while choosing the

signature. The signature can be anything- symbol, name or

any language.

It do not require series of test or more than five time input

during registration phase, as in Ross A.J.Everitt and Peter W.

Mcowan [19] menuscript, which take 25 times the same

signature in learning phase.

V. CONCLUSION

This paper has introduced a new approach for providing

secure access to the daily used computer and mobile systems

using biometric verification. It authenticate the user in O(mn)

time complexity. The system does not use any sequence of

tests [24] or asks for any password, so this makes it

user-friendly. The system is novel because it is to the best of

the authors’ knowledge, the only Pointer-based

authentication system for desktop, internet and mobile

devices to be proposed at this point in time. The system is

specifically designed for use in a potentially hostile real

world environment with uncontrolled and non standard

equipment.

The benefits over other biometric system make this

approach better amongst all. So it may be predicted that the

False Acceptance Rate (FAR) and False Rejection Rate (FRR)

of the proposed system will also be better as compared to

other biometric systems.

Up till now paper-signatures authenticate your access over

physical world entities but after the implementation of this

system, digital world will also be accessed by our signatures.

REFERENCES

[1] R. Clarke, ―Human identification in information systems: Management

challenges and public policy issues,‖ Information Technology and

People, vol. 7, no. 4, pp. 6-37, Dec. 1994.

[2] B. Miller, ―Vital signs of identity,‖ IEEE Spectrum, vol. 31, no. 2, pp.

22-30, Feb. 1994.

[3] A. Roddy and J. Stosz, ―Fingerprint features—Statistical analysis and

system performance estimates,‖ Proc. IEEE, vol. 85, no. 9, pp.

1390-1422, Sept. 1997.

[4] S. Gordon, ―Ocular biometrics: For your eyes only,‖ Opto and Laser

Europe, no. 84, May 2001.

[5] Y. Zhu, T. Tan, and Y. Wang, ―Biometric personal identification based

oniris patterns,‖ Proc. Int’l Conf. Pattern Recognition, vol. 2, pp.

805-808, 2000.

[6] R. Sanchez-Reillo, C. Sanchez-Avila, and A. Gonzalez-Marcos,

―Biometric identification through hand geometry measurements,‖

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 10,

pp. 1168-1171, Oct. 2000.

[7] S. Hangai, S. Yamanaka, and T. Hamamoto, ―On-line signature

verification based on altitude and direction of pen movement,‖ Proc.

IEEE Int’l Conf. Multimedia and Expo, vol. 1, pp. 489-492, 2000.

[8] B. Herbst and D. Richards, ―On an automated signature verification

system,‖ Proc. IEEE Int’l Symp. Industrial Electronics, vol. 2, pp.

600-604, July1998.

[9] G. B. Hesketh, ―Countermatch: A neural network approach to

automaticsignature verification,‖ Proc. IEE Colloquium on Neural

Networks for Industrial Applications, pp. 2/1-2/2, Feb. 1997.

[10] J. Higashino, ―Signature verification system on neuro-computer,‖

Proc.11th IAPR Int’l Conf. Pattern Recognition, vol. III-C, pp.

517-521, 1992.

824

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

[11] S. A. Bleha and M. S. Obaidat, ―Dimensionality reduction and

featureextraction applications in identifying computer users,‖ IEEE

Trans. Systems, Man, and Cybernetics, vol. 21, no. 2, pp. 452-456,

Mar./Apr. 1991.

[12] J. Brault and R. Plamondon, ―Segmenting handwritten signatures at

theirperceptually important points,‖ IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 15, no. 9, pp. 953-957, Sept. 1993.

[13] L. Lee, ―Neural approaches for human signature verification,‖ Proc.

ThirdInt’l Conf. Document Analysis and Recognition, vol. 2 pp.

1055-1058, 1995. IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 25, no. 9, September 2003 1171

[14] R. Martens and L. Claesen, ―Automatic on-line signature verification

discrimination emphasised,‖ Proc. Fourth Int’l Conf. Document

Analysis and Recognition, pp. 657-660, 1997.

[15] M. Mingming and W. Wijesoma, ―On-line signature verification based

on multiple models,‖ Proc. IEEE/IAFE/INFORMS Conf.

Computational Intelligence for Financial Eng., pp. 30-33, Mar. 2000.

[16] T. Wessels and C. Omlin, ―A hybrid system for signature verification,‖

Proc. South African Telecommunications Networks and Applications

Conf., pp. 5509-5514, 2000.

[17] Y. Xuhua et al., ―A study on signature verification using a new

approachto genetic based machine learning,‖ Proc. IEEE Int’l Conf.

Intelligent Systems for the 21st Century, vol. 5, pp. 4383-4386, Oct.

1995.

[18] K. Yue and W. Wijesome, ―Improved segmentation and segment

association for on-line signature verification,‖ Proc. IEEE Int’l Conf.

Systems, Man, and Cybernetics, vol. 4, pp. 2752-2756, Oct. 2000.

[19] A. J. Everitt and W. Mcowan ―Java-based internet biometric

authentication system‖ IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 25, no. 9, Sep. 2003.

[20] A. Apostolico, ―String editing and longest common subsequences,‖ in:

G. Rozenberg, A. Salomaa (Eds.), Linear Modeling: Background and

Application, in: Handbook of Formal Languages, vol. 2,

Springer-Verlag, Berlin, 1997, pp. 361–398.

[21] A. Apostolico, ―General pattern matchings,‖ in: M. J. Atallah (Ed.),

Handbook of Algorithms and Theory of Computation, CRC, Boca

Raton, FL, 1998, Chapter 13.

[22] L. Bergroth, H. Hakonen, and T. Raita, ―A survey of longest common

subsequence algorithms,‖ in: SPIRE, A Coruña, Spain, 2000, pp.

39–48.

[23] D. S. Hirschberg, ―Algorithms for the longest common subsequence

problem,‖ J. ACM vol. 24, pp. 664–675, 1977.

Binit Singh was born in Amritsar, Punjab, India on 8th January, 1991. He

graduated from Bachelor of Information Technology, from Shri

Ramswaroop Memorial College of Engineering and Management, affiliated

to Uttar Pradesh Technical University, Lucknow, India in year 2012. His

major fields of study are Information Technology, Object oriented

Methodology, Algorithms, Parallel computing and Cryptography. He has

made projects on JAVA Technology which are Pointer based Authentication

System, Attendance Monitoring System and Online Banking System. His

area of research work are Cryptography, Biometric System and Object

Oriented Systems.

825

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

