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Abstract—In this paper, among different methods of signal 

processing, wavelet transform is chosen due to its advantages 

over other methods. To show wavelet transform capabilities, 

first an HVDC system which has noise on its output current is 

simulated. In the first step noise is removed by applying discrete 

wavelet transform. In the next steps, harmonic problem is 

resolved thorough appropriate passive filters. In this paper, we 

suppose that  not only low order harmonics exist in the output 

current, but also high order ones. The results indicate that we 

can obtain a good passive filter design for harmonic reduction 

by decomposing a signal into its harmonic components via 

applying discrete wavelet transform. 

 
Index Terms—Wavelet multi-resolution decomposition, 

passive filter for harmonic reduction, harmonic detection, 

wavelet-based threshold de-noising method.  

 

I. INTRODUCTION 

The most common tool, used up to now for wave-shape 

analysis, has been the Fourier transform (FT). It transforms a 

signal into fundamental and high-order harmonic 

components. FT, or its discrete version (DFT), which has 

been developed for computer applications [fast FT (FFT)], 

has some disadvantages, such as aliasing, spectral leakage, 

picket fence effect, etc.[1]. FT gives the exact frequency 

spectrum of stationary and periodical signals. However, in 

modern variable-speed drives, changes in developed torque 

and angular velocity are often required. Therefore, the drive 

passes through numerous transient states and information 

about harmonics is inaccurate. To deal with this problem, the 

windowed FT (WFT), or short-time FT, has been developed. 

It decomposes the signal into smaller parts of exact length 

first, and then applies the FT. However, as the width of the 

window is fixed, the signal is assumed periodical and 

stationary in the window, so harmonics are obtained as rows 

of discrete values with limited accuracy. The WFT solves the 

initial problem, but the mentioned disadvantages remain, so 

accuracy is not satisfactory. In the last ten years, the wavelet 

transform (WT) has been introduced, as a new approach in 

signal analysis [2], [3]. The wavelet theory says that a signal 
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can be represented by superposition of some special signals 

called wavelets. Wavelets are waveforms of limited duration, 

with zero average value. WT is similar to finite response 

filters, so it does not transform the signal into discrete 

harmonics, but into frequency bandwidths, which cover all 

significant harmonics. WT eliminates the drawbacks of WFT 

and is able to track fast amplitude variations of certain 

harmonics. This feature is enabled by its characteristics of 

having a narrow window for higher frequencies, and wider 

window for lower frequencies. Appearing noise on output 

signal is undesirable, although this important problem is 

resolved at the first step before harmonic reduction by 

applying Discrete Wavelet Transform (DWT). The method 

will be described in part II.B Wavelet Transform is of 

localization in both time and frequency domains, and the 

frequency distribution of certain time can be calculated, also 

the mixed signal which is composed of different frequencies 

can be decomposed into different frequency bands with 

different frequency ranges, consequently different harmonic 

currents can be gained through wavelet transform for a good 

passive filter design. In next steps, this paper introduces a 

method of signal decomposition through wavelet transform 

for the detection of 5th , 7th, 11th , 13th and 24th harmonics of 

current. (low and high order harmonics) . The results show 

that this method can be useful for obtaining an acceptable 

passive filter design for harmonic reduction. 

 

II. WAVELET THEORY AND WAVELET-BASED THRESHOLD 

DE-NOISING 

A. Wavelet Theory 

The basic idea underlying wavelet analysis consists of 

expressing a signal as a linear combination of a particular set 

of functions (wavelet transform, WT), obtained by shifting 

and dilating one single function called a mother wavelet. The 

DWT is a mathematical method of decomposing the signal in 

the time domain into several scales at different levels of 

resolution (time-scale domain) through dilations and 

translations. The wavelet transformation coefficients (WTCs) 

at the several scales reveal the time-localizing information 

about the variation of the signal from high- to low-frequency 

bands. The wavelet transform of a time-continuous signal is 

defined as [4]: 

CWTψx(a, b) =  a 
1

2  xtψ
∗ (

t−b

a
)dt                (1) 

where  𝑎  is called the scaling factor, b is the translation 

parameter, and  𝜓∗ is the window function or wavelet. 

Discrete wavelet transform can be implemented as a set of 

filter banks comprising a high-pass and a low-pass filters, 

each followed by down sampling by two. The low-pass 
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filtered and decimated output is recursively passed through 

similar filter banks to add the dimension of varying resolution 

at every stage. In practical applications, the mathematically 

expressed of DWT is defined as:  

CWTψx(m, n) =
1

 2m
 xkψ

∗(
k−n

2m )k                   (2) 

where k is an operating index; m is a scaling number; n is a 

sampling number, n = 1,2, ...,N. N is the total number of 

sampling points. 

B. Basic Wavelet-Based Threshold De-noising Method  

We develop the basic ideas of thresholding the wavelet 

transform using Donoho's formulations. Assume a finite 

length signal with additive noise of the form as: 

𝑦𝑖 = 𝑥𝑖 + 𝜀𝑛𝑖 ,    𝑖 = 1,2, …𝑁                         (3) 

as a finite length signal of observations of the signal 𝑥𝑖  that is 

corrupted by i.i.d. zero mean, white Gaussian noise 𝑛𝑖  with 

standard deviation  𝜀 , i.e.. The goal is to recover the signal 𝑥 

from the noisy observations y. Here and in the following, 𝑣 

denotes a vector with the ordered elements 𝑣𝑖  if the index i is 

omitted. Let W be a left invertible wavelet transformation 

matrix of the discrete wavelet transform (DWT). Then (3) 

can be written in the transformation domain 

𝑌 = 𝑋 + 𝑁,   𝑜𝑟,   𝑌𝑖 = 𝑋𝑖 + 𝑁𝑖                        (4) 

where capital letters denote variables in the transform domain, 

i.e., 𝑌 = 𝑊𝑦. then the inverse transform matrix 𝑊−1 exists, 

and we have 

𝑊−1𝑊 = 𝐼                                         (5) 

Let  𝑋   denote an estimate of  𝑋   , based on the 

observations  𝑌  . We consider diagonal linear projections 

∆= 𝑑𝑖𝑎𝑔 𝛿1 , … , 𝛿𝑁 ,   𝛿𝑖 ∈  0,1 ,   𝑖 = 1, … , 𝑁      (6) 

Which give rise to the estimate 

𝑥 = 𝑊−1 = 𝑊−1∆𝑌 = 𝑊−1∆𝑊𝑦                     (7) 

The estimate  𝑋  is obtained by simply keeping or zeroing 

the individual wavelet coefficients. Since we are interested in 

the 𝑙2 error we define the risk measure 

𝑅 𝑋 , 𝑋 = 𝐸  𝑥 − 𝑥 2
2
 = 𝐸   𝑊−1(𝑋 − 𝑋) 

2

2
 =

𝐸   (𝑋 − 𝑋) 
2

2
                                                       (8) 

Notice that the last equality in (8) is a consequence of the 

orthogonality of W . The optimal coefficients in the diagonal 

projection scheme are 𝛿𝑖 = 1𝑥𝑖>𝜖
 , i.e., only those values of Y 

where the corresponding elements of X are larger than 𝜀 are 

kept, all others are set to zero. This leads to the ideal risk: 

𝑅𝑖𝑑  𝑋 , 𝑋 =  min⁡(𝑋2, 𝜀2)𝑁
𝑛=1                      (9) 

The ideal risk cannot be attained in practice, since it 

requires knowledge of  X , the wavelet transform of the 

unknown vector x . However, it does give us a lower limit for 

the 𝑙2 error [1]. Donoho [5] proposes the following scheme 

for de-noising: 

1) Compute the    𝐷𝑊𝑇𝑌 = 𝑊𝑦. 

2) Perform thresholding in the wavelet domain, according 

to so-called hard-thresholding. 

𝑋 = 𝑇𝑕 𝑌, 𝑡 =  
𝑌,               𝑌 ≥ 𝑡

0 ,                   𝑌 <  𝑡    
             (10) 

or according to so-called soft-thresholding. 

𝑋 = 𝑇𝑠 𝑌, 𝑡 =  
𝑠𝑔𝑛 𝑌   𝑌 − 𝑡 ,           𝑌 ≥ 𝑡

0 ,                                            𝑌 <  𝑡    
  

(11) 

 

III. DE-NOISING OUTPUT CURRENT BY DWT 

With this brief introduction about Basic Wavelet-based 

Threshold De-noising Method, now we are ready to de-noise 

the output current signal on bus 2 of Fig. 1, which is an 

HVDC System and will be described more in part VII. Fig. 2 

shows the full of noise output current which is successfully 

de-noised via mentioned method. For better indication of the 

differences between the full of noise output current and the 

de-noised output current, a phase of current before and after 

de-noising is chosen and rescaled and  is shown with the 

3phase noise in Fig. 3.  

 

Fig. 1.  An hvdc system modelling with appropriate filters 

 

Fig. 2.  Full of  noise current before and after de-noising with figure of  the 

noise signal 
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Fig. 3.  Full of noise current before and after de-noising with figure of  the 

noise signal after rescaling 

Now we are ready to start passive filter design for 

harmonic reduction, but before that writing about the theory 

of this method is necessary. 

 

IV. WAVELET MULTI-RESOLUTION ANALYSIS 

The concept of multi-resolution is described as follows: 

square integrable function 𝑓 𝑡 ∈ 𝐿2 𝑅  can be regarded as 

the limit case of certain gradual approach, every 

approximation is the result of the smoothness of low-pass 

smooth function φ(t) towards f (t) , the smooth function φ(t)  

is also expanding and contracting gradually while 

approaching by degrees, that is, the analyzed function  f (t) is 

approached gradually by using different resolution.  

 

V. WAVELET MULTI-RESOLUTION DECOMPOSITION 

S.Mallat proposed the concept of multi-resolution analysis 

while constructing orthogonal wavelet base in 1988. The 

meaning of multi-resolution can also be apprehended from 

the view of function space. If the sampling frequency of 

analyzed signal meets the Sampling Proposition, the 

normalization frequency band must be limited between −π  

and +π , the total frequency band (( 0~𝜋  ) (for positive 

frequency)) of the analyzed signal can be defined as space 

𝑉0 shown in Fig. 4[6]. After the first scale decomposition, 𝑉0 

is divided into two subspaces:  low-frequency 𝑉1 (frequency 

band for 0~π / 2 ) and high-frequency 𝑊1 (frequency band 

for π / 2~π ), and so on. [2]. The dividing process of 

frequency subspace can be marked as follows: 

𝑉0 = 𝑉1⨁𝑊1, 𝑉1 = 𝑉2⨁𝑊2, … . … ., 𝑉𝑗−1 = 𝑉𝑗⨁𝑊𝑗  

𝑉0 = 𝑊1⨁𝑊2⨁𝑊3⨁…⨁𝑊𝑗⨁𝑉𝑗  

where 𝑊𝑗  is high-frequency subspace reflecting space 𝑊𝑗−1‘s 

signal details, 𝑉𝑗  is low-frequency subspace reflecting space 

𝑉𝑗−1‘s signal approach, also it can be regarded that 𝑊𝑗  is the 

orthogonal complement space of 𝑉𝑗  in 𝑉𝑗−1, 𝑉𝑗  𝑎𝑛𝑑 𝑊𝑗   are 

respectively called scale space and wavelet space on scale j. 

In order to further apprehend multi-resolution analysis, here 

takes a decomposition of 3 scales for example, the wavelet 

decomposing tree is shown in Fig. 5[6]. The decomposition 

has a relationship that is: 

𝑓 𝑛 = 𝑎3 𝑘 + 𝑑3 𝑘 + 𝑑2 𝑘 + 𝑑1(𝑘) 

If the decomposition needs to be conducted further, the 

low-frequency component 𝑎3 𝑘  can be sequentially 

decomposed into low-frequency 𝑎4 𝑘  and 

high-frequency 𝑑4(𝑘), and so on. It can be seen from the 

block diagram of multi-resolution decomposing tree above 

that, for multi-resolution analysis, just the low-frequency 

component is decomposed, whose frequency resolution is 

becoming higher and higher, while the high-frequency 

component is not decomposed at all [3], which can be well 

demonstrated in Fig. 6[6]. Fig. 6 is a real example of 

multi-resolution decomposition. 

 

Fig. 4. The gradual division of function space and frequency band (scale 

j=2). 

 

Fig. 5. The block diagram of 3 scales multi-resolution decomposing tree. 

 

Fig. 6. The demonstration of multi-resolution decomposition. 
 

VI.   SELECTION OF WAVELET FUNCTION 

One of the differences that WT differs from traditional 

Fourier Transform is that WT doesn‘t have fixed wavelet 

function. Therefore, different wavelet functions have quite 

different errors for first-harmonic component and harmonics 

detection, which means the selection of wavelet function is 

rather important while using WT for signal processing. The 

‗db‘ family gives better accuracy through minimizing the 

spectral leakage problem when using mother wavelet with 

high order N.[5]. In case of low distortion level the ‗db‘ 

family is the suitable one and the most suitable mother 
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wavelet is either ‗db9‘ or ‗db10‘, therefore better analysis 

performance can be achieved with high order.[7]. According 

to what was studied in [6], [7] Daubechies wavelet is adopted 

in this paper, which was constructed by world famous 

analyzing wavelet scholar Inrid Daubeahies. Daubechies 

wavelet has character of depicting the global and local 

singular change of signal, especially that of the local singular 

change. Daubechies wavelet is usually short for dbN, where 

N means the scale of wavelet. In this paper db10 is chosen for 

simulation analysis. 

 

VII. MATLAB SIMULATION FOR DESIGNING PASSIVE 

FILTERS 

In this part first of all an HVDC System is modelled by 

MATLAB Modelling Section shown in Fig. 1. The HVDC 

rectifier is built up from two 6-pulse thyristor bridges 

connected in series. The converter is connected to the HVDC 

rectifier is built up from two 6-pulse thyristor bridges 

connected in series. The converter is connected to the system 

with a 1200-MVA Three-Phase transformer (three windings). 

A 1000-MW resistive load is connected to the DC side 

through a 0.5 H smoothing reactor. The output current signal 

in Fig.7 is composed of 5th
, 7th, 11th, 13th and 24th harmonics 

and it is decomposed into D1, D2, and D3. Considering 

aliasing effect let sampling frequency be 2 KHz. If we 

continue the main signal decomposition through DWT as 

mentioned before in Fig. 6, we can see that  the frequency 

bands of sequences D1, D2, and D3 are 1000~2000,

500~1000 𝑎𝑛𝑑  250~500, respectively. If we choose the 

main frequency 60 Hz, it is clear that the frequency bands 

related to D1 can be considered for 24th harmonic (1440 Hz), 

the frequency bands related to D2 can be considered for 11th 

and 13th harmonics( 660 Hz and 780 Hz) and the frequency 

bands related to D3 can be considered for 5th and 7th 

harmonics( 300 Hz and 420 Hz). According to [8], [9] the 

double–tuned filter is appropriate for lower order harmonics 

and the high-pass filter is appropriate for high order ones(in 

this paper 24th harmonic). Now in this part we try to obtain a 

good passive filter design for harmonic reduction in several 

steps based on figures related to D1, D2, D3 and S(main 

signal). It is notable that the reactive power for all passive 

filters is 150 Mvar. In first step, shown in Fig. 7, no filter is 

added to the system. In second step, as shown in Fig. 8, a 

filter is designed with Q=2 for both double-tuned passive 

filters and the high-pass one. In third step, shown in Fig. 9, 

Q=14, 14, 5 is chosen for double-tuned and high-pass filters, 

respectively. (14, 14, 5 is related to passive filters for "5th and 

7th", "11th and 13th" and 24th harmonics, respectively). In 

fourth step, as shown in Fig. 10, Q=20, 30, 7 is chosen for 

double-tuned and high-pass filters, respectively. If we 

compare these four figures we can see that we have reached 

our goal in final step, relying on main signal wave shape and 

reduction in wavelet coefficients, in which reduction of 

current harmonics is clear. 

 

Fig. 7.  First step of decomposing main signal into its harmonics before using  

a passive filter 

 

Fig. 8.  Second step of decomposing main signal into its harmonics after 

using a passive filter with related Q=2, 2, 2. 

 

Fig. 9.  Third step of decomposing main signal into its harmonics after 

using a passive filter with related Q=14, 14, 5. 

 

Fig. 10.  Fourth step of decomposing main signal into its harmonics after 

using a passive filter with acceptable related Q=20, 30, 7. 

 

VIII. CONCLUSION 

Firstly, the basic theory of WT is stated at and basic 

wavelet theory for threshold de-noising was explained in 

summary and finally the results indicate that we can use the 

advantage of wavelet transform (for a successful de-noising) 

over other signal processing transforms, which insists on 

choosing wavelet transform for this paper. 

Secondly, the theory of wavelet multi-resolution analysis 

is also summarized in detail and the method of harmonics 

detection through wavelet multi-resolution analysis (another 
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advantage) based on MATLAB is proposed in this paper, and 

simulation analysis results are shown. 

Finally, it was shown that by decomposing a full of 

harmonic signal into its components and designing an 

acceptable passive filter in several steps, we can obtain an 

acceptable filter design. It is notable that the whole done last 

works was focused just on detecting harmonics but in this 

paper it was proved that not only we can design passive filter 

for low order and high order harmonic reduction through a 

branch of signal processing which is called Discrete Wavelet 

Transform(DWT) but also, de-noising signals by using DWT 

is possible. For future works this method can be applied to 

modern variable-speed drives which has time variable 

harmonics.  
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