



Abstract—In this paper the problem of discovering

association rules among items in extremely large databases has

been considered. A novel mining algorithm named Improved

Cluster Based Association Rules (ICBAR) has been proposed

which can explore efficiently the large itemsets. Achieving this

and initializing the cluster table (where transaction records

with length k are placed in kth cluster table), database will be

once scanned. Simultaneously an array with appropriate size

for each itemset (named itemset array (IA)) will be created.

Here kth element in the array of each itemset indicates number

of transaction records in kth cluster table which have that

itemset. Presented method not only prunes considerable

amounts of data by comparing with the partial cluster tables

but also reduces the number of large candidate itemset that

must be checked in each cluster through itemset arrays.

Performance and efficiency of proposed method has been

compared with CBAR and Apriori algorithms. Experiments

illustrate that ICBAR will do better than both of them.

Index Terms—Association rule, data mining, cluster table,

itemset array.

I. INTRODUCTION

Data mining is the process of discovering useful

knowledge from databases. Based on the kinds of knowledge

we are seeking, tasks in data mining can be categorized into

summarization, classification, clustering, association and

trend analysis [1].

Association rules exploring is an important data mining

task and was introduced in [2]. Formally, the problem is

stated as follows :

Let I=[i1,i2,…, im] be a set of literals, called items, and D be

a set of transactions and each transaction T is a set of items

that IT  . each transaction has unique identifier TID . We

can say that a transaction T, contains A, a set of some items in

I, if A⊂T. An association rule is an implication of the form

A→B, where A,B⊂I and A∩B=ø. if C% of transactions in D

that contain A also contain B the rule A→B can be obtained

from D with confidence . the rule A→B has support s in D if

s% of transactions in D contain AUB.

For mining association rules initially we find set of items

that their support is greater than or equal to user_specified

minimum support (minsup). We call them large itemsets. If

there are K items in a large itemset we call it a large

k_itemset.

Manuscript received June 25, 2012; revised August 10, 2012.

R. Sheibani is with the Department of Computer, Mashhad Branch,

Islamic Azad University, Mashhad, Iran (e-mail: reza.shni@gmail.com)

A. Ebrahimzadeh is with the Sama technical and vocational training

college, Islamic Azad University, Mashhad branch, Mashhad, Iran (e-mail:

ebrahimzadehamir@gmail.com).

Subsequently, we use the large itemsets to generate

effective association rules. If the confidence of an association

rule is greater than or equal to user_specified minimum

confidence (minconf), then it is effective. The key work for

finding the association rules is to generate all large itemsets.

Several algorithms for mining association have been

proposed. The importance is that algorithms must be efficient.

In this paper, we present a new algorithm called Improved

Cluster Based Association Rule (ICBAR) for efficient

association rules mining.

The rest of this paper is organized as follows: in Section 2,

previous works has been reviewed. In Section 3 we propose

our algorithm and give an example. Experimental studies are

presented in Section 4, and finally Section 5 include

conclusion.

II. PREVIOUS WORK

A grawal et al. proposed the Apriori association rule

algorithm [3], [4]. Their algorithms for discovering large

itemsets make multiple passes over the data. In the first pass

they count the support of individual items and determine

which of them are large. In each subsequent pass, they start

with large itemsets that are generated at the end of the

previous pass and generate new potentially large itemsets,

called candidate itemsets and counted the actual support for

these candidate itemsets during the pass over the hole data.

They determine which of the candidate itemsets are actually

large and they become the seed for the next pass. This

process continued until no new large itemsets are found [3].

They need to contrast with the whole data base level by level

in the process of mining the association rules.

Savasere et al. proposed the partition algorithm to reduce

both CPU and I/O over heads. Their algorithm executes in

two phases. In the first phase, the partition algorithm

logically divides the database in to a number of on

overlapping partitions. The partition is considered one at a

time and all large itemsets for that partition are generated. At

the end of phase 1, these large itemsets are merged to

generate a set of all potential large itemsets. In phase 2, the

actual support for theses itemsets are generated and the large

itemsets are identified. The partition sizes are chosen such

that each partition can be accommodated in the main memory

so that the partitions are read only once in each phase [5].

Pork et al. proposed an effective algorithm DHP (direct

hashing and pruning) for the initial candidate set generation.

This method efficiently controls the number of candidate

2_itemsets, pruning the size of database [6]. Like Apriori it

requires as many database passes as the largest itemset.

Agrawal et al. proposed the mining sequential patterns

ICBAR: An Efficient Mining of Association Rules in Huge

Databases

Reza Sheibani and Amir Ebrahimzadeh, Member, IACSIT

798

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

algorithm that included time attributes to discover sequential

patterns [7]. Cheung et al. proposed the fast distributed

algorithm (FDA) to efficiently discover association rules in a

distributed system [8]. Toivonen proposed a sampling

algorithm which can reduce the number of database scans to a

single scan but still wastes considerable time on candidate

itemsets [9].

Brin et al. proposed the dynamic itemset count (DIC

algorithm). DIC algorithm dynamically counts candidates of

varying length as the database scan progresses, and thus is

able to reduce the number of scans over Apriori [10].

Similarly, other algorithms were proposed for reducing either

the CPU computation time or the disk access overhead

[11]-[15].

Tsay et al. proposed cluster_based association rule (CBAR)

algorithm. it creates cluster tables to aid discovery of large

itemsets. The large itemsets are generated by contrasts with

the partial cluster tables [11].

III. IMPROVED CLUSTER BASED ASSOCIATION RULE

(ICBAR)

If an algorithm can both reduce the number of database

scans, and also the number of candidate itemsets, its

efficiency will be improved. Thus we present ICBAR

algorithm for discovering the large itemsets. ICBAR not only

requires a single scan of the transaction database -followed

by contrasts with the partial cluster tables- but also reduces

the time needed to generate candidate large itemsets in each

cluster by using itemset arrays.

A. ICBAR algorithm

Algorithmic form of ICBAR is shown below. (For ease of

presentation some statements are labeled.)

Large_itemsets ICBAR_ algorithm (database, minsup)

{

1. Create M cluster tables;

2. Generate L1 (set of large 1_itemsets);

3. For (k = 2; Lk-1 <> Ø; k++)

{

4. Create ck from Lk-1;

5. For each candidate large itemset CL

 {/*for creating its itemset array IAcl and sum of

elements of its itemset array sumcl, consider its

constructive large itemsets are (C1, C2) and

their itemset arrays are IAC1 and IAc2 */

6. For (i = k; i <= m; i++)

 {

7. IACL [i] = min (IAc1 [i], IAC2 [i]);

8. SumCl += IACL [i]

 }//for i

 }// for each

9. For (i = k, I <= m; i++)

 {

 For each candidate large itemset CL

 {

 if (sumCL >= minsup)

 {

 res = number of appearance of CL in

cluster_table(i);

 Sumcl -= IAcl [i] - res;

 Update IAcl[i] (IACL[i] = res).

}

If (sumCL < minsup) delete CL from

Candidate large itemsets.

 } //for each

 }// for i

 For each candidate large itemset like CL

 If (sumCL >minsup)

Add CL to Lk;

 }// for k

} // ICBAR algorithm

It will first scan the database once, and cluster the

transactions. If the length of transaction record is k, the

transaction record will be stored in cluster table (k) 1≤k≤ m,

where m is the length of the largest transaction record in

database (statement1).

The set of large 1_itemset, L1, is generated. For each large

1_itemset like C1, we create its itemset array (IAC1) with M

element.

K_th element of IAC1 indicates number of transaction

records in cluster_table(k) that contain C1 (statement 2).

We generate the set of candidate k_itemset Ck similar to

the candidate generation of Apriori algorithm (statement 4).

For each candidate large itemset Like CL,

first we create its itemset array (IAC1) and the sum of

elements of its itemset array (sumC1).

Second, the number of transaction records in each

cluster_table that contain this CL will be estimated by

considering IAs correspond to constructive large itemsets

(statements 5-8).

For each candidate large itemset like CL, when sumCL is

less than minsup, CL from candidate large itemsets will be

deleted. If real number of appearance of CL in cluster_table (i)

is less than IACL[i], we update IACL [i] and sumcl. CL may be

deleted from candidate large itemsets by reducing sumCL

(statements 9-15).

B. An example of ICBAR

We provide an example to further explain the application

of our algorithm. There are 24 transactions in the database.

An example transaction database is show in Table I.

Cluster_tables are shown in table II. Minsup is set at 30%.

The large 1_Itemsets are {1}, {2}, {3}, {4} and their itemset

arrays are shown in table III.

For k=2 we generate candidate 2_itemsets C2. They are

{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}. Their itemset array

and sum of elements of itemset array (sumCL) are shown in

table IV. All of them may be large because their sumCL are

greater than or equal to minsup. For i=2, it is necessary to

compute the number of occurrences of each candidate large

itemset (CL) in the cluster_table(2) and update IACL {2} and

sumCL (Table X). {3, 4} and {1, 4} are deleted from

candidate large itemsets.

For i=3, it needs to compute the number of appearance of

each candidate large itemset, CL, in the cluster_table(3) and

update their itemset array and sumCL (Table VI).

{2, 4} is deleted from candidate large itemsets. After

execution iterations for i=4 and i=5 our arrays and sum of

their elements are shown in Table VII. The large 2_itemsets

{1, 2}, {1, 3}, {2, 3} are generated.

For k=3, only candidate 3_tiemset (C3) is {1, 2, 3}. Its

799

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

itemset array and sum of its elements are shown in Table

VIII. The minsup is specified as 20%. {1,2,3} can be large

itemset. We execute statements 9-15 for 3≤i≤5. {1,2,3}

occurs only once in cluster_table(3) and occurs three times in

the cluster_table(4) and occurs once in cluster_table(5)

(Table IX). Its support is greater than 20%. Thus {1,2,3} is

large 3_itemset and our algorithm is terminated. Therefore

the large itemsets in this example are {1,2}, {1,3}, {2,3} and

{1,2,3}. Then we can transform each large itemset into an

association rule.

TABLE I: AN EXAMPLE OF TRANSACTION DATABASE

TID Items TIS Items TID Items TIS Items

10 1,2,3

20 1,2,3,4,5

30 1,3

40 2,4

50 1

60 2

70 5

80 1,2

90 4

100 1,3

110 2,3,5

120 1,2,3,5

130 1,2,3,4

140 2,3

150 1,3,4

160 3

170 1,2

180 1,2

190 1,3,5

200 2,3,4

210 1

220 1,2,3,4

230 1,2,4,5

240 1,3,4,5

TABLE II: FOUR CLUSTER TABLES

Cluster_table(1): 50 60 90 160 210

Cluster_table(2): 30 40 80 100 140 170 180

Cluster_table(3): 10 110 150 190 200

Cluster_table(4): 20 120 130 220 230 240

Cluster_table(5): 20

TABLE III: ITEMSET ARRAYS OF LARGE 1_ITEMSETS

Cluster

1

Cluster

2

Cluster

3

Cluster

4

Cluster

5

{1} 2 5 3 5 1

{2} 1 5 3 4 1

{3} 1 3 5 4 1

{4} 1 0 2 3 1

TABLE IV: ITEMSET ARRAYS OF CANDIDATE 2_ITEMSETS AND SUM OF

THEIR ELEMENTS

Cluster

2

Cluster

3

Cluster

4

Cluster

5
Sum

{1,2} 5 3 4 1 13

{1,3} 3 3 4 1 11

{1,4} 1 2 4 1 8

{2,3} 3 3 4 1 11

{2,4} 1 2 4 1 8

{3,4} 1 2 4 1 8

TABLE V: ARRAYS AFTER EXECUTION OF STATEMENTS (9-15) FOR i =2

Cluster

2

Cluster

3

Cluster

4

Cluster

5
Sum

{1,2} 3 3 4 1 13

{1,3} 2 3 4 1 11

{1,4} 0 2 4 1 8

{2,3} 1 3 4 1 11

{2,4} 1 2 4 1 8

{3,4} 0 2 4 1 8

TABLE IV: ARRAYS AFTER EXECUTION OF STATEMENTS (9-15) FOR i =3

Cluster

2

Cluster

3

Cluster

4

Cluster

5
Sum

{1,2} 3 1 4 1 9

{1,3} 2 3 4 1 11

{2,3} 1 3 4 1 9

{2,4} 1 1 4 1 7

TABLE VII: ARRAYS AFTER EXECUTION OF STATEMENTS (9-15) FOR i =4

AND i =5

Cluster

 2

Cluster

3

Cluster

 4

Cluster

5
Sum

{1,2} 3 1 4 1 9

{1,3} 2 3 4 1 11

{2,3} 1 3 3 1 8

TABLE VIII: ITEMSET ARRAY OF CANDIDATE 3_ITEMSET

Cluster

3

Cluster

4

Cluster

5
Sum

{1,2,3} 1 4 1 6

TABLE IX: ITEMSET ARRAY AFTER EXECUTION OF STATEMENTS (9-15)

FOR 3≤i≤5

Cluster

3

Cluster

4

Cluster

5
Sum

{1,2,3} 1 3 1 5

IV. EXPERIMENTED RESULTS

To evaluate the efficiency of the proposed method, we

have implemented the ICBAR along with apripri and CBAR

algorithms.

All programs were developed on a Pentium III,1.1

6ooMHZ PC with 256MB Main memory, running on

windows XP operating system. All programs were developed

using Delphi 7. The test database is real_life database. The

efficiency of ICBAR is compared to Apriori and CBAR

algorithms.

1) 10000 transaction records of experimental data are

sampled randomly from the real_life database. The test

database contains 1500 items, in which longest

transaction records contains 19 items. The performance

of ICBAR is compared with CBAR and Apriori under

various user specified minimum support, such that 0.60,

0.55, 0.50, 0.45, 0.40%. The results are shown in Table

X. We can show that whenever the minsup is deceases

the gaps between algorithms are evident.

TABLE X.

0.60 0.55 0.50 0.45 0.40

0 500 1100 1900 4500

0 200 400 600 1000

0 150 220 310 570

2) 30000 transaction records of experimental data are

randomly sampled from real_life database. The test

database contains 1500 items in which the longest

transaction record contains 19 items. The performance of

ICBAR is compared to Apriori and CBAR algorithms

under the various minimum supports are set at 0.42%,

0.40%, 0.38%, 0.36% and 0.34%. The results are shown

in Table XI.We can show that whenever the minsup is

decrease, again the gap between algorithms increases

too.

3) 25000, 35000, 45000 and 55000 transaction records of

experimental data are randomly sampled from real_life

database. The test database contains 1500 items, in which

the longest transaction record contains 19 items. The

performance of ICBAR is compared with Apriori and

CBAR algorithms, where minsup is set to 0.45% and the

number of transaction records is varied at levels 25000,

35000,45000, and 55000. The results are shown in Table

XII.

TABLE XI.

0.40% 0.42% 0.38% 0.36% 0.34%

0 1400 2010 4000 5400

0 300 900 1200 1800

0 200 415 500 710

800

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

TABLE XII

2500

0
35000 45000 55000

1200 1800 2200 2600

410 700 910 1100

300 460 550 650

Plot of Table X

Plot of Table XI

Plot of Table XII

V. CONCLUSION

The ICBAR algorithm creates cluster_tables and IAs to aid

discovery of large itemsets. ICBAR not only requires a single

scan of the transaction database, followed by contrasts with

the partial cluster tables, but also reduces the time needed to

generate large itemsets by pruning the candidate large itemset

through IAs.

Experiments show that the ICBAR algorithm has better

performance than Apriori and CBAR algorithms. Specially,

when there is an increase in the number and the size of

discovered patterns the performance efficiency of proposed

algorithm and two others will be clearly visible.

REFERENCES

[1] M. S. Chen, J. Han, and P. S. Yu, “Data mining: an overview from a
database perspective,” IEEE Transaction on Knowledge and Data
Engineering vol. 8, no. 6, pp. 866-883, 1996.

[2] R. Agrawal, T. Imielinsi, and A. Swami, “Mining association rules
between sets of items in very large database,” ACM SIG, MOD Conf.
Management of Data, pp. 207-216, 1993.

[3] R. Agrawal and R. Srikant, “Fast algorithm for mining association rules
in large databases,” Proceedings of 1994 International Conference on
VLDB, pp. 487-499, 1994.

[4] R. Srikant and R. Agrawal, “Mining generalized association rules,”
Proceedings of the 21st International Conference on VLDB, Zurich,
Switzerland, pp. 407-419, 1995.

[5] A. Savasere, E. O miecinski, and S. Navathe, “An efficient algorithm
for mining association rules in large database,” Proceeding of 21st
VLDB Conference Zurich, Switzerland, pp. 432-444, 1995.

[6] J. S. Pork, M. S. Chen, and P. S. Yu, “An effective hash based
algorithm for mining association rules,” ACM SIGMOD, pp. 175-186,
1995.

[7] R. Agrawal and R. Srikant, “Mining sequential patterns,” Proceedings
of the 11th International Conference on Data Engineering (ICDE),
1995.

[8] D. W. Cheung, J. Han, V. T. Ng, A. W. Fu, and Y. Fu, “A fast
distributed algorithm for mining association rules,” Proceeding of
International Conference on PDIS' 96, Miami beach, Florida, USA,
1996.

[9] H. Toivonen, “Sampling large database for association rules,”
Proceeding of 22nd VLDB Conference Mumbai, India, pp.134-145,
1996.

[10] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset
counting and implication rules for market basket data,” Proceedings of
the ACM SIGMOD International Conference on Management Of Data,
pp. 255-264, 1997.

[11] Y. Tsay and J. Chiang, “CBAR an efficient method for mining
association rules,” Knowledge Based Systems vol. 18, PP. 99-105,
2005.

[12] F. Bodon, “A fast Aprioro Implementation,” Proc 1st IEEE ICDM
Workshop on Frequent Itemset Mining Implementations(FIMI2003,
Melbourne, FL).

[13] M. H. Margahny and A. A. Mitwaly, “Fast algorithm for mining
association rules,” AIML 05 Conference, CICC, Cairo, Egypt, 2005.

[14] J. Han, J. Peiand and Y. Yin, “Mining frequent patterns without
candidate generation,” Proc. ACM SIGMOD 2000.

[15] K. Palshikar, S. Kale, and M. Apte, “Association rules mining using
heavy itemsets,” Advances in Data Management, pp. 148-155, 2005.

Reza Sheibani is a Faculty Member of Computer

Engineering Department of Islamic Azad

University, Mashhad Branch, Mashhad, Iran. He is

born on 20 April in Mashhad. He gained his B.S.

Degree in Computer Software engineering,

Ferdowsi University of Mashhad, 1998. And his

M.S. Degree in Computer Software engineering at

Islamic Azad University South Tehran Branch,

2002.His major field of study is data mining.

Amir Ebrahimzadeh is a Faculty member of

Sama technical and vocational training college,

Islamic Azad University, Mashhad branch,

Mashhad, Iran. He is born on 12 September in

Mashhad. He gained his B.S. Degree in Computer

Software engineering, Azad University of

Mashhad, 2003. And his M.S. Degree in Computer

Software engineering at Islamic Azad University

Mashhad Branch, 2005.His major field of study is

data mining.

801

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

