
  

 

Abstract—Much has been reported about the analysis of 

transient multiexponentials data. In a previous paper, for 

example, this analysis was done using autoregressive moving 

average model which was applied to the deconvolved data 

arising from the application of Gardner transform followed by 

optimal compensation deconvolution to the original signal. 

Optimal compensation deconvolution uses a single parameter 

noise-reduction parameter. In this paper, a deconvolution 

parameter incorporating multiple noise-reduction parameters 

is used instead. Simulations and experimental results show that 

the proposed combination, despite its limitations supersedes 

several existing methods. 

 
Index Terms—ARMA, multiparameter, multiexponential, 

deconvolution.  

 

I. INTRODUCTION 

Problems involving the analysis of multiexponential 

transient data with real decay rates are common in Applied 

Physics and Chemistry. Examples are fluorescence decay 

analysis in biophysics, radioactive decay in nuclear Physics 

and reaction kinetics in Chemistry. The mathematical 

representation of such signals is given in (1). 
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This signal is measured and the number of components, M, 

preexponential factors, iA  and the decay rates, i  are 

estimated. 

Three reasons make the solution of this problem difficult. 

A series of nonlinear equations is involved, the available data 

only approximates the function )(S  over a finite range in 

  and the nonorthogonality of exponentially decaying 

functions. 

Several techniques have been used for this analysis (see for 

example [1] and [2]). The methods differ according to speed, 

computational simplicity, accuracy and the existence or lack 

of initial approximations, among other differences. In a 

previous paper [3], this analysis was done by means of 

Gardner transform which was used to convert the signal in (1) 

into a convolution integral which was discretized and 
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deconvolved using optimal compensation deconvolution 

method. The deconvolved data was then further processed 

using autoregressive moving average (ARMA) model whose 

AR parameters were determined by solving high order 

Yule-Walker equations via singular value decomposition 

(SVD) algorithm. Optimal compensation deconvolution is 

essentially conventional inverse filtering with a single 

noise-reduction parameter introduced. In this paper, the 

approach in [3] is modified by using multiparameter 

deconvolution technique. The use of multiple deconvolution 

parameters is not new even though our use of it in 

combination with ARMA model is novel. The particular 

approach we use here was originally proposed by Daboczi 

and Kollar [4] and generalized by Zhang et al [5]. The 

Zhang’s model is modified and applied in this analysis. 

Specifically, only two parameters are used and all others 

suppressed. Another improvement over the approach in [3] is 

the fact that whereas in [3] the truncation point of the 

deconvolved data was determined by trial and adjustment, in 

this paper Cramer Rao Lower Bound as derived and used in 

[6, 7] is used to determine the good length of the deconvolved 

data. A number of simulations were carried out to test the 

efficacy of the proposed combination using different 

synthetic signals.  

It is shown through simulations and experiments that this 

combination outperforms many existing methods. It is 

however not without its limitations. 

 

II. DEVELOPMENT OF A CONVOLUTION SUM  

In this section, Gardner transform is applied to convert the 

original signal in (1) into a convolution model hence 

removing the nonorthogonality problem associated with the 

signal. 

Eq. (1) can be expressed as follows: 
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The integral in (2) belongs to the more general class of 

Fredholm integral of the first kind which are known to be 
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ill-posed. This term means that the solution of  (2) may not be 

unique, may not exist, and may not depend continuously on 

the data.  

Multiplying both sides of (2) by 
 , 0  and applying 

the Gardner transform [8], 
te  and

re  results in the 

convolution integral 
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where 
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)()exp()( tenttv                          (5d) 

 

This is now a standard deconvolution problem in which 

)(tx  is the unknown input signal consisting of a series of 

weighted delta functions, )(th  is the impulse response and 

)(ty  is the output observation. 

It can be shown [9] that the unknown input distribution 

function is given by 
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Eq. 4 can be converted to a discrete-time deconvolution 

model by sampling )(ty   at the rate of 
t

f s 
 1  . This 

yields 
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where 1minmax  nnN  and the sampling interval is 



1
t . 

 

III. SIGNAL MODELING 

Deconvolution of the convolution sum of (7) is achieved 

by solving stabilized solutions of integral of the first kind. 
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We now select a space  212 , qWF  and compute 

the square of the integrable functional form with derivatives 

of q order in the region of  21, . 

The stable solutions x̂  should make the following 

smoothing functional a minimum: 
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where ],ˆ[ yxM 
 expresses smoothing function. 

Now, if we take the stable functional 
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where ξr are selected known constants or functions of λ such 

that  

0r                   when r = 0, 1, ….., q-1  

and 0r             when r = q  

and xd r ˆ  is the expression of 
thr  order derivative of x̂ . 
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In discrete form, this becomes 
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where S denotes the sampling operation and 
r  denotes the 

thr  order backward difference operator since   is the 

discrete analog of the derivative. 

In the frequency domain: 
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Thus, 
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Taking the complex conjugate of both sides yields 
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1....,.........2,1,0  Nk  and rr   . 

The term 
2

)(kLr  is derived as follows: 

From equation (13), let  
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For DFT/FFT analysis 
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With 
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 , we have 
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Hence, 
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It is therefore observed that Daboczi multiparameter 

optimization model [4] is a special case of the generalized 

multiparameter deconvolution where 
2

)(kLr  can be 

progressively used to improve the SNR of the deconvolved 

data.  Consequently, if needed, we can find 
2

)(kLr  for any 

r . 

In this paper, the following model is used 
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This is exactly the model of equation (18) with 2q , 

00  ,  1  and  2 .   
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The estimated input distribution in (6) is computed by 

Fourier transformation which gives 
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The output of the deconvolution stage will take this form. 

However, when the additive noise component )(n  is 

considered, the signal will contain a nonstationary noise 

component, )(k as follows: 
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The noise )(k is different from the original noise )(n  

and the )(tv  in (4). This is because the original signal )(S  

has undergone many manipulations including Gardner 

transformation, discretization and deconvolution, to arrive at 

(30). Therefore even if )(n  is stationary,  )(k  may not 

be stationary. There is, thus, the need to look for a procedure 

for stationarizing the signal in (30) such that the deterministic 

signal would be associated with a stationary noise which 

would be further analysis easier. The method used here is the 

same as the one used in [10]. The resulting stationary signal is 

therefore 
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dNk .....,,2,1 ; 12 0  NNd , 0N  is the 

truncation point and )(ke is the new stationary white noise.  

The noisy sum of complex exponentials in (31) is further 

processed using an autoregressive moving average (ARMA) 

model whose AR parameters are determined by solving 

high-order Yule-Walker equations (HOYWE) via singular 

value decomposition (SVD).  This is achieved by considering 

the deconvolved and truncated data to be the output of an 

ARMA model whose input is a complex white noise 

sequence )(ke  so that 
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where na  and nb  represent respectively the AR and moving 

average (MA) model coefficients and p and q are AR and 

MA model orders respectively.  

The remaining procedure is as detailed in [3]. The guess 

values of the AR and MA model order are respectively ep  

and eq and the desired power distribution of )(tx  denoted 

as )(tPx  is obtained as follows: 
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IV. SIMULATION RESULTS 

In this section, simulation results are presented. These 

simulations are carried out to investigate the efficacy of the 

methods proposed in this paper. First, the truncation point 

was established using CRLB. Simulations were then carried 

out to establish the following: 

 Resolvability of the exponents. 

 The response of the proposed technique using a 

high resolution signal. 

 The ability of the method to resolve signals with 

large number of components of diversified 

magnitudes. 

 Effect of deconvolution parameters. 

A. Determination of the Truncation Point 

The truncation point, 0N  is critical to the performance of 

any technique to be used to process the deconvolved data, x̂ . 

CRLB being a good measure of the efficiency of parameter 

estimates has been used to establish the quality of the 

parameter estimates for different values of 0N . By varying 

the data length and comparing of the resulting estimates with 

the CRLB we can know which data length would produce the 

best estimator. Derivation of the CRLB was done as 

presented in [6]. The signal used for this simulation is  
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10050)(

7.02.0
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  (34) 

 

The reasons for the choice of this signal were given in [10]. 

Simulations using the proposed ARMA algorithm with 

conventional inverse filtering showed that the spectrum is 

good only for 3327 0  N  with the best performance at 

270 N . 

B. Resolvability of the Components 

To investigate the capability of the proposed combination 

to analyze basic signals, the following two-component signal 

was used: 

 
 2.01.0

1 2.01.0)(   eeS         (35) 

 

The distribution function is: 

 

)5ln(2.0)10ln(1.0)( )1()1(

1   tttx  
   (36)  

 

The signal was synthesized in MATLAB with noise added 

using the function awgn which is an embedded MATLAB 

function. Table II shows the result of applying the proposed 

combination over low ( dBSNR 40 ), medium 

( dBSNRdB 10040  ) and high ( dBSNR 100 ) 
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SNRs. A plot of the distribution function for high SNR is 

shown in Fig. 1. The distribution function was plotted against 

negative time in order to arrange the exponents in ascending 

order on the horizontal axis. For the purpose of comparison, 

DFT plot is shown (broken lines) along with the actual plot 

(solid).  The DFT graphs are obtained by windowing the 

deconvolved data to remove high frequency noise and then 

inverse transforming, instead of using SVD-ARMA or any 

other parametric modelling technique. The results are based 

on 20ep , 5eq  and the choice of deconvolution 

parameters is according to Table I. 
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Fig. 1. Power distribution for )(1 tx  at a medium SNR 

TABLE I: RECOMMENDED DECONVOLUTION PARAMETERS 

Parameter SNR 

Low Medium High 

ϛ  (dB) -20 -40 -80 

γ (dB) -100 -100 -100 

TABLE II: ESTIMATED LOG OF DECAY RATES ( iln ) FOR )(1 S  

Expected  

 Value 

LOW 

SNR 

MEDIUM 

SNR 

HIGH 

SNR 

-2.3025 -2.531 -2.41 -2.28 

-1.6094 -1.708 -1.68 -1.561 

C. Response to a High Resolution Signal 

The following signal was used to test the effectiveness of 

the proposed combination in resolving a high resolution 

signal.  
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It is noteworthy that for this signal 
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Analysing this signal would prove difficult if conventional 

methods like Prony, nonlinear least squares, etc. are used. 

The distribution function for the signal )(2 S is as 

follows: 
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            (38) 

The result of applying the proposed combination on )(S  

is shown in Table III. Fig. 2 shows a typical power 

distribution for )(2 tx . It is observed that while the 

combination gives good results over medium and low SNR, it 

yields poor estimates at low SNRs.  

TABLE III: ESTIMATED LOG OF DECAY RATES ( iln ) FOR )(2 S  

Expected 

Value 

LOW 

SNR 

MEDIUM 

SNR 

HIGH 

SNR 

-0.6931 POOR 

RESULTS 

-0.7813 -0.75 

0 -0.0625 0.0312 

0.6931 0.75 0.75 

1.6094 1.625 1.594 

2.3025 3.375 2.406 
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Fig. 2.  Power distribution for )(2 tx  at high SNR using SVD-ARMA 

with MPD 

D. Ability to Resolve Signals with Large Number of 

Components 

Also tested is the ability of the combination to resolve 

large number of components of diversified magnitude.  To 

achieve that, the following signal is used: 
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5.01.005.0
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025.001.0

3











neee

eee

eeS













   (39) 

 

The distribution function for this signal is 
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2ln122ln15.0)10ln1(1.0

20ln11.0)40ln1(025.0)100ln1(01.0)(

11

)111

)1(11

3























tx (40) 

 

Table IV shows the result of applying our combination to 

this signal. All the components are detected over high SNR, 

but poor results are obtained over low and medium SNRs. A 

typical distribution function of )(3 tx  is shown in Fig. 3. 

Table V shows typical singular values obtained from 

simulations for )(1 S , )(2 S  and )(3 S . The number of 

components M can always be obtained by observing the 

number of singular values that are significant.   
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TABLE IV: ESTIMATED LOG OF DECAY RATES ( iln ) FOR )(2 S  

Expecte

d 

Value 

LOW 

SNR 

MEDIUM 

SNR 

HIGH 

SNR 

-4.6052 POOR 

RESULTS 

POOR 

RESULTS 

-4.2190 

-3.6888 -3.1560 

-2.9957 -2.3130 

-2.3025 -0.6875 

-0.6931 -0.7188 

0.6931 2.3440 

2.3025 3.2500 

3.2188 4.8440 
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Fig. 3.  Power distribution for )(3 tx  at a high SNR using SVD-ARMA 

TABLE V: TYPICAL SINGULAR VALUES OBTAINED FROM SIMULATIONS FOR 

)(1 S , )(2 S  AND )(3 S  

Singular values for 

S1(τ) 

(MPD) 

Singular values 

for )(2 S  

(MPD) 

Singular values 

for )(3 S  

(MPD) 

44.641 

5.1023 

6.3874e-015 

3.4092e-015 

1.9057e-015 

1.6265e-015 

1.4692e-015 

1.2536e-015 

1.1585e-015 

9.921e-016 

  8.6774e-016 

  7.8747e-016 

  7.0679e-016 

  6.7509e-016 

  5.1244e-016 

  4.5115e-016 

   3.931e-016 

   3.106e-016 

  2.4038e-016 

  1.5872e-016 

53.735 

45.07 

18.703 

1.9548 

0.12072 

1.172e-014 

8.798e-015 

3.9246e-015 

3.5549e-015 

3.1613e-015 

2.2697e-015 

2.1729e-015 

2.0247e-015 

1.7994e-015 

1.6101e-015 

1.3916e-015 

1.0135e-015 

8.3472e-016 

6.2773e-016 

4.3248e-016 

54.022 

32.159 

28.771 

23.31 

22.205 

12.94 

6.8497 

0.18479 

1.0118e-014 

8.0858e-015 

  5.7101e-015 

  3.9679e-015 

  3.4256e-015 

  2.8723e-015 

  2.3961e-015 

   2.144e-015 

  1.7892e-015 

   1.492e-015 

  1.1756e-015 

  1.0962e-015 

E. Effect of Variation of Deconvolution Parameters 

The multiparameter deconvolution filter was developed to 

overcome the errors caused by the straightforward division 

used in conventional inverse filtering in the frequency 

domain.  The deconvolution parameters control the balance 

between the degree of noise reduction and the errors 

introduced by the filters. Setting them to zero maximizes the 

deconvolution noise while making their values high 

introduces error in the estimate.  Several simulations are 

needed to establish an optimal combination of these 

parameters.  The simulations were carried out over the three 

different ranges of SNR (low, medium and high) using the 

test signal of (34) whose distribution function is (with 

5.0 ): 

 

)7.0ln(418)5ln(447

)10ln(316)40ln(316)(





tt
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       (41) 

 

Several simulations were carried out using different 

combinations of β and γ which lead to the recommended 

values of the deconvolution parameters in Table I.  

 

V. EXPERIMENTAL RESULTS 

The combination proposed in this paper was used to 

postprocess real data obtained from a mixture of Acridine 

orange and quinine using a spectrofluorometer. The 

experimental setup is shown in Fig. 4. The data generated by 

the spectrofluorometer is collected by the PC (as in this case) 

or fed to another digital signal processing unit for further 

processing using the proposed combination. 

 
Fig. 4. Experimental setup for fluorescence decay analysis. 

The proposed combination was applied to the data in a 

similar manner done in the simulation.  Here,   was 

selected to be 0.5. The deconvolution parameters were 

selected as for medium SNR as given in Table I.  The 

sampling interval was 0.25 and 44max n , 83min n , 

making 128N .  The results are based on 20ep , 

5eq .   

Table VI shows the estimated log of decay rates for the 

three cases of Acridine orange, Quinine and a mixture of the 

two. The power distributions are shown in Fig. 5, Fig. 6 and 

Fig. 7. 

TABLE VI: ESTIMATED LOG OF DECAY RATES ( iln ) FROM 

FLUORESCENCE DECAY EXPERIMENTS. 

Mixture Expected 

value 

Log 

estimates 

Percentage 

deviation 

Acridine 

orange 

0.5978 0.625 4.55 

Quinine -0.6419 -0.625 2.63 

Acridine 

Orange +Quinine 

0.7750 0.75 0.37 

-0.5539 -0.5313 0.73 

Fluorophore-lo

aded 

Microplate 

PC (Signal 

Modeling 

Software) 

Optical System 

Data 

Acquisition 

System 

DSP (Signal 

Modeling 

Software) 

Output 

(display/save/p

rint) 
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 Looking at the table, it is obvious that the resolving power of 

the proposed method is very good even for practical signals. 

It can also be observed that the level of noise is relatively 

very low by virtue of percentage deviation and the shapes of 

the power distribution curves in Figures 5 through Fig. 7. 
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Fig. 5. Power distribution for acridine orange in water 

-4 -3 -2 -1 0 1 2 3 4
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

N
o
rm

a
liz

e
d
 M

a
g
n
it
u
d
e
 (

d
B

)

Log (lambda)
 

Fig. 6. Power distribution for quinine in water 
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Fig. 7. Power distribution for quinine + acridine orange in water 

VI. CONCLUSION 

In this paper and enhanced method is proposed for the 

analysis of transient multiexponential signals. Based on the 

Gardner transform, the method combines multiparameter 

deconvolution and ARMA modeling technique to analyse 

this class of signals. The method has been shown to be able to 

resolve basic signals for even very low SNR and high 

resolution signals and signals with large number of 

components over medium and high SNRs. 

The major drawback of the method is the fact that 

deconvolved data has to be truncated at a point which in this 

paper was determined using Cramer Rao Lower Bound 

(CRLB). 
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