

Abstract—An access control method has been previously

performed only focused on safety, and thus not much effort has

been done to consider access control in terms of energy

efficiency. In this paper, we proposed a method for an

energy-efficient query processing of XML data streams, such as

a personal digital assistant and a portable terminal, at the client

side with limited resources. Specifically, we proposed an access

control processing that possesses a small overhead for attaining

a secure result in a limited memory and a method to enhance

the performance, finding the parts capable of optimizing each

processing step for offsetting the overhead caused by the

addition of access control processing. Our new method is

analyzed through an experiments.

Index Terms—Energy-efficient, query processing, access

control, XML

I. INTRODUCTION

The Fig. 1 shows a complete document type definition

(DTD) structure of an information that a server receives from

patients and an example of an access control rule of doctor A

and doctor B. The access control rule on XML [1] documents

can be shown as an XPath expression [2], such as queries,

and this access control rule is applied to a terminal of

individuals as shown in Fig. 1.

The doctor of a hospital using a portable terminal to check

patient information. Each patient has one doctor in charge,

whereas some may have several doctors according to their

respective specialization. The doctor can check the

information of patients, but they cannot look at the disease

information of patients not under their care. From the

patient’s point of view, information about a patient’s mental

illness or disease that can affect one’s social life should only

be available to authorized individuals. However, the server

cannot transmit separated data to all the clients receiving the

data because managing a rule of access control to satisfy

various users is difficult, and a considerable expense is

needed to broadcast the results of all the various cases in a

stream environment where data must be sent continuously.

Therefore, even though a server broadcasts all the

information, a client must read only the contents that can be

accessed and answer the queries of a user [3].

The traditional method of processing query is to make sure

that access control is confirmed if the query domain of the

Manuscript received June 17, 2012; revised August 3, 2012. This research

was supported by the MKE (The Ministry of Knowledge Economy), Korea,

under the ITRC (Information Technology Research Center) support program

supervised by the NIPA (National IT Industry Promotion Agency

(NIPA-2012-(H0301-12-3004).

D. An is with the Multimedia Contents Department, Shin Ansan

University, Gyeonggi-do, Korea (e-mail: channy@ sau.ac.kr).

S. Park is with the Computer Science Engineering Department, Sogang

University, Seoul, Korea (e-mail: spark@sogang.ac.kr).

user is an accessible domain for the said user through access

control technology. When the query from the user has been

entered inputted and has passed, the result of the queries must

be produced through the query processor. Likewise, the

application of a method that independently performs access

control and query processing is not feasible because an

access control engine and a query processing engine are

required to perform by a client with limited resources. So we

need an access control for energy-efficient query processing.

Fig. 1. DTD structure of XML data streams by a client with limited resources.

We propose a method to perform simultaneously an access

control technology and a query processing technology by a

client with limited resources. First, an access control

processing method with fewer overheads to produce secure

results within a limited memory is proposed. Second, this

work aims to reduce the overheads of performance due to the

addition of access control by simultaneously performing

energy-efficient query processing during access control

processing.

II. RELATED WORK

A traditional XML access control enforcement mechanism

[4]-[7] is a view-based enforcement mechanism. A view is

created by rules of access control for each user, and queries

are processed as the controlling access of users based on the

created view. Many useful algorithms that can evaluate a

view with tree labeling scheme have been proposed, but the

problem is the high cost of creating and maintaining a view. It

also develops a scalability problem when the number of users

increases [8], [9].

The client-based XML document streams access control

[10] and decides an access status for currently input data by

avoiding the rewriting of queries and performing

simultaneous access control rules with query evaluations. It

is a technique that obtains a final secure XML document for

final user queries by passing the XML document

corresponding to user queries to the automata (access rules

automata (ARA)), which is unlike Luo [11]’s method that

remakes the user queries by creating ARA for access control

rules. It proposes the skip index technique for skipping the

Access Control for Energy-Efficient Query Processing

Dongchan An and Seog Park

745

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

unnecessary circulating process to ARA in XML documents.

Therefore, the rewriting of user queries, which adjusts to the

access control rule, is not required, and a secure query result

is be generated, as access to restricted data is impossible.

However, this method needs to have spate query processing

channels for the user and the server because it handles query

for previously used queries only once in a server. Hence, it

has an overhead server and cannot be applied to a mobile

environment that utilizes broadcasting method [12].

III. ENERGY-EFFICIENT QUERY PROCESSING FOR XML

DATA STREAMS

A. System Architecture

Fig. 2 shows the proposed system architecture. A server

receives information from many data sources and gathers

them into one XML document. It contains DTD and XML

documents to be broadcast to the client, and it sends

information to the client every time these documents are

changed. The DTD document is usually unchanged, but the

XML document constantly receives data from a data source

and continuously updates changes.

Fig. 2. Proposed system architecture.

The client stores DTD, which has been transformed from

the server, and has a module to process queries entered by the

access control rules and users, and to input XML files

constantly. In this work, a client with limited resources, such

as a portable terminal, is assumed. The Structural information

of the XML document(DTD) to be received from the server

should be known to process queries and access control

processing. This work provides pre- and post-values to DTD

and stores it in the form of a hash table. The client device has

an access control rule(ACR) that suits users, and paths where

the access control rules are loaded are various. Queries are

entered by the users. The client outputs the result that the

users want by storing a number of received queries from the

users. The result is transformed into an optimized structure

for fast query processing. The access control rule that

satisfies the ACR stack is maintained to decide the status of

the access to data being entered at the moment with the

evaluation of access control rule. The label of input data

evaluates for comparison with the input data while

processing query and access control rules. By applying a

label evaluator, faster evaluation and memory reduction

effect for maintaining queries and access control rules can be

achieved.

The query processor simultaneously evaluates queries and

access control rules. It eventually evaluates the result that

users want and decides whether to send the result to users or

not after comparing it with the value of the access control

stack.

B. Policy

In hierarchical data models [11], such as object-oriented

data model and XML document model, the authorization that

the administrator states is called explicit, and the

authorization that a system derives based on explicit

authorization is called implicit. It makes a “propagation

policy” using the implicit authorization method to obtain the

advantages of storing. The optimized propagation can vary

for many different environments, but it usually uses the

“most specific precedence policy.” The “denial take

precedence policy” is commonly used to solve “conflicts”

that may occur through implicit authorization. “Open

policy,” which allows access, and “closed policy,” which

does not allow access are used as the “decision policy” on the

node without explicit authorization because positive and

negative authorizations are used in combination.

C. Preprocessing

1) Hash table

After the server transmits the DTD document, the client

approaches the DTD accordingly and forms the DTD hash

table by transferring the element information to the pre/post

value to use it for evaluating queries and access control rules.

The pre/post structure is used when the DTD is formed

because an ancestor (or parent) and a descendent (or child)

can be searched, and a path from the root can be

comprehended through the pre/post value for arbitrary node

when expressing XML documents.

Fig. 3. PRE/POST hash table of the DTD tree (Fig. 1).

Fig. 3 shows the pre/post hash table for the DTD tree in Fig.

1. The pre(order) is a value obtained by approaching the

DTD accordingly, whereas the post(order) is obtained from

the following formula: POST = PRE + SIZE – LEVEL

Level denotes the level in the DTD tree, and SIZE is the

node numbers under the tree of the arbitrary tree node.

746

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

As shown in Fig. 3, DTD has a tag name as the key and

maintains the four information ({tag name, pre, post, parent}).

A tag name is used in searching the DTD hash table. If the

defined element repeatedly exists in DTD document, then

several values (pre, post) can be found in the hash table.

2) Registration of query and access control rule

The registration of access control rule and user queries is

processed using the pre/post metadata for the DTD tree

during the compilation time. This section describes the

process of changing the XPath expression into (pre, post)

path expressing and registering it after changing it into the

optimized (pre, post) path expression by analyzing the XPath

expression.

The process of searching pre/post value is relevant to the

XPath. The order of search goes up from the target node to

the beginning node of the path expression. If there is a branch

node of predicate during the process search, the value of the

predicate should come first, and then the search for the

previous node of the branch node should be continued. In

order to find out if the searched value satisfies the XPath,

verify if the newly searched nod is in ancestor relationship by

comparing the (pre, post) value of the previously searched

node and the (pre, post) value of the newly searched node.

As the ancestor for an arbitrary node is the only element in

a tree structure, if a value has an ancestor relationship among

the searched (pre, post) values, then the ancestor node is right.

However, if a value having an ancestor relationship is not

found, then the XPath expression does not express the DTD

correctly. These inaccurate queries or access control rules are

excluded from the evaluation.

D. Query Processing

In query processing, access control and query processing

are performed at the same time using registered information

from preprocessing.

1) Evaluation of XML data streams

If an XML document is transmitted from the server, the

(pre, post) information must be known for evaluating the

queries and access control rules. DTD hash table allows a

suitable (pre, post) value to be searched quickly with the tag

names of the input data. However, all the nodes appearing in

the query path must be maintained to decide the suitable (pre,

post) value because the exact position on the DTD for input

data is unknown when many (pre, post) values are searched.

The optimization of the query explained in preprocessing will

be impossible if the (pre, post) value of input data is decided

using this method because all the nodes appearing on query

path must be maintained. In this work, information on the

previously input data is maintained to identify the accurate

information of the new data to be entered. When new data are

entered, the (pre, post) value is evaluated using the input data

information. This method is efficient in terms of using

memory compared with maintaining all the nodes on the

query path, which allows the optimization of a possible query

by maintaining only the (pre, post) information on the data

previously entered for evaluation of input information.

Input data information is divided into two cases. Let us call

the information to be maintained for data evaluation

current_data.

If a tag that notifies the start element is entered, then it is a

descendent of the previous data or a root node. This allows

information for the root not in the DTD hash table to be found

easily. If the input data is not a root node, then search the (pre,

post) value using the tag names of the data entered in the

DTD hash table. If the value is relevant to the descendent of

the data being maintained, then change the value of

current_data to a new value.

If a tag that notifies the end element is entered, then return

the value of current_data to the previous value of the data to

be entered, that is, if element is the data to be entered, and if it

is the same-leveled element with the same parent as the data

inputted. The pre, post value relevant to the parent of

current_data in the DTD hash table is searched, and the

current data value is modified using the value of the parent

relationship by comparing the results found and the pre, post

value of current_data.

By evaluating current_data this way, a fast and accurate

comparison is possible when evaluating query. The query can

be optimized, making a lighter processing possible.

2) Evaluation of access control rule

Evaluating the query and access control rule is the same,

but the access control stack should be maintained when

evaluating the access control rule to decide the possibility to

access every time the element that states access control rule is

entered and the possibility to access the relevant access

control rule entered in the stack. The access control stack has

four values as shown in Fig. 4.

(+): Possible to access

(+?): Latently possible to access

(-): Impossible to access

(-?): Latently impossible to access

Among these four states, + and – states, which have the

possibility to access relevant rule, are applied because they

satisfy access control rules, including the predicate. The +?

and -? state can satisfy all the other rules except predicate and

it is a condition that possibility to access can be applied after

figuring out if it satisfies the condition of predicate.

Fig. 4. Stack of access control.

The access control calculation method, similar to the

access control used in this work, is defined as follows:

- This work cannot access the data when the stack is empty.

Even though the query is satisfied, the result is not produced

until the value + reaches the top of the stack.

- When the + value reaches the top of the stack, the

relevant rule is entered if another access control rule is

satisfied. In this case, the query is evaluated, and a result is

sent if the query is satisfied because access to the input data is

allowed.

- When the – value reaches the top of the stack, the used

access control model cannot access the sub node of nodes

that cannot be accessed. Therefore, all values entered later

will change to –. In this case, query is not evaluated because

access to the input data is not allowed. It is processed as if

747

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

data were not entered.

- When the +? value reaches the top of the stack, and the

query is satisfied, then the result is temporarily stored

because it can be latently accessed. If it later satisfies the

predicate, then it changes to value + and sends the

temporarily stored query results to users. If it does not satisfy

the predicate, the result of the temporarily stored query is

deleted.

- When the –? value reaches the top of the stack, then it

may not be latently allowed to access or does not satisfy

access control rule at all. The result is not stored because a

result should not have to be produced even if it satisfies the

query. If it satisfies the predicate later on, it is changed to–,

and then all values are changed to–. If there is +? value, the

query result, which is temporarily stored as the value changes

to–, will be deleted because it becomes useless information

that cannot be accessed by users.

3) Evaluation of query with added access control

Query evaluation is similar to access control evaluation. It

is processed as follows:

- First, if the value of the access control stack is –, the

query is not evaluated for input data. A node that cannot be

accessed according to the access control rule evaluation is

considered not entered because the users do not know if it is

entered.

- Second, if all values of the access control stack are –?,

state if they have the potential to become –; however, they

may not satisfy the query. These two cases do not have to

produce the result of the query, but the query is evaluated

unlike in the case of –.

- Third, if the value of access control is +, then evaluate the

query because it is possible to access the input data. If the

data satisfying the query is entered, it is produced as the

result.

- Fourth, if the value of the access control stack is in +?

state then there’s a potential possibility of being +. Since the

result is unknown, evaluate queries and then temporarily

store it when the data that satisfies query is inputted.

The detailed evaluation method will be used. Let us now

look into the example of how query is evaluated with access

control rules

IV. EVALUATION

In this section, the performance of the XML access control

method [13] is compared with the proposed method and

related work. The performances of the proposed method

before and after access control is applied are also compared

and analyzed by dividing them into memory usage and

processing time.

A. Experiment Environment

This experiment used the Microsoft Windows XP

operating system with a Pentium IV 3.0 GHz processor and

1GB DDR2 memory. To input the document, the

SigmodRecord.xml (467KB) file was used. The number of

access control rules and queries was limited to the maximum

of 10 due to the client environment. Table 1 gives the detailed

information for SigmodRecord.xml.

TABLE I: SIGMODRECORD.XML

Size 467kb # distinct tags 11

Depth 5
text nodes 8,383

elements 10,022

B. Experiment Results and Analysis

1) Memory usage

The number of access control rules and queries was limited

to 5. The rules that include the predicate had one predicate,

but the target node did not have a predicate.

The proposed method passes the optimization process to

reduce memory usage during the registration of query and

rule as shown in Fig. 5 and 6. The rule, which does not

include the predicate, maintains only one target node

regardless of the depth of the rule, and the rule that includes

the predicate maintains three nodes, namely, target node,

branch node, and leaf node, of the predicate regardless of the

depth of the rule. Hence, there is no additional cost of

memory usage even if the depth of query or rule becomes

longer.

As shown in the Fig. 5, our method used memory in

processing did not exceed 255kb, but Bouganim [10]’s

method used memory in processing was over 380kb.

Fig. 5. Memory usage for the depth of access control rules.

Fig. 6. Memory usage for the number of access control rules.

2) Processing time

The Fig. 7 shows the result of comparing the query

processing time and the access control rule processing of the

two methods by changing the number of access control rule,

which increases the difference in performance.

748

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

In the client environment, where the number of access

control rules that only one user can register, sharing the

access control rule can be meaningless or may entail

additional expenses.

Fig. 7. Processing time for the number of access control rules.

3) Analysis of the overhead of applying access control

To process XML data streams in a client with limited

memory, the difference in performance must be very small

compared with the previous fast query processing even after

applying the access control. Space should not be wasted only

for the access control processing due to the limited resources,

and receiving the result of the query slowly may be worse

than previous security application. Fig. 8 shows the result of

the performance comparisons before and after access control

is applied. This work does not require additional cost for

processing access control. The numbers of input query and

access control rule are fixed data of 5 in the average memory

usage test (Fig. 8) and processing time for file size (Fig. 9).

The input XML data when estimating the query time for file

size were measured by changing the file size of

SigmodRecord.xml.

Fig. 8 shows the average memory usage when the access

control rule of the proposed method is applied and when

access control rule of the proposed method is not applied.

The difference in memory usage between the minimum and

maximum is 2kb.

Fig. 8. Average memory usage.

Fig. 9. Processing time for file size.

For the result of processing time for file size in Fig. 9, it

does not overhead too much on access control application

V. CONCLUSIONS

We propose a method that can perform access control and

energy-efficient query processing at the same time using

schema information because it assumes an efficient XML

data environment. Generally, two methods are used to

express DTD in an efficient XML data environment. The one

is expressed in the form of a tree, whereas the other one is

expressed in the form of a direct acyclic graph (DAG). This is

because there are cases involving several parents for a single

element DTD due to the rule that an element should be

expressed element only once. The DAG-based work can

solve the wasting of storage space caused by the repeated

node expression, which is a problem of the tree expression,

and the wasting of evaluation time added to understand the

parent node of self.

The characteristics of the proposed method are as follows:

First, additional costs are reduced by finding a part (DTD

hash table) for sharing the processing of query and property

information during the access control process. Second, it

optimizes the quality by determining the exact location in the

DTD using input data evaluated and by reducing the node

required for query evaluation. Third, the preprocessing cost

is reduced through the optimization of XPath, improving the

performance of the query process.

These characteristics can make the energy-efficient query

processing in a client environment with limited resources

more secure than the existing query processing

REFERENCES

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,

eXtensible Markup Language (XML) 1.0, World Wide Web

Consortium (W3C), 2004.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J.

Robie, and J. Siméon, XPath 2.0, World Wide Web Consortium (W3C),

2007. [Online]. Available: http://www.w3.org/TR/xpath20/

[3] W. Lindner and J. Meier, “Towards a secure data stream management

system,” VLDB Workshop TEAA 2005.

[4] E. Damiani, S. Vimercati, S. Paraboachk, and P.Samarati, “Design and

implementation of access control processor for XML documents,”

Computer Network, pp. 59-75, 2000.

[5] E. Damiani, S. Vimercati, S. Paraboachk, and P.Samarati, “A

fine-grained access control system for XML documents,” ACM Trans.

Information and System Sec., vol. 5, no. 2, pp. 169-202, May 2002.

749

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

[6] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti, “Specifying and

enforcing access control policies for XML document sources,” WWW

Journal, vol. 3, no. 3, pp. 139-151, 2000.

[7] E. Bertino, S. Castano, and E. Ferrai, “Securing XML documents with

Author-x,” IEEE Internet Computing, May. June, pp. 21-31, 2001.

[8] J. Cai and C. K. Poon, “OrdPathX: supporting two dimensions of node

insertion in XML data,” in Proceeding of DEXA, 2009, pp. 332-339.

[9] W. Liang, A. Takahashi, and H. Yokota, “A low-storage-consumption

XML labeling method for efficient structural information extraction,”

in Proceeding of DEXA, 2009, pp.7-22.

[10] L. Bouganim, F. D. Ngoc, and P. Pucheral, “Client-based access

control management for XML documents,” VLDB, pp. 84-95, 2004.

[11] B. Luo, D. W. Lee, W. C. Lee, and P. Liu, “Qfilter: Fine-grained

run-time XML access control via NFA-based query rewriting,”

CIKM’04, pp. 543-552, 2004.

[12] D. C. An and S. Park, “Access control labeling scheme for efficient

secure XML query processing,” in Proceeding of the

Knowledge-Based Intelligent Information and Engineering Systems,

LNAI 5178, 2008, pp.346-353.

[13] F. Rabitti, E. Bertino, W. Kim, and D. Woelk, “A model of

authorization for next-generation database systems,” ACM Transaction

on Database Systems, vol. 126, no. 1, PP. 88-131, March 1991.

Dongchan An is an Associate Professor of Department of Multimedia

Contents at Shin Ansan University, Ansan City, Gyeonggi-do, Korea from

2002. He received the M.S. and Ph.D. degree in Computer Science and

Engineering from Sogang University, Seoul, Korea in

1998 and 2011, respectively. His major research areas

are role-based access control model, access control for

distributed systems, access control for XML data,

XML transaction management, and ubiquitous

environment security.

Seog Park is a Professor of Computer Science and

Engineering at Sogang University. He received the

B.S. degree in Computer Science from Seoul National

University in 1978, the M.S. and the Ph.D. degrees in

Computer Science from Korea Advanced Institute of

Science and Technology (KAIST) in 1980 and 1983,

respectively. Since 1983, he has been working in the

Department of Computer Science and Engineering,

Sogang University. His major research areas are

database security, real-time systems, data warehouse, digital library,

multimedia database systems, role-based access control and web database.

He is a member of the IEEE Computer Society, ACM and the Korean

Institute of Information Scientists and Engineers (KIISE). Also, he has been

a member of Database Systems for Advanced Application (DASFAA)

steering committee since 1999.

750

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

