



Abstract—Survivability represents a system’s capability to

withstand malicious attacks and system failures in order to

provide essential services to users even in a challenging

environment. In a proof-carrying paradigm, a user publishes

his/her survivability requirement policy and a system provider

constructs a proof that the system satisfies the user’s

requirements. Finally, the user verifies if the proof is valid. In

this paper, we discuss proof approaches and techniques used by

the system provider to automatically compile such a proof. We

develop algorithms to show how different proof choices are

generated so that the system provider can choose the most

cost-efficient approach in the proof process. Proof generation

relies on the certifications generated by trusted evaluators. We

show the necessary steps to construct the basic proof elements

which can be logically linked to form the ultimate proof.

Index Terms—Algorithm, proof, survivability, verification.

I. INTRODUCTION

Our society is increasingly dependent on large-scale,

interconnected systems. Any system, which provides vital

services to the nation and the society, must be reliable and

dependable. Survivability is defined as the ability of a system

to provide essential services in the presence of attacks and

failures, and recover full services in a timely manner [1].

Survivability has been considered as a key inherent property

of a reliable system [2].

Given the critical nature of survivability in many

high-security and high-integrity settings, there is a need to

develop formal evaluation and verification models to

systemically prove that the system has the required

survivability features. In this paper, we propose such a

formal approach for survivability proof by a system provider.

Our focus is on the generation of a set of proof choices for the

system provider to choose and determination of a set of steps

to compile a valid proof. A proof represents formal evidence

that the system under evaluation satisfies the user’s

survivability requirements. The proof can be verified by a

trustworthy checker program. Since our approach can

facilitate automatic proof generation and verification, it is

possible for the user to assess the survivability features of a

system real time and to accept the system only if it meets the

user’s requirements. If so, all the survivability requirements

as set by the user are guaranteed to be satisfied. Any system

that does not meet those requirements will be detected before

the system is deployed.

By shifting the proof burden from the system user to the

Manuscript received June 15, 2012; revised August 5, 2012.

Yanjun Zuo is with the University of North Dakota, Grand Forks, ND,

USA 58201.

system provider, the latter can better use their knowledge

about the features of their own system in constructing a

compliance proof. The system provider is supposed to know

better than anyone else why their system satisfies the user’s

survivability requirements, i.e., which survivability

properties their system has as required by the user. The

system user only needs to define their particular survivability

requirements for the system of interest and to verify the proof

once it is submitted by the system provider to confirm that the

system satisfies those requirements.

II. RELATED WORK

The most related research to our study is proof-carrying

code (PCC) and authentication. PCC is a software

mechanism which constructs and verifies a mathematical

proof about the machine-language program and guarantees

its safety [3]. In most approaches to PCC (e.g., [3-4]), the

machine-checkable proofs are written in a logic with a

built-in understanding of a particular type system. Such a

PCC system must understand the language of types and the

machine language for a particular machine. Those

proof-carrying codes are highly type-specialized, and they

mainly address the issue of programming language safety.

There are other practical applications of PCC. For instance,

PCC was used to implement a collection of network packet

filters [5] and applied to access-control, distributed

authorization, and policy-specification language (e.g.,

[6]-[9]).

Our research can be used as complementary techniques in

proof-carrying diagrams. The main contribution is the

integration of survivability techniques and reasoning with a

proof-carrying framework. We discuss the approaches and

techniques to prove that a system satisfies the user’s

survivability requirements. An algorithm is developed to

show the proof choices available to a system provider who

can choose the most cost efficient one to construct a proof.

We also show the step-by-step procedure to generate a proof

using the specified survivability specific operators.

III. SYSTEM ARCHITECTURE AND EXAMPLE OF

SURVIVABILITY REQUIREMENT POLICY

Fig. 1 shows the system architecture and the major

components of the framework. The system provider is an

entity to supply the software system. The system user is the

consumer of the system. It accepts the system only if the

system provider can prove that the system satisfies its

survivability requirements. In high-security and

high-integrity applications, any external software object to be

Automatic Proof of Survivability Compliance

–Approaches and Techniques

Yanjun Zuo

740

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

Fig. 1. The system architecture.

acquired must satisfy a user’s survivability requirements.

Those requirements are specified as the user’s policy. To

show their system’s compliance to the policy, the system

provider needs to compile and submit a proof. Proof

generation relies on the certifications generated by trusted

evaluators. The system provider first collects evidence from

the trusted evaluators who can confirm that the system has

the required survivability features and then applies the

appropriate approaches and techniques to construct the proof.

Finally, the system user verifies whether the proof is valid. If

so, the system can be considered as satisfactory and

acceptable. To better illustrate our approach, we use a

hypothetical command and control system cited in [10] as a

running example throughout the paper. The user’s

survivability requirements are represented in a tree structures,

called a survivability requirement tree (Fig. 2).

Fig. 2. The example of survivability requirement policy.

The survivability requirements are specified from four

dimensions (called survivability characteristics) as shown in

Table I. Each dimension contains multiple refined

survivability properties called survivability primitives. A

survivability characteristic can represent a desired or

unwanted system feature. For a given desirable survivability

characteristic SC, the low bound threshold operator ltso(Sys, i,

[SP1, SP2, …, SPn]) indicates that a system Sys must have

contributions for at least i out of n survivability primitives to

be considered as satisfying the requirements of SC.

Furthermore, the conditional low bound threshold operator

cltso(Sys, i, [SPj,…, SPk],[SP1, SP2, …, SPn]) indicates that a

system must have

contributions for at least i out of n survivability primitives

and SPj, …, SPk must be satisfied.

For a undesirable survivability characteristic SC’, the

upper-bound threshold selection operator, denoted as

utso(Sys, j, [SP1, SP2, …, SPm]), indicates that the system

must not have concerns for more than j out of the m

survivability primitives. If so, the system will be considered

not going beyond a user’s concerns from the perspective of

SC’. Essentially, such an operator defines the “most

tolerable” bound for potential unfavorable features of a

system from the perspective of a survivability characteristic.

TABLE I: SURVIVABILITY CHARACTERISTICS AND PRIMITIVES

Survivability

Characteristics

Survivability Primitives

Adaptability

(SC1)

Monitoring and control (SP1)

Self-reconfiguration (SP2)

Process migration (SP3)

Service prioritization (SP4)

Recoverability

(SC2)

System self-healing (SP5)

System roll-back (SP6)

Malice immunization (SP7)

Fault tolerance

(SC3)

Redundancy and diversity based fault masking (SP8)

Fault isolation and system partition (SP9)

Tolerance through backup (SP10)

Reliability

(SC4)

Service availability (SP11)

Service consistency (SP12)

Performance

Degrading

(SC5)

Communication degrading (SP13)

Operation degrading (SP14)

Following the above variable and operator definitions, the

user’s survivability requirement policy as shown in Fig. 2

indicates that the system must satisfy the following three

conditions in order for the system Sys to be considered at

survivability level I:

1) at least two survivability primitives as defined for system

adaptability (SC1) and SP1 must be satisfied;

2) either condition 1 (at least two survivability primitives

defined for system reliability (SC4)) or condition 2 (at

least two survivability primitives defined for system

fault tolerance (SC3) and system recoverability (SC2)

must be satisfied. In addition, one of the two primitives

for SC3 must be SP10); and

3) no more than one concern for the survivability primitives

in terms of system performance degrading.

In a survivability requirement tree, the root represents the

desired survivability level. Each leaf node represents the

requirements in terms of a survivability characteristic

(represented in ltso, cltso, or utso). An intermediate node

represents a logical operator (AND, OR). To distinguish

different logical operators, we add a subscript to each of them

without changing their meanings.

An important part of the proof process is for the system

provider to decide a proof choice to construct a proof that its

system satisfies the user’s requirements. A proof choice

indicates which set of requirement elements (e.g.,

survivability characteristics) to prove based on the user’s

AND1

OR1

AND3
SC1: cltso(Sys,

2, [SP1], [SP1,

SP2, SP3, SP4])

Survivability Requirement

Level I

SC4: ltso(Sys,

2,[SP11, SP12])

SC3: cltso(Sys,

2, [SP10], [SP8,

SP9, SP10])

SC2: ltso(Sys,

2,
[SP5, SP6, SP7])

AND2

SC5: utso(Sys, 1,

[SP13, SP14])

System User

(1) Release the

survivability

requirement policy.

(7) Verify the proof.

System Provider
(2) Determine the proof choices;

(3) Choose the most cost-effective

proof choice;

(4) Collect supporting evidence;

(5) Construct proof. If no proof can

be compiled, repeat steps 2-5;

(6) Submit the proof to the user.

Evaluator Server

Trusted Evaluator

Key Certificate Authority

Trusted Evaluator

User’s survivability

requirement policy

Survivability evidence

and proof

… … … …

741

IV. DETERMING PROOF OPITONS

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

requirements. Intuitively, a proof choice is to determine

which branch of each OR node to choose in the survivability

requirement tree. For instance, since the user’s survivability

requirements as shown in Fig. 2 has only one OR node, the

system provider has two choices (see Fig. 3) to choose to

prove that the system satisfies the survivability level I: (1) to

prove (pf1 and pf2) and pf3; or (2) to prove (pf1 and pf2) and

(pf4 and pf5). We call such a pfi a proof construct. Each proof

construct corresponds to a survivability characteristic

represented by ltso, cltso, or utso.

Fig. 3. Survivability proof choices.

A. Determining the Number of Proof Choices

We show how to calculate the number of proof choices

given a survivability requirement tree T. It can be observed

that the number of the choices is mainly determined by the

number of OR nodes in T. We first define a variable

associated with each node N (except the root), denoted as

count(N), which represents the number of proof choices to

prove this node. If N is a leaf node, then count(N) =1. For any

intermediate node N, count(N) is calculated as a function of

the count values of its child node and the type of N. More

specifically, let’s consider a node N with m children node

N1, …, Nm. There are two cases:

Case 1: N is an AND node. Then count(N) = 




ni

i

iNcount
1

)(;

Case 2: N is an OR node. Then count(N) =





ni

i

iNcount
1

)(
.

We have developed an algorithm (see Algorithm One) to

show the calculation process. For an input survivability

requirement tree T, the algorithm first assigns each leaf node

with a count value 1. Then, it recursively calculates the count

value of a parent node from the count values of its children

nodes in a bottom-up fashion until the root node is reached.

Since all the nodes have to be processed, the time complexity

of the algorithm is O(n), where n represents the number of

nodes in T.

Algorithm One: Proof Choices Counting main

PChoice_Counting(T)

4) For each node N in T, set count(N) = 1;

5) Call Node_Processiong1(N0) with the child node N0 of

the root, which returns the number of proof choices for

T.

subroutine Node_Processing1 (N)

6) Let L={N1, N2, …, Nm} represent the children nodes of

N ;

7) If N has no more child node, return count(N);

8) Else, do the following:

 For each of the child node Ni (1 ≤ i ≤ m), do:

 count(Ni) = Node_Processing1(Ni);

 If N is AND node, return count(N) =





ni

i

iNcount
1

)(
;

 Else, return count(N) =





ni

i

iNcount
1

)(
;

B. Identifying the Proof Choices

Determining an efficient proof choice is critical in order to

generate the most efficient proof. A choice determines which

set of evidence to collect. As we discussed earlier, a piece of

evidence refers to an evaluation certificate issued by a trusted

evaluator which confirms that the system satisfies the user’s

requirement in terms of a particular survivability primitive.

Each proof is associated with a cost in terms of such factors

as the time for the evaluator to inspect the system and issue a

compliance certificate. The system provider always chooses

the most cost efficient proof choices to pursue from all

choices. After a choice is identified, the necessary

survivability primitives and characteristics to be proved can

be determined. Algorithm Two show how the proof choices

are generated given a survivability requirement tree T. The

system provider can choose the proof choice with the lowest

cost to compile a complete proof and then submit it to the

system user.

Algorithm Two: Proof Choice Generation

Input: survivability requirement tree T

 Pf1 ≡ Adaptability (SC1): cltso(Sys, 2, [SP1], [SP1, SP2, SP3, SP4])

 pf2 ≡ Acceptable Performance (SC5): utso(Sys, 1, [SP13,SP14])

 pf3 ≡ Reliability (SC4): ltso(Sys, 2,[SP11, SP12])

 pf4 ≡ Fault Tolerance(SC3): cltso(Sys, 2, [SP10], [SP8, SP9, SP10])

 pf5 ≡ Recoverability(SC2): ltso(Sys, 2,[SP5, SP6, SP7])

 Proof Choice One: to prove (pf1 AND2 pf2) AND1 pf3

Proof Choice Two: to prove (pf1 AND2 pf2) AND1 (pf4 AND3 pf5)

742

Output: A set of proof choices S = [pf(N1) ˄ … ˄

pf(Nk)], … [pf(N’1) ˄ … ˄ pf(N’k)].

main PChoice_Generation(T)

1) Let N0 represent the child node of the root of T;

2) Call the sub routine Node_Processing2(N0), which

returns the set of proof choices, i.e., S =

Node_Processing2(N0).

subroutine Node_Processing2(N)

1) Let L={N1, N2, …, Nm} represent the children nodes of N.

2) Let set S represent the partial results containing the proof

choices. Initially, S = ɛ.

3) If N has no more child node, return pf(N); //N is a leaf

node

4) Else, for the first child node N1, do the following:

 S= Node_Processing2(N1).return Set;

We write S’= A1 ˅ … ˅Ak where each Ai is in a

sum-of-products canonical form Ai = a1 ˄…˄ an.

 For each of the child node Ni (2≤ i ≤ m), do:

S’ = Node_Processing2(Ni).return Set;

We write S’= B1 ˅ … ˅Bt where each Bj is in a

sum-of-products canonical form.

If the parent node N is an AND node, do

S = (A1 ˄ B1) ˅ … ˅ (A1 ˄ Bt) ˅ … ˅ (Ak ˄ B1)

˅ … ˅ (Ak ˄ Bt);

Else, do // N is an OR node

S = A1 ˅ … ˅ Ak ˅ B1 ˅ … ˅ Bt;

5) returnSet S. // returns the set S to the calling function

The survivability requirement tree T is processed starting

from the root. We use the term pf(N) to represent the proof of

a node N of T, where N can be a logical operator node (i.e.,

AND, OR) or a threshold selection node (ltso, cltso, or utso).

If N represents a logical node, pf(N) is converted to the proofs

of the children nodes of N, i.e., pf(N1), …, pf(Nm), where

N1, …, Nm represent the children of N as represented in T. For

instance, pf(AND)= pf(N1) ˄ … ˄ pf(Nm) and pf(OR)= pf(N1)

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

In this section, we discuss how the system provider

compiles a valid proof. The process for proof generation has

two sets of tasks which can be executed in a concurrent and

interleaving fashion. For the first set of tasks, the supporting

evidence which may be useful in proof derivation is collected.

For the second set of tasks, a prover program attempts to

generate a derivation of the goal statement based on the

available evidence and other assumptions (e.g., survivability

policy elements). If no sufficient evidence is provided,

additional facts must be collected and the two sets of tasks are

repeated until either a proof is finally generated or a failure is

reported to indicate that no proof can be possibly generated

(e.g., the system does not possess all the required

survivability properties).

The system provider first identifies the available proof

choices and then chooses the one with the lowest cost. A

proof choice contains a set of proof constructs {pf(N1), …,

pf(Nk)}. Each pf(Ni) corresponds to the proof of a

survivability characteristic SC. To compile pf(Ni), we show

how to generate a proof for each survivability primitive in SC.

We first define the following terms in Fig. 4:

Fig. 4. Survivability element proof variables.

The general steps to compile a proof for a survivability

primitive SP are shown below.

Formula PF is applied to prove one survivability primitive.

For illustration purposes, we assume that evaluators

confirmed that system Sys is self-reconfigurable and capable

of mitigating critical services to clean, healthy components to

avoid further damage in case of malicious attacks. Hence,

sat(Sys, SP2) and sat(Sys, SP3) can be derived by following

Formula PF. According to the meaning of the selection

operators, the system provider can prove that Sys satisfies the

user’s survivability requirements in terms of system

recoverability (SC2), i.e., sat(Sys, ltso(Sys, 2,[SP5, SP6, SP7]))

or sat(Sys, SC2).

Furthermore, we assume that the following proofs have

been available (all the proofs can be obtained by following

the above procedures): sat(Sys, Acceptable Performance

Degrading), sat(Sys, Adaptability), sat(Sys, Fault tolerance),

and sat(Sys, Recoverability). Those terms show that system

Sys satisfies the survivability characteristics: adaptability,

fault tolerance, recoverability, and acceptable level of

performance degrading. If the system provider chooses the

proof choice two (see Fig. 3), then the rest of proof is shown

in Fig. 5.

Fig. 5. Partial proof tree.

sign(S, Kc):= Statement S is signed by an entity with public key Kc;

keyBind(Kc,C):= Kc is the public key of entity C;

ensure(C, S):= Entity C ensures that statement S is true;

cerAuth(CA):= Entity CA is a trusted key certificate authority;

trustedEav(C):= Entity C is a trusted evaluator to assess the

 survivability features of a system;

surPrim(SP):= SP is a recognized survivability primitive;

sat(Sys, SP):= System Sys satisfies the survivability requirements

 in terms of a survivability primitive SP.

 sat(Sys, SC3) Λ sat(Sys, SC2)

 sat(Sys, SC5) Λ sat(Sys, SC1) sat(Sys, AND3)

__ sat(Sys, AND2) sat(Sys, OR1)

 sat(Sys, AND1)__

 Survivability Level I

743

˅ … ˅ pf(Nm). As we can see, to enumerate all the proof

choices, we recursively replace the proof of each parent node

with the proofs of its children nodes until all the children

nodes represent the threshold selection operators. However,

this recursive processing must maintain the logic Boolean

sum-of-products (SoP) canonical form [pf(N1) ˄ … ˄ pf(Nk)]

˅ … [pf(N’1) ˄ … ˄ pf(N’k)]. If necessary, the distribution

rule [pf(Ni) ˅ pf(Nj)] ˄ pf(Nt) = [pf(Ni) ˄ pf(Nt)] ˅ [pf(Nj) ˄

pf(Nt)] must be applied. In this way, the algorithm guarantees

that each child node only returns the proof terms in a SoP

canonical form when called recursively while its parent node

is being processed. For each parent node, the algorithm

processes the sub proofs from its children nodes from left to

right, fusing the partial result with the proof of the next child

node following the two cases below:

1) if the parent node is an AND node, then we have the

format (A1 ˅ … ˅Ak) ˄ (B1 ˅ … ˅ Bt), where each Ai

represents the partial proof terms in a maxterm canonical

form; and each Bj represents a conjunction proof term

from a child node. Then (A1 ˅ … ˅Ak) ˄ (B1 ˅ … ˅ Bt)

can be normalized to (A1 ˄ B1) ˅ … ˅ (A1 ˄ Bt) ˅ … ˅ (Ak

˄ B1) ˅ … ˅ (Ak ˄ Bt), which is in a SoP canonical form;

2) if the parent node is an OR node, then we have the format

(A1 ˅ … ˅ Ak) ˅ (B1 ˅ … ˅ Bt), which can be easily

normalized to A1 ˅ … ˅ Ak ˅ B1 ˅ … ˅ Bt in a SoP

canonical form.

The algorithm conducts a depth first search and terminates

when all the basic proof terms represent proof constructs.

Then, each conjunction term [pf(N1) ˄ … ˄ pf(Nk)] represents

a proof choice, where pf(Ni) represents the proof of a

survivability characteristic in terms of a threshold operator

(ltso, cltso, or utso) and its arguments. Since the step 4.2.2 in

Algorithm Two needs to process all the combinations of the

minterms from the proof terms of each child node, the time

complexity of Algorithm 2 is O(n2), where n represents the

number of nodes in T.

V. PROOF GENERATION

i

1) sign(CA, (keyBind(Kc, C))) ˄ cerAuth(CA) →

keyBind(Kc, C)

If certificate authority CA signs a certificate for key

binding between entity C and the cryptographic public key Kc,

then it is believed that Kc is C’s public key.

2) sign(S, Kc) ˄ keyBind(Kc, C) → endorse(C, S)

If statement S is signed by entity C with public key Kc,

then it is believed that C endorses S.

3) trustedEva(C) ˄ endorse(C, S) → S

If an entity endorses a statement and the entity is a trusted

evaluator, then the statement is considered true.

4) (S → sat(Sys, SP)) ˄ SurPrim(SP) → sat(Sys, SP)

If statement S indicates that system Sys satisfies the

survivability requirement in terms of a survivability primitive

SP, it is considered true.

Combined together, the above four steps prove that system

Sys satisfies a user’s requirements in terms of survivability

primitive SP as evaluated by a trusted evaluator C:

PF: [sign(S, Kc) ˄ trustEva(C) ˄ sign(CA, (keyBind(Kc, C)))

˄ cerAuth(CA) ˄ SurPrim(SP) ˄ S → sat(Sys, SP)] →

sat(Sys, SP)

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

Finally, the system provider submits a complete

survivability proof along with each verification certificate to

the system user to verify. Since digital signatures and trusted

third parties are used, any proof is tamperproof.

Upon receipt of a survivability proof, the system user

applies a checker program to verify that the proof is valid.

The proof verification process will be conducted in a

bottom-up fashion starting from each proof element (i.e., the

proof of survivability primitive). Then, the survivability

characteristic corresponding to a threshold selection operator

such as ltso, cltso or utso can be verified. Finally, the checker

program verifies the complete proof relative to the user’s

policy.

We implemented a prototyping system of the proof

generation framework. A prover runs at the system provider

side, which automatically generates a proof based on the

user’s survivability requirements. We measured the time for

the prover to compile a proof given a survivability policy. We

executed the prover program on a computer running on

Windows XP Professional. We collected the execution time

by generating a proof for the example survivability policy

(see Fig. 2). Multiple executions are conducted, and the

average time to generate a proof is 1042 milliseconds. Since

the proof generation time increases with the number of proof

choices, we also show the proof generation times with

different number of proof choices (see Fig. 6). In our future

work, we plan to apply multi-threading in our

implementation. Since all the proof choices under each OR

operator can be independently proved, each thread program

can be assigned to prove one proof choice. Therefore, the

proof generation time could be greatly reduced.

Fig. 6. Proof generation times.

In this paper, we study proof approaches and techniques in

a proof-carrying survivability scenario – the system provider

constructs a proof and the user verifies that the proof is valid.

If so, the system can be considered to satisfy the user’s

survivability requirements. We show how a system provider

chooses a proof choice, collects and compiles survivability

property certificates from trusted evaluators, and construct a

compliance proof. Our framework can be used to facilitate

users to acquire a software system or link a software

component to their existing systems real time while ensuring

that the external systems will not compromise the

survivability of user’s existing systems.

REFERENCES

[1] B. Ellison, D. Fisher, R. Linger, H. Lipson, T. Longstaff, and N. Mead,

“Survivable network systems: an emerging discipline,” Technical

Report, Carnegie, Mellon University, November 1997.

[2] V. Westmark, “A definition for information system survivability,”

Proc. of the 37th Hawaii International Conference on System Sciences,

Hawaii, USA, 2004.

[3] G. Necula, “Proof-carrying code,” Proc. of 24th ACM

SiGPLAN-SIGACT Symposium of Principles of Programming

Languages, 1997, pp. 106-119.

[4] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system F to

typed assembly language,” ACM Transactions on Programming

Languages and Systems, vol. 21, no. 3, pp. 527-568, 1999.

[5] G. Necula and P. Lee, “Safe kernel extensions without run-time

checking,” Proc. of Second Symposium on Operating Systems Design

and Implementations, Usenix, 1996, pp. 229-243.

[6] E. Lee and A. Appel, “Policy-enforced linking of entrusted

components,” Proc. of ESEC/FSE’03, Helsinki, Finland, 2003.

[7] L. Bauer, M. Schneider, and E. Felten, “A general and flexible

access-control system for the web,” Proceedings of the 11th USENIX

Security Symposium, 2002, pp. 93-108.

[8] D. Garg and F. Pfenning, “A proof-carrying file system,” Proceedings

of IEEE Symposium on Security and Privacy, 2010, pp. 349-364.

[9] N. Li, B. Grosof, and J. Feigenbaum, “Delegation logic: a logic-based

approach to distributed authorization,” ACM Transactions on

Information and System Security, vol. 6, no. 1, pp. 128-171, 2003.

[10] Y. Zuo, “A framework of survivability requirement specification for

critical information systems,” Proceedings of the 43rd Hawaii

International Conference on System Sciences, Hawaii, USA, 2010.

Yanjun Zuo received a Master’s degree and a PhD in Computer Science

from the University of Arkansas in Fayetteville, USA. Currently, he is an

associate professor of Computer Information Systems at the University of

North Dakota, Grand Forks, USA. His research interests include survivable

and trustworthy systems, pervasive computing, and information privacy

protection. He has published numerous articles in refereed journals,

including IEEE Transactions on Secure and Dependable Computing, IEEE

Transactions on Systems, Man and Cybernetics, International Journal of

Computer and Information Security, Decision Support Systems, and

Information System Frontiers.

744

VI. SIMULATION

VII. CONCLUSION

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

