

Abstract—Modern data centers continue to grow in their

scale and complexity. They are changing dynamically as well

due to the addition and removal of system components,

changing execution environments, frequent updates and

upgrades, online repairs and more. Classical reliability theory

and conventional methods do rarely consider the actual state of

a system and are therefore not capable to reflect the dynamics

of runtime systems and failure processes. In this paper, we

present an unsupervised failure detection and prediction

method using an ensemble of Bayesian models. It characterizes

normal execution states of the system and detects anomalous

behaviors. We implement a prototype of our failure detection

and prediction mechanism and evaluate its performance on a

data center test platform. Experimental results show that our

proposed method can forecast failure dynamics with high

accuracy.

Index Terms—Data centers, failure detection, failure

management, dependable computing.

I. INTRODUCTION

With ever-growing complexity and dynamicity of modern

data centers, proactive failure management is an effective

approach to enhance system dependability [1]. Failure

prediction is the key to such techniques. It forecasts future

failure occurrences in data centers using runtime execution

states of the system and the history information of observed

failures. It provides valuable information for resource

allocation, computation reconfiguration and system

maintenance [2]. In contrast to classical reliability methods,

failure prediction is based on runtime monitoring and a

variety of models and methods that use the current state of a

system and the past experience as well.

Most of the existing failure prediction methods are based

on statistical learning techniques [3]. They use supervised

learning models to approximate the dependency of failure

occurrences on various performance features [4], [1]. The

underlying assumption of those methods is that the training

dataset is labeled, i.e. for each data point used to train a

predictor, the designer knows if it is corresponded to a

normal execution state or a failure. However, the labeled data

are not always available in real-world data center systems,

especially for newly deployed or managed systems. How to

accurately forecast failure occurrences in such systems is

Manuscript received June 19, 2012; revised August 5, 2012. This research

was supported in part by U.S. NSF grant CNS-0915396 and LANL grant

IAS-1103.

Q. Guan, Z. Zhang, and S. Fu are with the Department of Computer

Science and Engineering, University of North Texas, Denton, Texas 76203

USA (e-mail: QiangGuan@my.unt.edu; ZimingZhang@my.unt.edu;

Song.Fu@unt.edu, Tel.: +1-940-565-2341; fax: +1-940-565-2799).

challenging.

In this paper, we propose a failure detection and prediction

mechanism that uses Bayesian models to forecast failure

dynamics in data centers. We tackle the problem from an

anomaly detection viewpoint, for which we introduce an

ensemble of Bayesian models. It works in an unsupervised

learning manner and deals with unlabeled datasets. This

model estimates the probability distribution of runtime

performance data collected by health monitoring tools when

servers perform normally.

The rest of this paper is organized as follows. Section 2

discusses the related works. Section 3 describes our failure

detection and prediction mechanism. Conclusion is presented

in Section 4.

II. RELATED WORK

Failure and anomaly detection based on analysis of system

logs has been the topic of a number of research articles.

Hodge and Austin [5] provide an extensive survey of

anomaly detection techniques developed in machine learning

and statistical domains. A structured and broad overview of

extensive research on anomaly detection techniques has been

presented in [6]. Hellerstein et al. [7] developed a method to

discover patterns such as message burst, periodicity and

dependencies from SNMP data in an enterprise network.

Yamanishi et al. [8] modeled syslog sequences as a mixture

of Hidden Markov Models to find messages that are likely to

be related to critical failures. Lim et al. [9] analyzed a

large-scale enterprise telephony system log with multiple

heuristic filters to search for messages related to failures.

However, treating a log as a single time series does not

perform well in large-scale computer systems with multiple

independent processes that generate interleaved logs. The

model becomes overly complex and parameters are hard to

tune with interleaved logs [8]. Qiang et al. [10], [11] explored

health data groups rather than a time series of individual data

in anomaly detection.

Failure management is a crucial technique for

understanding emergent, system-wide phenomena and

self-managing resource burdens for system-level

dependability and productivity assurance. The conventional

method for failure management and fault tolerance relies on

checkpointing/restart mechanisms, which periodically save a

snapshot of a system to a stable storage and use it to recover

the system from failures reactively; see [12] for a

comprehensive review. However, checkpointing a job in a

large-scale system could incur significant overhead. The

LANL study [13] estimates the checkpointing overhead

based on the current techniques to run a 100 hour job

A Failure Detection and Prediction Mechanism for

Enhancing Dependability of Data Centers

Qiang Guan, Ziming Zhang, and Song Fu

726

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

(without failure) by an additional 151 hours in petaflop

systems. As a result, frequent periodic checkpointing often

proves counter-effective.

As the scale and complexity of production systems

continue to grow, research on system dependability has

recently shifted onto failure prediction and proactive

management technologies [14], [15], [16], [17], [18], [19],

[20]. Recent studies [21], [22], [23], [24], [25] apply

execution migration techniques to enhance resource

management by avoiding possible failures. They demonstrate

the feasibility of exploiting proactive management methods

for dependability assurance in networked computer systems.

In this work, we exploit learning technologies to characterize

system behaviors and propose an adaptive approach to

forecasting failure occurrences in data center environments.

To realize proactive failure management, it is imperative to

understand the characteristics of failure behaviors. Research

in [26], [27], [28] studied event traces collected from clusters

and supercomputers. They found that failures are common in

large-scale systems and their occurrences are quite dynamic,

displaying uneven distributions in both time and space

domains. There exist the time-of-day and day-of-week

patterns in long time spans [26], [28]. In addition, there has

been prior work on monitoring and predicting failures for

specific components in computer systems. Storage is one

such subsystem which has received considerable attention

because of its higher failure rates. S.M.A.R.T. is a recent

technology, that disk drive manufacturers now provide, to

help predict failures of storage devices [29]. SIGuardian [30]

and Data Lifeguard [31] are utilities to check and monitor the

state of a hard drive, and predict the next failure, to take

proactive remedies before the failure. More recently, a

Reliability Odometer [32] has been proposed for processors

to track their wear-and-tear and predict lifetimes.

III. FAILURE DETECTION AND PREDICTION MECHANISMS

A recent system reliability study on a 512-node LLNL

ASC White machine showed that the mean time to failure of a

node was about 160 days [33]. We may label the runtime

health related data with one of two classes, Class 0 for normal

behavior and Class 1 for situations with failures. Then, Class

1 is very rare compared with Class 0. For Class 1, there many

not be enough data available to allow a supervised learning

algorithm to estimate a good probability model for that class.

In addition, data from the rare class may be incomplete

because of some collection problems. This is especially true

when a node suddenly crashes which leaves no time for the

monitoring tools to retrieve and save its performance data.

An alternative to supervised learning that tackles the

unbalanced dataset is to build a probabilistic model of the

majority class and use failure detection methods to cluster

and characterize health-related data. Failure detection

algorithms classify data as normal or not based on a

probability model of normal behavior. A failure is a data

point to which the majority class model assigns a very low

probability of occurring. A failure detection algorithm can

build a probability model and learn its parameters in (1) an

unsupervised manner in which both normal and failure data

are learned (This approach assumes the failure data are too

rare to affect the model parameters significantly.) or (2) a

semi-supervised manner in which only data of normal

behavior are learned to construct a model. Semi-supervised

learning is in general preferable because it may generate a

more accurate model for the normal class. However, in

real-world cases most collected data are not labeled and the

failure class is a rare one. As a result, the unsupervised

learning approach is more practical and useful.

A. Ensemble of Bayesian Models for Failure Detection

In order to detect possible failures, we analyze the

health-related data and construct statistical models. A

probabilistic model f is chosen for the data with reduced

dimensionality. It takes a data point d as input and outputs a

probability for that data point. The parameters of f are learned

from training data in an unsupervised manner. Then d is

detected as an failure if and only if f (d) < t, where t is a

threshold, whose value can be determined based on

assumptions of the rarity of failure data or from learning

experiments if failures are labeled in the collected

health-related data. A data point is labeled as normal or

failure based on its probability of appearance as a normal data

point.

To construct the probabilistic model and assure high

detection accuracy, we develop an ensemble of Bayesian

submodels to represent a multimodal probability distribution.

Each submodel is a nonparametric data model, in which no

single simple parameterized probability density is assumed.

Its probability distribution is determined from the frequency

counts of the training data. Each submodel has an estimated

prior probability p(m), where m is the submodel index. The

probability estimate assigned to a data point d is

elssubm

mpmdpdp
mod

)()|()(, (1)

where p(d|m) is the probability that submodel m generates

data point d. Therefore, all submodels contribute to the

probability of each data point. Also, a data point d is assigned

to a submodel m with probability p(m|d), whose value can be

determined by using the Bayes’ rule. This approach allows

our model to fit the collected data better when it is unknown

which submodel should be used to characterize the

probability of a data point. After relevance reduction and

redundancy reduction during feature selection, the features of

a data point are conditionally independent in each submodel.

Therefore, for a data point d with k features after

dimensionality reduction, the conditional probability of the

data point on a submodel m follows

)|()(
1

mdpdp
k

i

i

 , (2)

We use discrete Bayesian submodels, where the values of

each feature are placed in a finite number of intervals. The

discrete indexes of intervals replace the original value of a

feature. We adopt the Bayesian expectation-maximization

(EM) algorithm to estimate the probability that a feature di

takes a given value v based on the counted frequency in the

training dataset.

727

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

)(/)()|(mcountmandvdcountmvdp ii , (3)

elssubm

ncountmcountmp
mod

)(/)()(, (4)

where count(∙) is the number of data points in the training

dataset that satisfy a specified condition. In Equations (3) and

(4), count() is calculated as

settrainingd

ii vdIdmpmandvdcount),()|()(, (5)

settrainingd

dmpmcount)|()(, (6)

vdif

vdif
vdI

i

i

i
,0

,1
),(, (7)

To train the ensemble model, we choose the number of

submodels. We initialize the model by assigning data points

randomly to submodels. The Expectation-Maximization

algorithm is performed to determine the submodel and

conditional data probabilities, p(m) and p(d|m) respectively.

Then, Equation (1) is applied to calculate the data probability.

The EM algorithm proceeds in rounds of an expectation step

(E-step) followed by a maximization step (Mstep). For a data

point d, the E-step calculates the probability of each

submodel m generating d. In the calculation, we use the

Bayes’ rule, p(m|d) = p(d|m)p(m)/p(d), where the right-hand

side is computed by Equations (1) and (2). After an E-step

completes, an M-step updates probabilities p(di|m) and p(m)

by Equations (3) and (4). It maximizes the likelihood of the

model given the expected probability. The E-step and M-step

continue until the likelihood does not change.

B. Decision Tree for Failure Prediction

The failure detection method based on an ensemble of

Bayesian models presented in the preceding section identifies

anomalous behaviors in a data center. The anomalies are

reported to the system administrations for verification. If they

are confirmed as failures or as normal, the corresponding data

points are labeled. As the data center continues operation,

more data points will be labeled. These labeled data provide

valuable information about the system states under failures.

They should be exploited in failure prediction. In this section,

we present a method using decision trees for failure

prediction.

A decision tree is a hierarchical nonparametric model with

local regions identified in a sequence of recursive splits [34].

A decision tree is composed of internal decision nodes and

terminal leaves. Each decision node n implements a test

function fn(d) with discrete outcomes labeling the branches.

When a test hits a leaf node, the classification labeled on the

leaf is output. There are many possible machine learning

approaches for failure prediction. While decision trees are

not always the most competitive classifiers in terms of

prediction, they enjoy the crucial advantages of a fast

localization of the region covering an input and yielding

human interpretable results, which is important if the method

is to be adopted by real data center operators.

Learning a decision tree involves deciding which split to

make at each node, and how deep the tree should be. Let X

denote the feature set. For binary classification, the class

label is in {0, 1}, where 1 denotes a failure and 0 normal. The

root node of the decision tree contains all of the

health-related performance data. At each node, the dataset is

split according to the values of one particular feature. Splits

are selected in order to maximize the gain in information.

This process continues until no further split is possible or the

node contains only one class. After the tree is built,

sub-branches with low overall gain value are pruned to avoid

over-fitting.

The goodness of a split is measured by impurity. A split is

pure if after the split, for all branches, all the data taking a

branch belong to the same class. We use entropy to quantify

impurity. For a node n in the decision tree, the entropy is

calculated by

j

i

i

n

i

n ppnH
1

2log)(, (8)

where j is the number of classes and j = 2 representing the

normal and failure classes, and pi
n is the probability of class

Ci (0 or 1), given that a data point reaches node n. Then the

gain function G for feature xi at node n is defined as

),()(),(nxHnHnxG ii , (9)

where H(xi, n) denotes the sum of entropy of children nodes

after making the split based on feature xi.

The algorithm for building a decision tree works as follows.

It begins with the root node which includes all the features.

For each feature xi, the gain value from splitting on xi is

calculated using Equation (9). Then, the feature xbest with the

highest gain value is selected. A decision node that splits on

xbest is created. Repeat the preceding process on the sublists

obtained by splitting on xbest and add those nodes as children

nodes.

We grow the decision tree full until all leaf nodes are pure

and we have zero training error. The tree might be too deep

and complex. We then find subtrees that cause over-fitting

and we prune them. From the initial labeled health-related

data, we set aside a pruning dataset, unused in training. For

each subtree, we replace it by a leaf node labeled with the

training data points covered by the subtree. If the leaf node

does not perform worse than the subtree on the pruning set,

we prune the subtree and keep the leaf node because the

additional complexity of the subtrees is not necessary;

otherwise, we keep the original subtree.

After the decision tree is built and pruned, we exploit it for

failure prediction. For a new and unlabeled data point, the

failure predictor traverses the decision tree from the root. At

each internal decision node, the predictor reads the value of

the feature associated with the node from the input data point

and selects a path to a child node accordingly. This process is

repeated until a leaf node is hit. The predictor outputs the

label (normal or failure) of the leaf. To achieve high

728

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

prediction accuracy, we apply boosting to the decision tree

classifiers and obtain an ensemble of trees. A voting is

performed and the majority is selected as a failure prediction

decision.

IV. CONCLUSION

Large-scale and complex data centers are susceptible to

software and hardware failures and administrators’ mistakes,

which significantly affect the system performance and

management. In this paper, we present a failure detection and

prediction mechanism. At the initial stage of health

monitoring and control, no labeled data are available. We

propose to use an ensemble of Bayesian models to

characterize normal states of the system and to detect

anomalous behaviors in an unsupervised learning manner,

and use decision trees to predict failures by utilizing newly

labeled verification data. We implement a prototype of our

failure detection mechanism and test its performance in a data

center test platform. Experimental results show that our

proposed method can forecast failure dynamics with high

accuracy.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

constructive comments and suggestions. This research was

supported in part by U.S. NSF grant CNS-0915396 and

LANL grant IAS-1103.

REFERENCES

[1] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R.

Vilalta, and A. Sivasubramaniam, “Critical event prediction for

proactive management in large-scale computer clusters,” In

Proceedings of ACM International Conference on Knowledge

Discovery and Data Dining (KDD), 2003.

[2] A. J. Oliner, R. K. Sahoo, J. E. Moreira, M. Gupta, and A.

Sivasubramaniam, “Fault-aware job scheduling for BlueGene/L

systems,” In Proceedings of IEEE/ACM International Parallel and

Distributed Processing Symposium (IPDPS), 2004.

[3] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure

prediction methods,” ACM Computing Surveys, vol. 42, no. 10, pp.

1–42, 2010.

[4] J. W. Mickens and B. D. Noble, “Exploiting availability prediction in

distributed systems,” In Proceedings of USENIX Symposium on

Networked Systems Design and Implementation (NSDI), 2006.

[5] V. Hodge and J. Austin, “A survey of outlier detection methodologies,”

Artificial Intelligence Review, vol. 22, pp. 85–126, 2004.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Computing Surveys, vol. 41, no. 15, pp. 1–58, 2009.

[7] S. Ma and J. L. Hellerstein, “Mining partially periodic event patterns

with unknown periods,” In Proceedings of IEEE Conference on Data

Engineering (ICDE), 2001.

[8] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for network

failure monitoring,” In Proceedings of ACM Conference on Knowledge

Discovery in Data Mining (KDD), 2005.

[9] C. Lim, N. Singh, and S. Yajnik, “A log mining approach to failure

analysis of enterprise telephony systems,” In Proceedings of IEEE

Conference on Dependable Systems and Networks (DSN), 2008.

[10] Q. Guan and S. Fu, “auto-AID: A data mining framework for

autonomic anomaly identification in networked computer systems,” In

Proceedings of IEEE International Performance Computing and

Communications Conference (IPCCC), 2010.

[11] Q. Guan, D. Smith, and S. Fu, “Anomaly detection in large-scale

coalition clusters for dependability assurance,” In Proceedings of IEEE

International Conference on High Performance Computing (HiPC),

2010.

[12] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A

survey of rollback-recovery protocols in message-passing systems,”

ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[13] I. Philp, “Software failures and the road to a petaflop machine,” In

Proceedings of Symposium on High Performance Computer

Architecture Workshop, 2005.

[14] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. K. Sahoo,

“BlueGene/L failure analysis and prediction models,” In Proceedings

of IEEE Conference on Dependable Systems and Networks (DSN),

2006.

[15] S. Fu and C. Xu, “Exploring event correlation for failure prediction in

coalitions of clusters,” In Proceedings of ACM/IEEE Supercomputing

Conference (SC), 2007.

[16] S. Fu and C. Xu, “Quantifying temporal and spatial correlation of

failure events for proactive management,” In Proceedings of IEEE

International Symposium on Reliable Distributed Systems (SRDS),

2007.

[17] Z. Zhang and S. Fu, “Failure prediction for autonomic management of

networked computer systems with availability assurance,” In

Proceedings of IEEE Workshop on Dependable Parallel, Distributed

and Network-Centric Systems in Conjunction with IEEE International

Parallel and Distributed Processing Symposium (IPDPS), 2010.

[18] Z. Zhang and S. Fu, “A hierarchical failure management framework for

dependability assurance in compute clusters,” International Journal of

Computational Science, vol. 4, no. 4, pp. 313–326, 2010.

[19] S. S. Gokhale and K. S. Trivedi, “Analytical models for

architecture-based software reliability prediction: A unification

framework,” IEEE Transactions on Reliability, vol. 55, no. 4, pp.

578–590, 2006.

[20] S. Fu and C. Xu, “Quantifying event correlations for proactive failure

management in networked computing systems,” Journal of Parallel

and Distributed Computing, vol. 70, no. 11, pp.1100–1109, 2010.

[21] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive

fault tolerance for HPC with Xen virtualization,” In Proceedings of

ACM International Conference on Supercomputing (ICS), 2007.

[22] S. Fu, “Failure-aware resource management for high-availability

computing clusters with distributed virtual machines,” Journal of

Parallel and Distributed Computing, vol. 70, no. 4, pp. 384–393, 2010.

[23] S. Fu and C. Xu, “Proactive resource management for failure resilient

high performance computing clusters,” In Proceedings of IEEE

International Conference on Availability, Reliability and Security

(ARES), 2009.

[24] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive

process-level live migration in HPC environments,” In Proceedings of

ACM/IEEE Conference on Supercomputing (SC), 2008.

[25] S. Fu, “Failure-aware construction and reconfiguration of distributed

virtual machines for high availability computing,” In Proceedings of

IEEE/ACM Symposium on Cluster Computing and the Grid (CCGrid),

2009.

[26] B. Schroeder and G. Gibson, “A large-scale study of failures in

high-performance-computing systems,” In Proceedings of

International Conference on Dependable Systems and Networks (DSN),

2006.

[27] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo, J. Moreira, and M.

Gupta, “Filtering failure logs for a BlueGene/L prototype,” In

Proceedings of Conference on Dependable Systems and Networks

(DSN), 2005.

[28] R. K. Sahoo, A. Sivasubramaniam, M. S. Squillante, and Y. Zhang,

“Failure data analysis of a large-scale heterogeneous server

environment,” In Proceedings of IEEE International Conference on

Dependable Systems and Networks (DSN), 2004.

[29] G. Hughes, J. Murray, K. Kreutz-Delgado, and C. Elkan, “Improved

disk-drive failure warnings,” IEEE Transactions on Reliability, vol. 51,

no. 3, pp. 350–357, 2002.

[30] Siguardian. [Online]. Available: http://www.siguardian.com/.

[31] Data lifeguard. [Online]. Available:

http://www.wdc.com/wdproducts/library/other/2779-001005.pdf.

[32] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “A reliability

odometer - lemon check your processor,” In Proceedings of ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2004.

[33] H. Song, C. Leangsuksun, and R. Nassar, “Availability modelling and

analysis on high performance cluster computing systems,” In

Proceedings of IEEE International Conference on Availability,

Reliability and Security (ARES), 2006.

[34] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and

Regression Trees, Wadsworth and Brooks, 1984.

729

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

Qiang Guan is currently a Ph.D. candidate in

Computer Science and Engineering at the University of

North Texas. He received the BS degree in

Communication Engineering from Northeastern

University, China, in 2005, and the MS degree in

Information Engineering from Myongji University,

South Korea, in 2008. He was a Ph.D. student in

Computer Science at Mexico Institute of Mining and

Technology from January 2010 to July 2010. His research interests include

failure modeling and management, dependable assurance, resource

management, and virtual machines in distributed and cloud computing

systems.

Ziming Zhang is currently a Ph.D. candidate in

Computer Science and Engineering at the University

of North Texas. He received the BS degree in

Computer Science from Beihang University, China, in

2009. He was a Ph.D. student in Computer Science at

Mexico Institute of Mining and Technology from

August 2009 to July 2010. His research interests

include energy efficiency, power profiling,

power-aware resource management, dependable computing, and virtual

machines in distributed and cloud computing systems.

Song Fu is currently an Assistant Professor in the

Department of Computer Science and Engineering and

the Director of the Dependable Computing Systems

Laboratory at the University of North Texas. He was

an Assistant Professor in Computer Science and

Engineering at New Mexico Institute of Mining and

Technology from August 2008 to July 2010. He

received his Ph.D. degree in Computer Engineering

from Wayne State University in 2008, M.S. degree in

Computer Science from Nanjing University, China, in 2002, and B.S. degree

in Computer Science from Nanjing University of Aeronautics and

Astronautics, China, in 1999. His research interests include distributed,

parallel and cloud systems, particularly in dependable computing,

self-managing and reconfigurable systems, power management,

energy-efficient systems, system reliability and security, resource

management, and virtualization. His research projects have been sponsored

by the U.S. National Science Foundation, Amazon, Los Alamos National

Laboratory, Xilinx Inc., and the University of North Texas. He is a member

of the IEEE and a member of the ACM.

730

International Journal of Computer Theory and Engineering, Vol. 4, No. 5, October 2012

