
  

 

Abstract—Modern data centers continue to grow in their 

scale and complexity. They are changing dynamically as well 

due to the addition and removal of system components, 

changing execution environments, frequent updates and 

upgrades, online repairs and more. Classical reliability theory 

and conventional methods do rarely consider the actual state of 

a system and are therefore not capable to reflect the dynamics 

of runtime systems and failure processes. In this paper, we 

present an unsupervised failure detection and prediction 

method using an ensemble of Bayesian models. It characterizes 

normal execution states of the system and detects anomalous 

behaviors. We implement a prototype of our failure detection 

and prediction mechanism and evaluate its performance on a 

data center test platform. Experimental results show that our 

proposed method can forecast failure dynamics with high 

accuracy. 

 
Index Terms—Data centers, failure detection, failure 

management, dependable computing.  

 

I. INTRODUCTION 

With ever-growing complexity and dynamicity of modern 

data centers, proactive failure management is an effective 

approach to enhance system dependability [1]. Failure 

prediction is the key to such techniques. It forecasts future 

failure occurrences in data centers using runtime execution 

states of the system and the history information of observed 

failures. It provides valuable information for resource 

allocation, computation reconfiguration and system 

maintenance [2]. In contrast to classical reliability methods, 

failure prediction is based on runtime monitoring and a 

variety of models and methods that use the current state of a 

system and the past experience as well.  

Most of the existing failure prediction methods are based 

on statistical learning techniques [3]. They use supervised 

learning models to approximate the dependency of failure 

occurrences on various performance features [4], [1]. The 

underlying assumption of those methods is that the training 

dataset is labeled, i.e. for each data point used to train a 

predictor, the designer knows if it is corresponded to a 

normal execution state or a failure. However, the labeled data 

are not always available in real-world data center systems, 

especially for newly deployed or managed systems. How to 

accurately forecast failure occurrences in such systems is 
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challenging. 

In this paper, we propose a failure detection and prediction 

mechanism that uses Bayesian models to forecast failure 

dynamics in data centers. We tackle the problem from an 

anomaly detection viewpoint, for which we introduce an 

ensemble of Bayesian models. It works in an unsupervised 

learning manner and deals with unlabeled datasets. This 

model estimates the probability distribution of runtime 

performance data collected by health monitoring tools when 

servers perform normally. 

The rest of this paper is organized as follows. Section 2 

discusses the related works. Section 3 describes our failure 

detection and prediction mechanism. Conclusion is presented 

in Section 4. 

 

II. RELATED WORK 

Failure and anomaly detection based on analysis of system 

logs has been the topic of a number of research articles. 

Hodge and Austin [5] provide an extensive survey of 

anomaly detection techniques developed in machine learning 

and statistical domains. A structured and broad overview of 

extensive research on anomaly detection techniques has been 

presented in [6]. Hellerstein et al. [7] developed a method to 

discover patterns such as message burst, periodicity and 

dependencies from SNMP data in an enterprise network. 

Yamanishi et al. [8] modeled syslog sequences as a mixture 

of Hidden Markov Models to find messages that are likely to 

be related to critical failures. Lim et al. [9] analyzed a 

large-scale enterprise telephony system log with multiple 

heuristic filters to search for messages related to failures. 

However, treating a log as a single time series does not 

perform well in large-scale computer systems with multiple 

independent processes that generate interleaved logs. The 

model becomes overly complex and parameters are hard to 

tune with interleaved logs [8]. Qiang et al. [10], [11] explored 

health data groups rather than a time series of individual data 

in anomaly detection. 

Failure management is a crucial technique for 

understanding emergent, system-wide phenomena and 

self-managing resource burdens for system-level 

dependability and productivity assurance. The conventional 

method for failure management and fault tolerance relies on 

checkpointing/restart mechanisms, which periodically save a 

snapshot of a system to a stable storage and use it to recover 

the system from failures reactively; see [12] for a 

comprehensive review. However, checkpointing a job in a 

large-scale system could incur significant overhead. The 

LANL study [13] estimates the checkpointing overhead 

based on the current techniques to run a 100 hour job 
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(without failure) by an additional 151 hours in petaflop 

systems. As a result, frequent periodic checkpointing often 

proves counter-effective. 

As the scale and complexity of production systems 

continue to grow, research on system dependability has 

recently shifted onto failure prediction and proactive 

management technologies [14], [15], [16], [17], [18], [19], 

[20]. Recent studies [21], [22], [23], [24], [25] apply 

execution migration techniques to enhance resource 

management by avoiding possible failures. They demonstrate 

the feasibility of exploiting proactive management methods 

for dependability assurance in networked computer systems. 

In this work, we exploit learning technologies to characterize 

system behaviors and propose an adaptive approach to 

forecasting failure occurrences in data center environments. 

To realize proactive failure management, it is imperative to 

understand the characteristics of failure behaviors. Research 

in [26], [27], [28] studied event traces collected from clusters 

and supercomputers. They found that failures are common in 

large-scale systems and their occurrences are quite dynamic, 

displaying uneven distributions in both time and space 

domains. There exist the time-of-day and day-of-week 

patterns in long time spans [26], [28]. In addition, there has 

been prior work on monitoring and predicting failures for 

specific components in computer systems. Storage is one 

such subsystem which has received considerable attention 

because of its higher failure rates. S.M.A.R.T. is a recent 

technology, that disk drive manufacturers now provide, to 

help predict failures of storage devices [29]. SIGuardian [30] 

and Data Lifeguard [31] are utilities to check and monitor the 

state of a hard drive, and predict the next failure, to take 

proactive remedies before the failure. More recently, a 

Reliability Odometer [32] has been proposed for processors 

to track their wear-and-tear and predict lifetimes.  

 

III. FAILURE DETECTION AND PREDICTION MECHANISMS 

A recent system reliability study on a 512-node LLNL 

ASC White machine showed that the mean time to failure of a 

node was about 160 days [33]. We may label the runtime 

health related data with one of two classes, Class 0 for normal 

behavior and Class 1 for situations with failures. Then, Class 

1 is very rare compared with Class 0. For Class 1, there many 

not be enough data available to allow a supervised learning 

algorithm to estimate a good probability model for that class. 

In addition, data from the rare class may be incomplete 

because of some collection problems. This is especially true 

when a node suddenly crashes which leaves no time for the 

monitoring tools to retrieve and save its performance data. 

An alternative to supervised learning that tackles the 

unbalanced dataset is to build a probabilistic model of the 

majority class and use failure detection methods to cluster 

and characterize health-related data. Failure detection 

algorithms classify data as normal or not based on a 

probability model of normal behavior. A failure is a data 

point to which the majority class model assigns a very low 

probability of occurring. A failure detection algorithm can 

build a probability model and learn its parameters in (1) an 

unsupervised manner in which both normal and failure data 

are learned (This approach assumes the failure data are too 

rare to affect the model parameters significantly.) or (2) a 

semi-supervised manner in which only data of normal 

behavior are learned to construct a model. Semi-supervised 

learning is in general preferable because it may generate a 

more accurate model for the normal class. However, in 

real-world cases most collected data are not labeled and the 

failure class is a rare one. As a result, the unsupervised 

learning approach is more practical and useful.  

A. Ensemble of Bayesian Models for Failure Detection 

In order to detect possible failures, we analyze the 

health-related data and construct statistical models. A 

probabilistic model f is chosen for the data with reduced 

dimensionality. It takes a data point d as input and outputs a 

probability for that data point. The parameters of f are learned 

from training data in an unsupervised manner. Then d is 

detected as an failure if and only if f (d) < t, where t is a 

threshold, whose value can be determined based on 

assumptions of the rarity of failure data or from learning 

experiments if failures are labeled in the collected 

health-related data. A data point is labeled as normal or 

failure based on its probability of appearance as a normal data 

point. 

To construct the probabilistic model and assure high 

detection accuracy, we develop an ensemble of Bayesian 

submodels to represent a multimodal probability distribution. 

Each submodel is a nonparametric data model, in which no 

single simple parameterized probability density is assumed. 

Its probability distribution is determined from the frequency 

counts of the training data. Each submodel has an estimated 

prior probability p(m), where m is the submodel index. The 

probability estimate assigned to a data point d is  

                   



elssubm

mpmdpdp
mod

)()|()( ,                (1)  

where p(d|m) is the probability that submodel m generates 

data point d. Therefore, all submodels contribute to the 

probability of each data point. Also, a data point d is assigned 

to a submodel m with probability p(m|d), whose value can be 

determined by using the Bayes’ rule. This approach allows 

our model to fit the collected data better when it is unknown 

which submodel should be used to characterize the 

probability of a data point. After relevance reduction and 

redundancy reduction during feature selection, the features of 

a data point are conditionally independent in each submodel. 

Therefore, for a data point d with k features after 

dimensionality reduction, the conditional probability of the 

data point on a submodel m follows    

                                )|()(
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 ,                    (2) 

We use discrete Bayesian submodels, where the values of 

each feature are placed in a finite number of intervals. The 

discrete indexes of intervals replace the original value of a 

feature. We adopt the Bayesian expectation-maximization 

(EM) algorithm to estimate the probability that a feature di 

takes a given value v based on the counted frequency in the 

training dataset. 
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where count(∙) is the number of data points in the training 

dataset that satisfy a specified condition. In Equations (3) and 

(4), count() is calculated as 

       



settrainingd

ii vdIdmpmandvdcount ),()|()( ,     (5) 

                   



settrainingd

dmpmcount )|()( ,                       (6) 

                    










vdif

vdif
vdI

i

i

i
,0

,1
),(   ,                      (7) 

To train the ensemble model, we choose the number of 

submodels. We initialize the model by assigning data points 

randomly to submodels. The Expectation-Maximization 

algorithm is performed to determine the submodel and 

conditional data probabilities, p(m) and p(d|m) respectively. 

Then, Equation (1) is applied to calculate the data probability. 

The EM algorithm proceeds in rounds of an expectation step 

(E-step) followed by a maximization step (Mstep). For a data 

point d, the E-step calculates the probability of each 

submodel m generating d. In the calculation, we use the 

Bayes’ rule, p(m|d) = p(d|m)p(m)/p(d), where the right-hand 

side is computed by Equations (1) and (2). After an E-step 

completes, an M-step updates probabilities p(di|m) and p(m) 

by Equations (3) and (4). It maximizes the likelihood of the 

model given the expected probability. The E-step and M-step 

continue until the likelihood does not change. 

B. Decision Tree for Failure Prediction 

The failure detection method based on an ensemble of 

Bayesian models presented in the preceding section identifies 

anomalous behaviors in a data center. The anomalies are 

reported to the system administrations for verification. If they 

are confirmed as failures or as normal, the corresponding data 

points are labeled. As the data center continues operation, 

more data points will be labeled. These labeled data provide 

valuable information about the system states under failures. 

They should be exploited in failure prediction. In this section, 

we present a method using decision trees for failure 

prediction. 

A decision tree is a hierarchical nonparametric model with 

local regions identified in a sequence of recursive splits [34]. 

A decision tree is composed of internal decision nodes and 

terminal leaves. Each decision node n implements a test 

function fn(d) with discrete outcomes labeling the branches. 

When a test hits a leaf node, the classification labeled on the 

leaf is output. There are many possible machine learning 

approaches for failure prediction. While decision trees are 

not always the most competitive classifiers in terms of 

prediction, they enjoy the crucial advantages of a fast 

localization of the region covering an input and yielding 

human interpretable results, which is important if the method 

is to be adopted by real data center operators. 

Learning a decision tree involves deciding which split to 

make at each node, and how deep the tree should be. Let X 

denote the feature set. For binary classification, the class 

label is in {0, 1}, where 1 denotes a failure and 0 normal. The 

root node of the decision tree contains all of the 

health-related performance data. At each node, the dataset is 

split according to the values of one particular feature. Splits 

are selected in order to maximize the gain in information. 

This process continues until no further split is possible or the 

node contains only one class. After the tree is built, 

sub-branches with low overall gain value are pruned to avoid 

over-fitting. 

The goodness of a split is measured by impurity. A split is 

pure if after the split, for all branches, all the data taking a 

branch belong to the same class. We use entropy to quantify 

impurity. For a node n in the decision tree, the entropy is 

calculated by 
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where j is the number of classes and j = 2 representing the 

normal and failure classes, and pi
n is the probability of class 

Ci (0 or 1), given that a data point reaches node n. Then the 

gain function G for feature xi at node n is defined as 

                         ),()(),( nxHnHnxG ii  ,                    (9) 

where H(xi, n) denotes the sum of entropy of children nodes 

after making the split based on feature xi. 

The algorithm for building a decision tree works as follows. 

It begins with the root node which includes all the features. 

For each feature xi, the gain value from splitting on xi is 

calculated using Equation (9). Then, the feature xbest with the 

highest gain value is selected. A decision node that splits on 

xbest is created. Repeat the preceding process on the sublists 

obtained by splitting on xbest and add those nodes as children 

nodes. 

We grow the decision tree full until all leaf nodes are pure 

and we have zero training error. The tree might be too deep 

and complex. We then find subtrees that cause over-fitting 

and we prune them. From the initial labeled health-related 

data, we set aside a pruning dataset, unused in training. For 

each subtree, we replace it by a leaf node labeled with the 

training data points covered by the subtree. If the leaf node 

does not perform worse than the subtree on the pruning set, 

we prune the subtree and keep the leaf node because the 

additional complexity of the subtrees is not necessary; 

otherwise, we keep the original subtree. 

After the decision tree is built and pruned, we exploit it for 

failure prediction. For a new and unlabeled data point, the 

failure predictor traverses the decision tree from the root. At 

each internal decision node, the predictor reads the value of 

the feature associated with the node from the input data point 

and selects a path to a child node accordingly. This process is 

repeated until a leaf node is hit. The predictor outputs the 

label (normal or failure) of the leaf. To achieve high 
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prediction accuracy, we apply boosting to the decision tree 

classifiers and obtain an ensemble of trees. A voting is 

performed and the majority is selected as a failure prediction 

decision. 

IV. CONCLUSION 

Large-scale and complex data centers are susceptible to 

software and hardware failures and administrators’ mistakes, 

which significantly affect the system performance and 

management. In this paper, we present a failure detection and 

prediction mechanism. At the initial stage of health 

monitoring and control, no labeled data are available. We 

propose to use an ensemble of Bayesian models to 

characterize normal states of the system and to detect 

anomalous behaviors in an unsupervised learning manner, 

and use decision trees to predict failures by utilizing newly 

labeled verification data. We implement a prototype of our 

failure detection mechanism and test its performance in a data 

center test platform. Experimental results show that our 

proposed method can forecast failure dynamics with high 

accuracy.  
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