

Abstract—Computer architecture is often taught by using

software to design and simulate hardware modules and then

using individual components to implement them. Our aim in

this paper is to share our teaching experience of this subject in a

way to enhance student learning outcome by developing

projects for the computer architecture lab to help students

better understand the theoretical concepts of the subject and to

gain hands-on type of experience and apply that for more

realistic projects. As a result, we have noticed that students

show better interest in learning and understanding the subject

materials over the last few semesters. We present in this work

an ALU computer module design exercise as we used it in our

computer architecture course. This approach can be well

adopted for a first course in digital logic design, computer

organization, and/or computer architecture. In specific, we

designed and implemented an 8-bit arithmetic and logic unit,

which performs 14 different arithmetic and logic operations.

We did the design, simulation, and FPGA-based

implementation of the proposed ALU module using QUARTUS

II design software and Altera DE2 FPGA Board.

Index Terms--Computer architecture education, FPGA,

VHDL, ALU, hardware modeling.

I. INTRODUCTION

Computer architecture is a core design course that is

offered in our department at Qatar University. Teaching this

course for computer science, computer engineering, and

electrical engineering students in a conventional way is

inefficient and insufficient if the teaching methods focus only

on the theoretical aspects in the class room and using only

design and simulation software tools. Many computer

science departments offer such hardware courses using

software tools to simulate different hardware modules.

However, students who take such courses would not have the

chance to do some experiments using real Field

Programmable Gate Array (FPGA) boards and be able to

acquire hands-on type of experience and skills to enhance

their knowledge and expand their imagination. Hence, we

used QUARTUS II design software and Altera DE2 FPGA

Board in our computer architecture lab to accomplish this

objective.

Quartus II design software and Altera DE2 FPGA board

can be used in the laboratory for digital design, computer

organization, and computer architecture courses. FPGA

offers the potential to design high performance systems with

low cost [1]. In this paper, we present an FPGA design and

implementation of an Arithmetic and Logic Unit (ALU). The

Manuscript received June 1, 2012; revised July 2, 2012.

The authors are with the Department of Computer Science and

Engineering, College of Engineering, Qatar University, Qatar (e-mail:

hkrad@qu.edu.qa, altaie@qu.edu.qa).

FPGA-based optimized design of the ALU can be adopted as

a way of enhancing computer architecture education [2]. It is

important to note that we are not the first group to place an

optimized design on an FPGA chip. Kassim Al-Obaidy [1],

Mark Holland, Jamis Hafrris, and Scott Hauck [2], Yamin Li

and Wanming Chu [3], and Andrew Koch and Ulrick Golze

[4] had done similar approaches to improve the quality of

teaching such a subject.

The goal of the teaching tool is to expose our computer

science students with state-of-the art technologies and

modernize the laboratory component of our computer

architecture course by introducing system and component

modeling using VHDL and FPGA programmable logic for

mapping designs [5]. Teaching computer architecture using

VHDL and synthesis tools helps students design much more

complex systems within a shorter design cycle. Furthermore,

by finally loading their code to the FPGA board, students in

the computer science program gain strength in hardware

implementation besides their deep knowledge in software

development. As a result, this will enable CS students to

develop complete systems, gaining both hardware and

software experience, which CS students usually lack.

II. METHODOLOGY AND TOOLS

The design and implementation of the proposed ALU is an

important architecture design problem. The main objective of

this paper is to design and implement an optimized 8-bit ALU

that performs 14 different arithmetic and logic operations and

a control input of 4-bits. The ALU unit was modeled using

Very High Speed Integrated Circuits – Hardware Description

Language (VHDL) and it was simulated and synthesized

using Quartus II design software and finally the architecture

is downloaded to an FPGA board using programmer option

in QUARTUS II via USB blaster port as shown in Fig. 1.

The experiment involves hardware equipment and design

software. Students have been trained for four lab sessions on

using the board and the design software prior the experiment.

Materials used in the ALU design project are:

1) QUARTUS II design software .

2) ALTERA DE2 FPGA board.

3) Desktop or laptop with Windows 7 or SUSE Linux.

4) USB cable.

Fig. 1. Teaching tool layout.

Augmenting Computer Architecture Classroom

Experience with FPGAs Based Learning

Hasan Krad and Aws Yousif Fida El-Din

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

611

Students were required to perform the following tasks:

Task-1: Model the ALU using VHDL

Task-2: Simulation and synthesis.

Task-3: Loading the VHDL code in to the FPGA board.

Task-4: Testing the functionality of the ALU using LEDs

and switches on the FPGA board.

III. PROJECT DESIGN

An 8-bit arithmetic and logic unit (ALU) design that takes

two inputs A and B and then performs the following

operations depending on the values of a control signal C [6]:

TABLE I: ARITHMATIC AND LOGIC UNIT OPERATINS

8-bit Arithmetic Operations

Control Signals C Operations

0000 A plus B

0001 Increment A by 2

0010 A Minus B

0011 Decrement A by 3

8-bit Comparison Operations

Control Signals C Operations

0100 Minimum of A and B

0101 Maximum of A and B

0110 A AND B

0111 A OR B

8-bit Shift Operations

Control Signals C Operations

1000 Circular right shift of A

1001 Circular left shift of A

1010 Right shift of A with feed in 0

1011 Left shift of A with feed in 0

1100 Right shift of A with MSB replication

1101 Left shift of A with LSB replication

The functionality of the ALU design is categorized to three

main groups:

1) Arithmetic Operations: Inputs are A, B, and OP.

2) Comparison Operations: Inputs are A, B, and OP.

3) Shift Operations: Inputs are A, B, OP, and SB.

A typical design process starts with describing the circuit

in VHDL. The VHDL compiler compiles the VHDL source

code into a configuration file. The simulation tool can be

used to verify the correctness of the design. The last step is to

download the configuration file from the PC into the FPGA

[7].

The project was extended to perform the Fetch – Decode –

Execute Cycle using the Finite State Machine (FSM). The

idea of finite state machine is to synchronize the transition of

the three states. The finite state machine for the control unit

basically cycles through four main states: reset, fetch, decode,

and execute.

Fig. 2. State diagram for the control unit of simple processor.

IV. VHDL CODING

VHDL Code for the ALU

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

ENTITY alu8bit IS

 port(a, b : in std_logic_vector(7 downto 0);

 op : in std_logic_vector(3 downto 0);

 SB : in std_logic;

 zero : out std_logic;

 f : out std_logic_vector(7 downto 0));

END alu8bit;

ARCHITECTURE behavioral of alu8bit IS

BEGIN

 process(a,b,SB,op)

 variable temp: std_logic_vector(7 downto 0);

 BEGIN

 case op is

 when "0000" =>

 temp := a + b;

 when "0001" =>

 temp := a + 2;

 when "0010" =>

 temp := a - b;

 when "0011" =>

 temp := a - 3;

 when "0100" =>

 if a < b then

 temp := a;

 else

 temp := b;

 end if;

 when "0101" =>

 if a > b then

 temp := a;

 else

 temp := b;

 end if;

 when "0110" =>

 temp := a and b;

 when "0111" =>

 temp := a or b;

 when "1000" =>

 temp(6 downto 0) := a(7 downto 1);

 temp(7) := a(0);

 when "1001" =>

 temp(7 downto 1) := a(6 downto 0);

 temp(0) := a(7);

 when "1010" =>

 temp(6 downto 0) := a(7 downto 1);

 temp(7) := '0';

 when "1011" =>

 temp(7 downto 1) := a(6 downto 0);

 temp(0) := '0';

 when "1100" =>

 temp(6 downto 0) := a(7 downto 1);

 temp(7) := SB;

 when "1101" =>

 temp(7 downto 1) := a(6 downto 0);

 temp(0) := SB;

 when others =>

 temp := a - b;

 end case;

 if temp="00000000" then

 zero <= '1';

 else

 zero <= '0';

 end if;

 f <= temp;

 END process;

END behavioral;

Mainly the VHDL code consists of two parts: The entity

part and the architecture part. The entity part involves

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

612

defining the input and output signals and the direction of the

signals. The second part involves the functionality of the

design [8]. A VHDL code for the proposed ALU is listed as

follows:

V. SIMULATION

Once the VHDL code is compiled with zero errors, the

proposed ALU design can be entirely simulated with the

simulator included in the QUARTUS II design software.

Fig. 3, Fig. 4, and Fig. 5 shows the trace windows for all

signals generated by the simulator. We can examine the

inputs A and B and the control input C as well as the final

results in order to determine whether or not the prototype is

correct.

VI. SYNTHESIS

Once we have determined the correctness of our design

functionality, we are ready to proceed with the Register

Transfer Level (RTL) description of the design. RTL Viewer

provides a block diagram view of a circuit at the level of

registers, flip-flops and functional blocks that constitute the

design. The displayed image, see Fig. 6, is the circuit

generated after the analysis and initial synthesis steps [9]

[10].

Fig. 3. Trace window for the arithmetic operations.

Fig. 4. Trace Window for the comparison operations.

Fig. 5. Trace Window for the shift operations.

A[7..0]

B[7..0]
OUT[7..0]

ADDER

A[6..0]

B[6..0]
OUT[6..0]

ADDER

A[8..0]

B[8..0]

OUT[8..0]

ADDER

A[8..0]

B[8..0]

OUT[8..0]

ADDER

A[7..0]

B[7..0]

OUT

EQUAL

A[7..0]

B[7..0]
OUT

LESS_THAN

A[7..0]

B[7..0]
OUT

LESS_THAN

SEL[3..0]

DATA[15..0]
OUT

MUX

SEL[3..0]

DATA[15..0]
OUT

MUX

SEL[3..0]

DATA[15..0]
OUT

MUX

SEL[3..0]

DATA[15..0]
OUT

MUX

SEL[3..0]

DATA[15..0]
OUT

MUX

SEL[3..0]

DATA[15..0]
OUT

MUX

SEL[3..0]

DATA[15..0]
OUT

MUX

SEL[3..0]

DATA[15..0]
OUT

MUX

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

SEL

DATAA

DATAB
OUT0

MUX21

Add0

Add1

7' h01 --

Add2

1' h1 --

9' h1F9 --

Add3

1' h1 --

1' h1 --

Equal0

8' h00 --

LessThan0

LessThan1

Mux0

1' h0 --

Mux1

Mux2

Mux3

Mux4

Mux5

Mux6

Mux7

1' h0 --

temp~8

temp~9

temp~10

temp~11

temp~12

temp~13

temp~14

temp~15

temp~16

temp~17

temp~18

temp~19

temp~20

temp~21

temp~22

temp~23

temp~24

temp~25

temp~26

temp~27

temp~28

temp~29

temp~30

temp~31

temp~[7..0]

SB

zero

a[7..0]

b[7..0]

op[3..0]

f[7..0]

Fig. 6. The top schematic of ALU.

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

613

VII. FPGA IMPLEMENTATION

An FPGA chip has thousands of programmable gate arrays.

VHDL is used to configure hundreds of these logic blocks

and interconnections of the blocks [7]. The two major FPGA

vendors, Altera [11] and Xilinx [12], distribute their software

free of charge over the web and they do have a special

arrangement for educational institutions so they can get free

licenses for the commercial version of the software through

Altera’s and Xilinx’s University Programs [13].

The Altera DE2 FPGA board was used to implement the

proposed ALU. The board supports several features. The

Altera DE2 development and educational board is a perfect

tool for teaching different computer hardware courses [14].

We use this board as a tool for different educational and

research activities.

The board has eighteen slide switches (SW0 – SW17).

Switches (SW0 - SW3) are used for input A, switches (SW4

– SW7) are used for input B, and switches (SW14 – SW17)

are used for the control input. There are eighteen red LEDs

(LEDR0 – LEDR17) and nine green LEDs (LEDG0 –

LEDG8). LEDs (LEDG0 – LEDG3) are used for displaying

the results and the LED (LEDG9) is used for showing if there

was a zero result (ZERO FLAG). Four bits are only used

instead of eight bits, because of the switch and LED

limitations. Fig. 7 shows the pin assignments for the switches

and LEDs and Fig. 8 shows the Altera DE2 board.

The FPGA is configured either through the USB interface

(USB Blaster) or by storing the configuration in the flash

memory (4-MByte), which enables stand-alone operation

[15].

Fig. 7. Pin assignment for LEDS and switches.

Fig. 8. Altera DE2 board.

VIII. OBSERVATION OF STUDENTS LEARNING

One of the biggest challenges in the course was linking the

theory part to the practical part. The previous lab session for

the architecture course was using assembly language, during

which students faced several difficulties in understanding the

assembly language sessions and linking them to the theory

concepts. Relative to the previous years, students showed

better performance and understanding using VHDL

modeling and hardware implementation using FPGA boards.

Students were consulted on regular basis (every week).

The consultation helped the students overcoming their

problems. Most of the problems faced by the students were

either posted on the course blackboard website or sent via

email to the students. Extra tutorials were arranged to

overcome these problems and the students appreciate it

enormously. Regular tutorials and assignments helped

highlight many of the concepts.

Variety types of projects have been implemented,

including, but limited to Dedicated Processor, General

Purpose Processor, General Register Organization, Fast

Multiplier, which enhances students understanding of the

subject.

A survey has been distributed to the students at the end of

the course. The results showed that 77.8% of the students

improved the level of their understanding of the computer

architecture course by using VHDL and FPGAs. Also 44.5%

of the students showed reasonable level of difficulty in using

FPGAs and modeling using VHDL.

IX. CONCLUSION

The paper addresses the importance of using simulation

tools and FPGA development board to enhance classroom

experience for computer architecture education at the class

room.

The optimized design of an 8-bit ALU with fourteen

different operations was an excellent motivating opportunity

for computer science and engineering students not only to

have hands-on type of experience in computer architecture,

but also to be exposed to the software/hardware actual

environment.

Using a simple hardware description language like VHDL

and rapidly growing inexpensive FPGAs, a computer

architecture course can be more fun to be taught to both

computer science and computer engineering students.

It is worthwhile to mention that this teaching tool has been

developed and implemented using a popular Altera DE2

board found in many universities. We have tested it for the

2nd year in an undergraduate computer architecture course

and for senior design projects as well.

Computer science and computer engineering students

showed better performance and understanding by using the

Quartus simulation software and the FPGA boards. The

researchers highly recommend using this FPGA board in

teaching different computer hardware courses.

REFERENCES

[1] K. Alodaidy, “Teaching Computer organization and architecture using

simulation and FPGA applications,” Journal of Computer Science,

USA, pp. 624-632, 2007.

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

614

[2] M. Holland, J. Harris, and S. Hauck, “Harnessing FPGAs for computer

architecture education,” in Proceedings of the IEEE Intr. Conf. on

Microelectronic Systems Education (MSE03), USA, 2003.

[3] Y. Li and W. Chu. “Using FPGA for computer

architecture/organization education,” IEEE Computer Society Press,

USA, pp. 31-35, 1996.

[4] A. Kock and U. Golze, “FPGA application in education and research,”

in Proceeding of the 4th EUROCHIP Workshop, Germany, 1993.

[5] S. Areibi, “A first course in digital design using VHDL and

programmable logic,” in proc. of 31st ASEE/IEEE Frontiers in

Education Conference, Reno NV, 2001, pp. 19-23.

[6] W. Stallings, “Computer organization and architecture designing for

performance,” 7th ed., Prentice Hall, Pearson Education International,

USA, 2006, ch. 9, pp. 296-302.

[7] K. Imamura, “Digital logic design for computer science students,” in

proc. CCSC: Northweastern Conference, USA, 2005, pp. 212-219.

[8] S. Brown and Z. Vranesic, “Fundamentals of digital logic with VHDL

design,” 2nd ed., McGraw-Hill Higher Education, USA, 2005, ch. 5, pp.

260-265.

[9] J. R. Armstrong and F.G. Gray, “VHDL design representation and

synthesis,” 2nd ed., Prentice Hall, USA, 2000.

[10] Z. Navabi, “VHDL modular design and synthesis of cores and

systems,” 3rd ed., McGraw-Hill Professional, USA, 2007, ch. 2, pp.

36-46.

[11] Altera Corporation. [Online]. Available: http://www.altera.com/.

[12] Xilinx Corporation. [Online]. Available: http://www.xilinx.com/

[13] T. Hall and J. Hamblen, “Using FPGA to simulate and implement

digital design systems in the classroom,” Presented at ASEE Southeast

Section Conference, USA, 2006.

[14] Z. Obaid, N. Sulaiman and M. Hamidon. “FPGA-based

implementation of digital logic design using Altera DE2 board,”

International Journal of Computer Science and Network Security, vol.

9, no 8, pp. 186-194, July 2009, Korea.

[15] O. Vainio, E. Salminen, and J. Takal, “Teaching digital systems using a

unified FPGA platform,” Presented at Electronics Conference (BEC),

2010 12th Biennial Baltic, Estonia 2010.

Hasan Krad earned his Ph.D. in computer

Science from Illinois Institute of Technology

(IIT), Chicago, Illinois, in 1987, Master degree in

Mathematics/Computer Science from Ohio

University, Athens, Ohio, in 1984, and a B.Sc.

degree in Electrical Engineering (Electronics)

from Damascus University, Damascus, Syria

1976, Dr. Krad is currently working as a

professor of Computer Engineering at the

department of Computer Science and Engineering, college of Engineering,

Qatar University. Prior to joining Qatar University back in 2004, Dr. Krad

worked at other universities in the USA for seventeen years, and taught many

different courses in the area of Computer Science, at both graduate and

undergraduate levels, and he participated in many research projects and

presented many refereed publications in different international conferences

and journals. Dr. Krad’s research areas include Digital Logic Design,

Hardware verification, Computer Architecture, and Parallel Processing. Dr.

Krad served as a Chairman of the Department of Computer Science at Dillard

University and was honored with the rank of Barron Hilton Endowed

Professor of Computer Science From 1998-to-2002. Dr. Krad served on

many committees at departments, colleges and universities levels. He is also

very active in community services.

Aws Yousif Fida El-Din obtained his Master of

Science Degree from the Faculty of Computer

Science and Information Technology –

University Putra Malaysia at 2001. Aws is

currently a Lecturer in the Department of

Computer Science and Engineering and a Cisco

Academy Instructor in the Cisco Regional

Networking Academy at Qatar University.. His

Major Research Areas are CRISC Architectures

and High Speed Multipliers. Aws is also involved in several Department and

College Level Services. Aws is currently a CISCO Certified Academy

Instructor CCAI. He has both Academic and Industrial CCNA Certifications.

Aws is specialized in Modeling and Simulating Digital Systems using

Hardware Description Language (VHDL), QUARTUS Design Software

(Altera), and Field Programmable Gate Array Board (FPGA).

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

615

