



Abstract—In this paper, an effective table lookup decoding

algorithm (TLDA), called the syndrome and syndrome

difference decoding algorithm (SSDDA), is developed to decode

the binary systematic (41, 21, 9) quadratic residue (QR) code. It

is based on the property of the weight of syndrome and the

weight of syndrome difference to reduce the memory size of the

lookup table. The proposed algorithm requires a lookup table,

called the compact lookup table (CLT), which only consists of

231 syndromes and their corresponding error patterns. The

advantage of the SSDDA over the previous TLDAs is that the

memory size of the proposed CLT is only about 82.2% and 2%

of the lookup table needed in the decoding algorithms of Lin et

al. (2010) and Chen et al. (2010), respectively.

Index Terms—Quadratic residue code, lookup table, error

pattern, syndrome.

I. INTRODUCTION

The well-known QR codes, introduced by Prange [1] in

1957, are cyclic BCH codes with code rates greater than or

equal to one-half. In addition, the codes generally have large

minimum distances, so that most of the known QR codes are

the best-known codes. The code augmented by a parity bit,

for example, the (24, 12, 8) QR code was utilized to provide

error control on the Voyager deep-space mission [2].

In the past decades, several decoding techniques have been

developed to decode the QR codes. The algebraic decoding

algorithms (ADAs) given in [3]–[15] used the error-locator

polynomial to find the different error positions. Recently,

some table lookup decoding algorithms (TLDAs) given in

[16]–[19] play an important role in error-correcting decoding,

and they have faster decoding speed than the ADAs.

However, the TLDAs require a memory space in the decoder

chip and increase the decoding cost rapidly when the code

length is large. Although, the ADAs do not need any lookup

table; however, they require a large number of multiplication

and division operations in finite field. These complicated

computations will lead to a decoding delay when the code

length is large. Besides, according to the appendixes of [7],

the correct codewords cannot be obtained from the unknown

syndrome polynomials f(S5) and g(S5) of degree 11 in Case 5,

where S5 is the unknown syndrome of the (47, 24, 11) QR

code. Lin et al. [18] corrects all coefficients of f(S5) and g(S5)

and can obtain the correct codewords from the improved

error-locator polynomial L5(z). Therefore, the case of five

Manuscript received June 5, 2012; revised July 5, 2012.

The authors are with the Department of Computer Science and

Information Engineering, Fortune Institute of Technology, Kaohsiung City

83160, Taiwan, ROC (e-mail: hpl@center.fotech.edu.tw,

newballch@gmail.com).

errors given in [7], [10], [11], and [13] can be modified by the

new case of five errors given in [18].

The error-correcting capability of the (41, 21, 9) QR code

is     42/)19(2/)1( dt , where  x denotes the

greatest integer less than or equal to x, and d = 9 is the

minimum Hamming distance of the code. The decoding of

the binary (41, 21, 9) QR code was first proposed by Reed et

al. [6]. In this paper, we can further reduce the size of the

condensed lookup table given in [18] and lookup table given

in [17] by 11.8% and 98%, respectively; besides, simulation

results show that the average decoding time of the proposed

SSDDA is faster than that of those two decoding algorithms.

The structure of the remainder of the paper is organized as

follows: The background of binary systematic (41, 21, 9) QR

codes is simply introduced in Section II. The generation of

the CLT is shown in Section III. The proposed SSDDA is

described in Section IV. Simulation results are shown in

Section V. Finally, this paper concludes with a brief

summary in Section VI.

II. BACKGROUND OF THE BINARY SYSTEMATIC (41, 21, 9)

QR CODE

A binary QR code (n, k, d) or (n, (n+1)/2, d) is defined

algebraically as a multiple of its generator polynomial g(x)

over GF(2), where n is the code length, k is the message

length, and d is the minimum Hamming distance of the code.

Let n be a prime number of the form n = 8l ± 1, where l is a

positive integer and m be the smallest positive integer such

that n divides 2m – 1. The set Q of quadratic residues modulo

n is the set of nonzero squares modulo n; that is, Qn = {jj ≡

x2 mod n, 1 ≤ x ≤ (n – 1)/2}. For the binary (41, 21, 9) QR

code over GF(220), the quadratic residue set is





,39,402,33,36,3723,25,31,3

0,21,10,16,18,2 9, 5,8, 4, 2, {1, 41Q
 (1)

Let  be a root of primitive polynomial p(x) = x20 + x3 + 1;

that is, p() = 0. Thus, the element  = u, where u = (2m –

1)/n = (220 – 1)/41 = 25575, is a primitive 41-th root of unity

in GF(220). The generator polynomial g(x) is defined by

1

)()(

23456910

11141516171820

41





 

xxxxxxx

xxxxxxx

βxxg
Qi

i

 (2)

where the degree of g(x) is 20, which is the multiplicative

order of the integer 2 modulo the code length 41; that is, 220 

1 mod 41.

If  = 2, then  = 25575 = 396789 and g() = 0. By

A Memory Improvement on Decoding of the (41, 21, 9)

Quadratic Residue Code

Hung-Peng Lee and Hsin-Chiu Chang

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

590

cyclically shifting  once to the left and mod g(x), then we

obtain the 41 roots of x41 − 1. The total 41 roots are listed in

Table I, and the value of the root is expressed in hexadecimal

digits.

TABLE I: THE 41 ROOTS OF X
41

 – 1 (IN HEXADECIMAL).

 0 = 1  1 = 60DF5  2 = 6216F  3 = 4000  4 = 20

 5 = F6846  6 = AFB06  7 = 80000  8 = 100  9 = 2

 10 = C1BEA  11 = C42DE  12 = 8000  13 = 40  14 = 91EF1

 15 = 23871  16 = 7CE7D  17 = 800  18 = 4  19 = FF9A9

 20 = F4BC1  21 = 10000  22 = 80  23 = 57E6F  24 = 470E2

 25 = F9CFA  26 = 1000  27 = 8  28 = 83D2F  29 = 959FF

 30 = 20000  31 = 100  32 = BE73E  33 = 8E1C4  34 = 8F789

 35 = 1FEC  36 = 10  37 = 7B420  38 = 57D83  39 = 40000

 40 = 200

A codeword of the binary systematic (41, 21, 9) QR code is

a polynomial c(x) = c40x
40 +…+ c1x + c0 such that it is a

multiple of g(x). If the codeword c(x) is transmitted through a

noisy channel, then the received polynomial r(x) = r40x
40 +…

+ r1x + r0 can be expressed as the sum of the codeword

polynomial c(x) and the error polynomial e(x) = e40x
40 +…+

e1x + e0. For simplicity, let the message or information,

codeword, error pattern, received word, and syndrome be

expressed as the binary vector forms m = (mk-1,…, m1, m0), c

= (cn-1,…, c1, c0), e = (en-1,…, e1, e0), r = (rn-1,…, r1, r0), and s

= (sn-k-1,…, s1, s0), respectively. For the binary systematic (41,

21, 9) QR code, it follows from [11, p85] that the systematic k

 n = 21  41 generator matrix G can be expressed as follows:

 

412119,201,200,20

19,11,10,1

19,01,00,0

4121212021

100

010

001

|





































ppp

ppp

ppp

IPG

 (3)

where I21 is an 21  21 identity matrix and P2120 is an 21  20

matrix given by

2021
1

0

1

1

0

1

1

1

0

1

0

0

1

0

1

1

1

0

1

1

0

0

1

0

1

1

0

1

1

1

0

1

0

0

1

0

1

1

1

0

1

1

1

0

0

1

1

0

1

0

1

0

0

1

1

0

0

1

0

1

0

1

1

1

1

1

1

1

0

1

0

0

0

0

0

0

1

1

1

0

0

0

1

1

1

1

0

0

1

0

1

0

0

1

0

0

1

0

0

0

0

0

1

1

1

1

1

0

1

0

0

1

0

0

1

1

0

1

1

1

1

1

0

1

0

1

1

1

0

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

1

0

1

0

1

1

0

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

1

0

0

0

1

1

0

1

1

1

1

0

0

1

1

1

1

1

0

0

0

1

1

1

0

1

0

1

1

0

0

1

0

0

0

0

1

0

0

0

0

1

1

1

1

1

1

0

0

0

0

1

0

0

0

0

1

0

0

1

1

0

1

0

1

1

1

0

0

0

1

1

1

1

0

0

0

1

1

1

1

0

1

1

0

0

0

1

1

0

0

0

1

1

1

1

0

0

0

1

1

1

1

0

1

1

0

0

0

1

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

0

1

1

1

0

1

0

1

1

1

1

1

0

1

1

0

0

1

0

0

1

0

1

1

1

1

1

0

0

0

0

0

1

0

0

1

0

0

1

0

1

0

0

1

1

1

1

0

0

0

1

1

1

0

0

0

0

0

0

1

0

1

1

1

1

1

1

1

0

1

0

1

0

0

1

1

0

0

1

0

1

0

1

1

0

0

1

1

1

0

1

1

1

0

1

0

0

1

0

1

1

1

0

1

1

0

1

0

0

1

1

0

1

1

1

0

1

0

0

1

0

1

1

1

0

1

1

0

1











































































P

 (4)

The codeword of systematic form can be obtained in

matrix form by

 
) (

) (

012001 19

2120210120

mmmppp

mmm







  IPmGc
 (5)

The (p19,…, p1, p0) is the parity-check part of codeword c

and the (m20,…, m1, m0) is the message part of codeword c.

The systematic parity check matrix H of size (n – k)  n = 20

 41 can be expressed as follows:

 

412019,2019,119,0

1,201,11,0

0,200,10,0

412020

100

010

001

|





























ppp

ppp

ppp

T









PIH

(6)

where PT is the transpose matrix of P and I20 is an 20  20

identity matrix. The vector form of the syndrome can be

defined by

T

T

ppp

ppp

ppp























19,2019,119,0

1,201,11,0

0,200,10,0

100

010

001









rrHs (7)

where HT denotes an 41  20 transpose matrix of H; that is,

20412021

20













P

I
H

T .

The proposed algorithm only needs to compute the

syndrome of r for every received word and the complicated

computation of the error-locator polynomial in GF(220) can

be completely avoided. This is the reason why the proposed

algorithm significantly reduces the computational

complexity. If r has no error occurred, namely e = 0, then the

syndrome s = rHT = (c + 0)HT = cHT = 0, where 0 denotes a

zero vector. Otherwise, s = rHT = (c + e)HT = 0 + eHT = eHT.

III. GENERATION OF THE CLT

The full size of the set of syndromes corresponding to error

patterns in a lookup table is   
t
i

n
i1 . Therefore, for the (41,

21, 9) QR code, the full size of the syndrome lookup table is

          112,79141
4

41
3

41
2

41
1

4
1

41  i i , and thus this

table is what is called the full lookup table (FLT). A

syndrome needs 3 bytes to store in memory and an error

pattern needs 6 bytes to store in memory. In other words, the

total memory size of the FLT needs 112,791  (3 bytes + 6

bytes) = 1,015,119 bytes ≈ 991.33 Kbytes. However,

searching a syndrome in this large table is very

time-consuming and impractical.

The fast lookup table decoding algorithm (FLTDA)

developed in [17], a type of shift-search method [4], needs

        11,52141
3

41
2

41
1

3
1

41  i i syndromes and their

corresponding error patterns; that is, this lookup table needs

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

591

11,521  (3 bytes + 6 bytes) = 103,689 bytes ≈ 101.26 Kbytes

memory size to store the lookup table. The shift-search

method deletes all v = t, where v ≤ t is the actual number of

errors occurred, patterns and keeps 1 ≤ v ≤ t – 1 patterns in

lookup table. However, the size of this lookup table is still

very large.

The syndrome decoding algorithm (SDA) with a

reduce-size lookup table (RSLT) [2, p119] is a very efficient

method of decoding linear cyclic codes over a noisy channel

for moderate code lengths. In essence, the SDA is a minimum

distance decoding using the syndromes corresponding to

their error patterns in the lookup table. Due to the property of

cyclic code, the size of the RSLT can be greatly reduced up to

1/41 of the size of the FLT. In this case, it uses a coset leader

to represent a coset with the same syndrome. So the size of

the RSLT only needs 112,791/41 = 2,751 syndromes and

their corresponding error patterns; that is, the RSLT needs

2,751  (3 bytes + 6 bytes) = 24,759 bytes ≈ 24.18 Kbytes

memory size. However, this memory size of the RSLT is still

large that we need to further reduce the memory size of the

RSLT.

Recently, Lin et al. [18] proposed a TLDA combined with

the condensed lookup table (COLT), a type of shift-search

method [4], to further reduce the memory size of the RSLT.

The COLT requires 41 /))((
3

1
41

 i i = 11,521/41 = 281

syndromes and their corresponding error patterns, and it only

needs 281  (3 bytes + 6 bytes) = 2,529 bytes ≈ 2.47 Kbytes

memory size. The memory size of the COLT is only 2.44% of

the lookup table given in [17].

In fact, the size of the COLT is very small and can fit in

any DSP or embedded system software implementation.

However, we can again further reduce the size of the COLT

and obtain a faster average decoding time compared with

other exist TLDAs. Now, we develop a SSDDA with CLT to

further reduce the size of the COLT. First, we give the

following definition for the proposed CLT.

Definition 1: The compact lookup table (CLT) is a table of

all error patterns of weight v occurred only in the message

part together with their corresponding syndromes, where 1 

v  2.

For decoding the (41, 21, 9) QR code, from Definition 1

we know that the numbers of the syndromes and their

corresponding error patterns in the CLT are the sum of

21C21
1  and 210C21

2  . So the total memory size of the CLT

is only 231  (3 bytes + 6 bytes) / 1024 = 2,079 bytes ≈ 2.03

Kbytes, which is only 82.2% of the memory size of the

COLT. In such a very small table, the proposed SSDDA can

decode the total 112,791 error patterns of the binary (41, 21,

9) QR code. The relationship of the syndromes and their

corresponding error patterns in the CLT is shown in Table II.

Therefore, the proposed CLT is the least lookup table over all

previous proposed lookup tables for decoding the binary (41,

21, 9) QR code.

TABLE II: THE SYNDROMES AND THEIR CORRESPONDING ERROR PATTERNS

IN THE CLT (IN HEXDECIMAL).

Syndromes Error patterns

v = 1

s1 = (7CE7D) e1 = (00000000001)

s2 = (F9CFA) e1 = (00000000001)

… …

s20 = (5F39F) e20 = (00000080000)

s21 = (BE73E) e21 = (00000100000)

v = 2

s22 = (85287) e22 = (00000000003)

s23 = (F39F4) e23 = (00000000005)

… …

s230 = (2F9CF) e230 = (00000140000)

s231 = (E14A1) e231 = (00000180000)

In order to reduce the searching time in the CLT, it is

well-known that the famous binary search algorithm is

utilized instead of performing an exhaustive search. However,

the syndromes need to be arranged in ascending order. The

relationship of the syndromes in ascending order and their

corresponding error patterns in the CLT is shown in Table III.

Let N = 231 be the number of all syndromes in the CLT. Then,

the time complexity of finding a syndrome in the CLT is at

most O(log2N) = O(log2(231)) = 7.85 times. If a linear search

algorithm is used to find the syndrome in the CLT, then the

time complexity is at most O(231) = 231 times. By using the

binary search algorithm compared to the linear search

algorithm, the average searching time can be saved up to

29.42 times. Therefore, the CLT is naturally suitable for both

software and hardware implementation.

TABLE III: SYNDROMES IN ASCENDING ORDER AND THEIR

CORRESPONDING ERROR PATTERNS IN THE CLT (IN HEXDECIMAL).

Syndromes Error patterns

s1 = (0164D) e1 = (00000000804)

s2 = (02387) e2 = (00000020020)

s3 = (02C9A) e3 = (00000001008)

s4 = (0470E) e4 = (00000040040)

s5 = (05934) e5 = (00000002010)

… …

s227 = (F890C) e227 = (00000018000)

s228 = (F97DC) e228 = (00000100400)

s229 = (F9CFA) e229 = (00000000002)

s230 = (FF352) e230 = (00000008001)

s231 = (FF9A9) e231 = (00000004000)

IV. PROPOSED DECODING ALGORITHM

The novel SSDDA with the CLT for decoding the binary

systematic (41, 21, 9) QR code is presented to further reduce

the memory size of the lookup table given in [18].

Given a received word r = c + e. Then, the syndrome s is

computed and the weight of this syndrome w(s) is then

computed. If w(s) = 0, it denotes that there are no errors in r,

namely r = c. If w(s) ≤ 4, then the v ≤ 4 errors are all in the

parity check part of r. Now we shift the syndrome left by 21

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

592

bits to form a 41-bit length word, and the corrected codeword

can be obtained by subtracting (modulo 2) this 41-bit length

word from the received word r. If w(s) > 4, it means that at

least one error is in the message part of r. Next, using the

well-known binary search algorithm, we search the CLT

whether the syndrome is in the CLT or not. If the syndrome is

found in the CLT, namely, s = sj for some 1 ≤ j ≤ 231, at most

 2/t = 2 errors are in the message part of r, and then

subtract the error pattern of the syndrome from the received

word r to obtain the corrected codeword. Otherwise, set the

counter j to be zero. Subtract the syndrome sj in the CLT to

obtain the syndrome difference sdj, and compute the weight of

this syndrome difference w(sdj). If w(sdj) ≤ 3, then we shift

this syndrome difference left by 21 bits to form a 41-bit

length word. Finally, the vector r subtracts this 41-bit length

word and subtracts the corresponding error pattern to correct

the r. If w(sdj)  4 and j ≤ 231, then set j = j + 1 and continue

this step. If w(sdj)  4 and j > 231, then go to next step. Let the

vector r be cyclically shifted left by 20 bits and compute its

weight w(s). If w(s) = 3 or w(s) = 4, then r = r – (s << 21) and

cyclically shift r left by 21 bits to obtain the corrected c. Next,

Compute the syndrome difference sdj = s – sj for 1 ≤ j ≤ 231

and its weight w(sdj). If w(sdj) ≤ 3, then r = r – (sdj << 21) – ej

and cyclically shift r left by 21 bits to obtain the corrected c.

Otherwise, declare a decoding failure. The decoding steps for

the proposed SSDDA are stated explicitly as follows:

1) Given a received word r = c + e.

2) By (7), compute the syndrome of r and its weight w(s).

3) Step 3. If w(s) = 0, then no error has occurred. Go to

stop.

4) If w(s) ≤ 4, then c = r – (s << 21). Go to step 14.

5) Search whether s is in the CLT. If s is in the CLT, that is

s = sj for some 1 ≤ j ≤ 231 corresponding to some error

pattern ej , then c = r – ej. Go to step 14.

6) Compute the syndrome difference sdj = s – sj for 1 ≤ j ≤

231 and its weight w(sdj).

7) If w(sdj) ≤ 3, then c = r – (sdj << 21) – ej. Go to step 14.

Otherwise, go to step 8.

8) Set j = j + 1. If j  231, then go to step 6, else go to step 9.

9) Cyclically shift r left by 20 bits. By (7), compute the

syndrome of this new r and its weight w(s).

10) If 3 ≤ w(s) ≤ 4, then r = r – (s << 21) and cyclically shift

r left by 21 bits to obtain the corrected c. Go to step 14.

11) Compute the syndrome difference sdj = s – sj for 1 ≤ j ≤

231 and its weight w(sdj).

12) If w(sdj) ≤ 3, then r = r – (sdj << 21) – ej and cyclically

shift r left by 21 bits to obtain the corrected c. Go to step

14.

13) w(e) > 4. Declare a decoding failure.

14) Stop or go to step 1 to correct next received word.

V. SIMULATION RESULTS

The proposed decoder written in C++ program is

implemented on an Intel Q6600 PC with Windows XP

operating system. All 112,791 error patterns are created and

are inputted to the proposed decoder. The SSDDA can

perfectly correct all error patterns with an average decoding

speed of 11.082s per error pattern. In comparison, the

average decoding time of the decoding algorithms given in

[17] and [18] are about 49.355s and 30.397s per error

pattern, respectively. Obviously, the average decoding time

of the SSDDA is the fastest among the three decoders.

Simulation results of the three decoding algorithms are

shown in Table IV.

TABLE IV: THE TIME TO DECODE THE (41, 21, 9) QR CODE (IN S).

Number of errors 1 2 3 4 Average

Proposed SSDDA 0.3805 1.2768 7.4024 11.209 11.082

FLTDA given in [17] 0.5734 0.6001 0.6141 54.528 49.355

TLDA given in [18] 1.8066 2.0232 2.0611 32.547 30.397

VI. CONCLUSIONS

In this paper, a memory-efficient SSDDA with CLT is

developed to correct up to four errors for the binary

systematic (41, 21, 9) QR code. The main idea of the

SDWDA is based on the fact that it exploits the weight of

syndrome and the weight of syndrome difference to reduce

the memory size of the lookup table. The memory size of the

CLT is only 2.03 Kbytes, which can be embeded in any

software and decoder chip. Moreover, the decoding time of

the proposed SSDDA is faster than the TLDAs given in [17]

and [18] in software. It is expected that the memory size and

the decoding time can be further reduced in the future while

maintaining the same decoding capability of the code.

REFERENCES

[1] E. Prange, “Cyclic error-correcting codes in two symbols,” Technical

report AFCRC-TN-57-103, Air Force Cambridge Research Center,

Cambridge, Mass. September 1957.

[2] S. B. Wicker, Error Control Systems for Digital Communication and

Storage; Englewood Cliffs NJ: Prentice-Hall, 1995.

[3] M. Elia, “Algebraic decoding of the (23, 12, 7) Golay codes,” IEEE

Trans. Information Theory, vol. 33, no. 1, pp. 150–151, Jan. 1987.

[4] I. S. Reed, X. Yin, T. K. Truong, and J. K. Holmes, “Decoding the (24,

12, 8) Golay code,” IEE Proc. - Computers and Digital Techniques, vol.

137, no. 3, pp. 202–206, May 1990.

[5] I. S. Reed, X. Yin, and T.K. Truong, “Algebraic decoding of the (32, 16,

8) quadratic residue code,” IEEE Trans.on Information Theory, vol. 36,

no. 4, pp. 876–880, July 1990.

[6] I. S. Reed, T. K. Truong, X. Chen, and X. Yin, “The algebraic decoding

of the (41, 21, 9) quadratic residue code,” IEEE Trans. on Information

Theory, vol. 38, no. 3, pp. 974–986, May 1992.

[7] R. He, I. S. Reed, T. K. Truong, and X. Chen, “Decoding the (47, 24, 11)

quadratic residue code,” IEEE Trans. on Information Theory, vol. 47,

no. 3, pp. 1181–1186, March 2001.

[8] Y. Chang, T. K. Truong, I. S. Reed, H. Y. Cheng, and C. D. Lee,

“Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15)

quadratic residue codes,” IEEE Trans. on Communications, vol. 51, no.

9, pp. 1463–1473, Sept. 2003.

[9] T. K. Truong, Y. Chang, Y. H. Chen, and C. D. Lee, “Algebraic

decoding of (103, 52, 19) and (113, 57, 15) quadratic residue code,”

IEEE Trans. on Communications, vol. 53, no. 5, pp. 749–754, May

2005.

[10] Y. H. Chen, T. K. Truong, Y. Chang, C. D. Lee, and S. H. Chen,

“Algebraic decoding of quadratic residue codes using

Berlekamp-Massey algorithm,” Journal of Information Science and

Engineering, vol. 23, no. 1, pp. 127–145, Jan. 2007.

[11] W. K. Su, P. Y. Shih, T. C. Lin, and T. K. Truong, “Decoding of the (48,

24, 12) extended quadratic residue code up to six errors,” in 2008

International Conference on Communication, Circuits and Systems,

Xiamen, China, 2008, pp. 01–05.

[12] T. K. Truong, P. Y. Shih, W. K. Su, C. D. Lee, and Y. Chang,

“Algebraic decoding of The (89, 45, 17) quadratic residue code,” IEEE

Trans. on Information Theory, vol. 54, no. 11, pp. 5005–5011, Nov.

2008.

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

593

[13] G. Dubney, I. S. Reed, T. K. Truong, and J. Yang, “Decoding the (47,

24, 11) quadratic residue code using bit-error probability estimates,”

IEEE Trans. on Communications, vol. 57, no. 7, pp. 1986–1993, July

2009.

[14] T. C. Lin, T. K. Truong, H. P. Lee, and H. C. Chang, “Algebraic

decoding of the (41, 21, 9) quadratic residue code,” Information

Sciences, vol. 179, no. 19, pp. 3451–3459, Sept. 2009.

[15] T. C. Lin, H. C. Chang, H. P. Lee, S. I. Chu, and T. K. Truong,

“Decoding of the (31, 16, 7) quadratic residue code,” Journal of the

Chinese Institute of Engineers, vol. 33, no. 4, pp. 573–580, June 2010.

[16] Y. H. Chen, T. K. Truong, C. H. Huang, and C. H. Chien, “A lookup

table decoding of systematic (47, 24, 11) quadratic residue code,”

Information Sciences, vol. 179, no. 14, pp. 2470–2477, June 2009.

[17] Y. H. Chen, C. H. Chien, C. H. Huang, T. K. Truong, and M. H. Jing,

“Efficient decoding of systematic (23, 12, 7) and (41, 21, 9) quadratic

residue codes,” Journal of Information Science and Engineering, vol.

26, no. 5, pp. 1831–1843, Sept. 2010.

[18] T. C. Lin, H. P. Lee, H. C. Chang, S. I. Chu, and T. K. Truong, “High

speed decoding of the binary (47, 24, 11) quadratic residue code,”

Information Sciences vol. 180, no. 20, pp. 4060–4068, Oct. 2010.

[19] T. C. Lin, H. C. Chang, H. P. Lee, and T. K. Truong, “On the decoding

of the (24, 12, 8) Golay code,” Information Sciences, vol. 180, no. 23,

pp. 4729–4736, Dec. 2010.

Hung-Peng Lee was born in Taiwan in 1958. He

received the B.S. degree in Electronic Engineering from

Feng Chia University, Taichung, Taiwan, in 1987, the

M.S. degree in Electrical Engineering from the

University of Memphis, Memphis, Tennessee, in 1989,

and the Ph.D. degree in Information Engineering from

the I-Shou University, Kaohsiung, Taiwan, in 2010. The

areas of research include error control coding, digital

circuit design, and embedded system.

 He was a lecture in the Department of Computer Science and Information

Engineering and in the Department of Electronic Engineering, Fortune

Institute of Technology, Taiwan, from 1981 to 2010. He is currently an

Associate Professor in the Department of Computer Science and Information

Engineering, Fortune Institute of Technology.

Hsin-Chiu Chang was born in Taiwan in 1954. He

received the B.S. degree in Applied Mathematics from

National Chung Hsing University, Taichung, Taiwan, in

1976, received his M.S. degrees from National Sun

Yat-sen University, Kaohsiung City, Taiwan, in 2005,

and the Ph.D. degree in Information Engineering from

the I-Shou University, Kaohsiung, Taiwan, in 2010. The

research interests of Dr. Chang include statistics,

probability, mathmatics, error control coding, and information theory.

 He retired in July 2005 from the Kaohsiung City Government, Taiwan.

He is currently a part time Assistant Professor in the Department of

Computer Science and Information Engineering, Fortune Institute of

Technology.

International Journal of Computer Theory and Engineering, Vol. 4, No. 4, August 2012

594

