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Abstract—In this paper, an effective table lookup decoding 

algorithm (TLDA), called the syndrome and syndrome 

difference decoding algorithm (SSDDA), is developed to decode 

the binary systematic (41, 21, 9) quadratic residue (QR) code. It 

is based on the property of the weight of syndrome and the 

weight of syndrome difference to reduce the memory size of the 

lookup table. The proposed algorithm requires a lookup table, 

called the compact lookup table (CLT), which only consists of 

231 syndromes and their corresponding error patterns. The 

advantage of the SSDDA over the previous TLDAs is that the 

memory size of the proposed CLT is only about 82.2% and 2% 

of the lookup table needed in the decoding algorithms of Lin et 

al. (2010) and Chen et al. (2010), respectively. 

 
Index Terms—Quadratic residue code, lookup table, error 

pattern, syndrome. 

 

I. INTRODUCTION 

The well-known QR codes, introduced by Prange [1] in 

1957, are cyclic BCH codes with code rates greater than or 

equal to one-half. In addition, the codes generally have large 

minimum distances, so that most of the known QR codes are 

the best-known codes. The code augmented by a parity bit, 

for example, the (24, 12, 8) QR code was utilized to provide 

error control on the Voyager deep-space mission [2]. 

In the past decades, several decoding techniques have been 

developed to decode the QR codes. The algebraic decoding 

algorithms (ADAs) given in [3]–[15] used the error-locator 

polynomial to find the different error positions. Recently, 

some table lookup decoding algorithms (TLDAs) given in 

[16]–[19] play an important role in error-correcting decoding, 

and they have faster decoding speed than the ADAs. 

However, the TLDAs require a memory space in the decoder 

chip and increase the decoding cost rapidly when the code 

length is large. Although, the ADAs do not need any lookup 

table; however, they require a large number of multiplication 

and division operations in finite field. These complicated 

computations will lead to a decoding delay when the code 

length is large. Besides, according to the appendixes of [7], 

the correct codewords cannot be obtained from the unknown 

syndrome polynomials f(S5) and g(S5) of degree 11 in Case 5, 

where S5 is the unknown syndrome of the (47, 24, 11) QR 

code. Lin et al. [18] corrects all coefficients of f(S5) and g(S5) 

and can obtain the correct codewords from the improved 

error-locator polynomial L5(z). Therefore, the case of five 
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errors given in [7], [10], [11], and [13] can be modified by the 

new case of five errors given in [18]. 

The error-correcting capability of the (41, 21, 9) QR code 

is     42/)19(2/)1(  dt , where  x  denotes the 

greatest integer less than or equal to x, and d = 9 is the 

minimum Hamming distance of the code. The decoding of 

the binary (41, 21, 9) QR code was first proposed by Reed et 

al. [6]. In this paper, we can further reduce the size of the 

condensed lookup table given in [18] and lookup table given 

in [17] by 11.8% and 98%, respectively; besides, simulation 

results show that the average decoding time of the proposed 

SSDDA is faster than that of those two decoding algorithms. 

The structure of the remainder of the paper is organized as 

follows: The background of binary systematic (41, 21, 9) QR 

codes is simply introduced in Section II. The generation of 

the CLT is shown in Section III. The proposed SSDDA is 

described in Section IV. Simulation results are shown in 

Section V. Finally, this paper concludes with a brief 

summary in Section VI. 

 

II. BACKGROUND OF THE BINARY SYSTEMATIC (41, 21, 9) 

QR CODE 

A binary QR code (n, k, d) or (n, (n+1)/2, d) is defined 

algebraically as a multiple of its generator polynomial g(x) 

over GF(2), where n is the code length, k is the message 

length, and d is the minimum Hamming distance of the code. 

Let n be a prime number of the form n = 8l ± 1, where l is a 

positive integer and m be the smallest positive integer such 

that n divides 2m – 1. The set Q of quadratic residues modulo 

n is the set of nonzero squares modulo n; that is, Qn = {jj ≡ 

x2 mod n, 1 ≤ x ≤ (n – 1)/2}. For the binary (41, 21, 9) QR 

code over GF(220), the quadratic residue set is 





,39,402,33,36,3723,25,31,3            

0,21,10,16,18,2 9, 5,8, 4, 2, {1, 41Q
                  (1) 

Let  be a root of primitive polynomial p(x) = x20 + x3 + 1; 

that is, p() = 0. Thus, the element  = u, where u = (2m – 

1)/n = (220 – 1)/41 = 25575, is a primitive 41-th root of unity 

in GF(220). The generator polynomial g(x) is defined by 
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where the degree of g(x) is 20, which is the multiplicative 

order of the integer 2 modulo the code length 41; that is, 220  

1 mod 41. 

If  = 2, then  = 25575 = 396789 and g() = 0. By 
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cyclically shifting  once to the left and mod g(x), then we 

obtain the 41 roots of x41 − 1. The total 41 roots are listed in 

Table I, and the value of the root is expressed in hexadecimal 

digits. 

TABLE I: THE 41 ROOTS OF X
41

 – 1 (IN HEXADECIMAL). 

 0 = 1  1 = 60DF5  2 = 6216F  3 = 4000  4 = 20 

 5 = F6846  6 = AFB06  7 = 80000  8 = 100  9 = 2 

 10 = C1BEA  11 = C42DE  12 = 8000  13 = 40  14 = 91EF1 

 15 = 23871  16 = 7CE7D  17 = 800  18 = 4  19 = FF9A9 

 20 = F4BC1  21 = 10000  22 = 80  23 = 57E6F  24 = 470E2 

 25 = F9CFA  26 = 1000  27 = 8  28 = 83D2F  29 = 959FF 

 30 = 20000  31 = 100  32 = BE73E  33 = 8E1C4  34 = 8F789 

 35 = 1FEC  36 = 10  37 = 7B420  38 = 57D83  39 = 40000 

 40 = 200     

 

A codeword of the binary systematic (41, 21, 9) QR code is 

a polynomial c(x) = c40x
40 +…+ c1x + c0 such that it is a 

multiple of g(x). If the codeword c(x) is transmitted through a 

noisy channel, then the received polynomial r(x) = r40x
40 +…

+ r1x + r0 can be expressed as the sum of the codeword 

polynomial c(x) and the error polynomial e(x) = e40x
40 +…+ 

e1x + e0. For simplicity, let the message or information, 

codeword, error pattern, received word, and syndrome be 

expressed as the binary vector forms m = (mk-1,…, m1, m0), c 

= (cn-1,…, c1, c0), e = (en-1,…, e1, e0), r = (rn-1,…, r1, r0), and s 

= (sn-k-1,…, s1, s0), respectively. For the binary systematic (41, 

21, 9) QR code, it follows from [11, p85] that the systematic k 

 n = 21  41 generator matrix G can be expressed as follows: 

 

412119,201,200,20

19,11,10,1

19,01,00,0

4121212021
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where I21 is an 21  21 identity matrix and P2120 is an 21  20 

matrix given by 
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The codeword of systematic form can be obtained in 

matrix form by 

 
)       (   

)    (

012001 19

2120210120

mmmppp
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               (5) 

The (p19,…, p1, p0) is the parity-check part of codeword c 

and the (m20,…, m1, m0) is the message part of codeword c. 

The systematic parity check matrix H of size (n – k)  n = 20 

 41 can be expressed as follows: 

 
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where PT is the transpose matrix of P and I20 is an 20  20 

identity matrix. The vector form of the syndrome can be 

defined by 
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where HT denotes an 41  20 transpose matrix of H; that is,  

20412021

20
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The proposed algorithm only needs to compute the 

syndrome of r for every received word and the complicated 

computation of the error-locator polynomial in GF(220) can 

be completely avoided. This is the reason why the proposed 

algorithm significantly reduces the computational 

complexity. If r has no error occurred, namely e = 0, then the 

syndrome s = rHT = (c + 0)HT = cHT = 0, where 0 denotes a 

zero vector. Otherwise, s = rHT = (c + e)HT = 0 + eHT = eHT. 

 

III. GENERATION OF THE CLT 

The full size of the set of syndromes corresponding to error 

patterns in a lookup table is   
t
i

n
i1 . Therefore, for the (41, 

21, 9) QR code, the full size of the syndrome lookup table is 

          112,79141
4

41
3

41
2

41
1

4
1

41  i i , and thus this 

table is what is called the full lookup table (FLT). A 

syndrome needs 3 bytes to store in memory and an error 

pattern needs 6 bytes to store in memory. In other words, the 

total memory size of the FLT needs 112,791  (3 bytes + 6 

bytes) = 1,015,119 bytes ≈ 991.33 Kbytes. However, 

searching a syndrome in this large table is very 

time-consuming and impractical. 

The fast lookup table decoding algorithm (FLTDA) 

developed in [17], a type of shift-search method [4], needs 

        11,52141
3

41
2

41
1

3
1

41  i i  syndromes and their 

corresponding error patterns; that is, this lookup table needs 
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11,521  (3 bytes + 6 bytes) = 103,689 bytes ≈ 101.26 Kbytes 

memory size to store the lookup table. The shift-search 

method deletes all v = t, where v ≤ t is the actual number of 

errors occurred, patterns and keeps 1 ≤ v ≤ t – 1 patterns in 

lookup table. However, the size of this lookup table is still 

very large. 

The syndrome decoding algorithm (SDA) with a 

reduce-size lookup table (RSLT) [2, p119] is a very efficient 

method of decoding linear cyclic codes over a noisy channel 

for moderate code lengths. In essence, the SDA is a minimum 

distance decoding using the syndromes corresponding to 

their error patterns in the lookup table. Due to the property of 

cyclic code, the size of the RSLT can be greatly reduced up to 

1/41 of the size of the FLT. In this case, it uses a coset leader 

to represent a coset with the same syndrome. So the size of 

the RSLT only needs 112,791/41 = 2,751 syndromes and 

their corresponding error patterns; that is, the RSLT needs 

2,751  (3 bytes + 6 bytes) = 24,759 bytes ≈ 24.18 Kbytes 

memory size. However, this memory size of the RSLT is still 

large that we need to further reduce the memory size of the 

RSLT. 

Recently, Lin et al. [18] proposed a TLDA combined with 

the condensed lookup table (COLT), a type of shift-search 

method [4], to further reduce the memory size of the RSLT. 

The COLT requires 41 / ))((
3

1
41

 i i  = 11,521/41 = 281 

syndromes and their corresponding error patterns, and it only 

needs 281  (3 bytes + 6 bytes) = 2,529 bytes ≈ 2.47 Kbytes 

memory size. The memory size of the COLT is only 2.44% of 

the lookup table given in [17]. 

In fact, the size of the COLT is very small and can fit in 

any DSP or embedded system software implementation. 

However, we can again further reduce the size of the COLT 

and obtain a faster average decoding time compared with 

other exist TLDAs. Now, we develop a SSDDA with CLT to 

further reduce the size of the COLT. First, we give the 

following definition for the proposed CLT. 

Definition 1: The compact lookup table (CLT) is a table of 

all error patterns of weight v occurred only in the message 

part together with their corresponding syndromes, where 1  

v  2. 

For decoding the (41, 21, 9) QR code, from Definition 1 

we know that the numbers of the syndromes and their 

corresponding error patterns in the CLT are the sum of 

21C21
1   and 210C21

2  . So the total memory size of the CLT 

is only 231  (3 bytes + 6 bytes) / 1024 = 2,079 bytes ≈ 2.03 

Kbytes, which is only 82.2% of the memory size of the 

COLT. In such a very small table, the proposed SSDDA can 

decode the total 112,791 error patterns of the binary (41, 21, 

9) QR code. The relationship of the syndromes and their 

corresponding error patterns in the CLT is shown in Table II. 

Therefore, the proposed CLT is the least lookup table over all 

previous proposed lookup tables for decoding the binary (41, 

21, 9) QR code. 

TABLE II: THE SYNDROMES AND THEIR CORRESPONDING ERROR PATTERNS 

IN THE CLT (IN HEXDECIMAL). 

Syndromes Error patterns 

v = 1 

s1 = (7CE7D) e1 = (00000000001) 

s2 = (F9CFA) e1 = (00000000001) 

… … 

s20 = (5F39F) e20 = (00000080000) 

s21 = (BE73E) e21 = (00000100000) 

v = 2 

s22 = (85287) e22 = (00000000003) 

s23 = (F39F4) e23 = (00000000005) 

… … 

s230 = (2F9CF) e230 = (00000140000) 

s231 = (E14A1) e231 = (00000180000) 

In order to reduce the searching time in the CLT, it is 

well-known that the famous binary search algorithm is 

utilized instead of performing an exhaustive search. However, 

the syndromes need to be arranged in ascending order. The 

relationship of the syndromes in ascending order and their 

corresponding error patterns in the CLT is shown in Table III. 

Let N = 231 be the number of all syndromes in the CLT. Then, 

the time complexity of finding a syndrome in the CLT is at 

most O(log2N) = O(log2(231)) = 7.85 times. If a linear search 

algorithm is used to find the syndrome in the CLT, then the 

time complexity is at most O(231) = 231 times. By using the 

binary search algorithm compared to the linear search 

algorithm, the average searching time can be saved up to 

29.42 times. Therefore, the CLT is naturally suitable for both 

software and hardware implementation. 

TABLE III: SYNDROMES IN ASCENDING ORDER AND THEIR 

CORRESPONDING ERROR PATTERNS IN THE CLT (IN HEXDECIMAL). 

Syndromes Error patterns 

s1 = (0164D) e1 = (00000000804) 

s2 = (02387) e2 = (00000020020) 

s3 = (02C9A) e3 = (00000001008) 

s4 = (0470E) e4 = (00000040040) 

s5 = (05934) e5 = (00000002010) 

… … 

s227 = (F890C) e227 = (00000018000) 

s228 = (F97DC) e228 = (00000100400) 

s229 = (F9CFA) e229 = (00000000002) 

s230 = (FF352) e230 = (00000008001) 

s231 = (FF9A9) e231 = (00000004000) 

 

IV. PROPOSED DECODING ALGORITHM 

The novel SSDDA with the CLT for decoding the binary 

systematic (41, 21, 9) QR code is presented to further reduce 

the memory size of the lookup table given in [18]. 

Given a received word r = c + e. Then, the syndrome s is 

computed and the weight of this syndrome w(s) is then 

computed. If w(s) = 0, it denotes that there are no errors in r, 

namely r = c. If w(s) ≤ 4, then the v ≤ 4 errors are all in the 

parity check part of r. Now we shift the syndrome left by 21 
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bits to form a 41-bit length word, and the corrected codeword 

can be obtained by subtracting (modulo 2) this 41-bit length 

word from the received word r. If w(s) > 4, it means that at 

least one error is in the message part of r. Next, using the 

well-known binary search algorithm, we search the CLT 

whether the syndrome is in the CLT or not. If the syndrome is 

found in the CLT, namely, s = sj for some 1 ≤ j ≤ 231, at most 

 2/t  = 2 errors are in the message part of r, and then 

subtract the error pattern of the syndrome from the received 

word r to obtain the corrected codeword. Otherwise, set the 

counter j to be zero. Subtract the syndrome sj in the CLT to 

obtain the syndrome difference sdj, and compute the weight of 

this syndrome difference w(sdj). If w(sdj) ≤ 3, then we shift 

this syndrome difference left by 21 bits to form a 41-bit 

length word. Finally, the vector r subtracts this 41-bit length 

word and subtracts the corresponding error pattern to correct 

the r. If w(sdj)  4 and j ≤ 231, then set j = j + 1 and continue 

this step. If w(sdj)  4 and j > 231, then go to next step. Let the 

vector r be cyclically shifted left by 20 bits and compute its 

weight w(s). If w(s) = 3 or w(s) = 4, then r = r – (s << 21) and 

cyclically shift r left by 21 bits to obtain the corrected c. Next, 

Compute the syndrome difference sdj = s – sj for 1 ≤ j ≤ 231 

and its weight w(sdj). If w(sdj) ≤ 3, then r = r – (sdj << 21) – ej 

and cyclically shift r left by 21 bits to obtain the corrected c. 

Otherwise, declare a decoding failure. The decoding steps for 

the proposed SSDDA are stated explicitly as follows: 

1) Given a received word r = c + e. 

2) By (7), compute the syndrome of r and its weight w(s). 

3) Step 3. If w(s) = 0, then no error has occurred. Go to 

stop. 

4) If w(s) ≤ 4, then c = r – (s << 21). Go to step 14. 

5) Search whether s is in the CLT. If s is in the CLT, that is 

s = sj for some 1 ≤ j ≤ 231 corresponding to some error 

pattern ej , then c = r – ej. Go to step 14. 

6) Compute the syndrome difference sdj = s – sj for 1 ≤ j ≤ 

231 and its weight w(sdj). 

7) If w(sdj) ≤ 3, then c = r – (sdj << 21) – ej. Go to step 14. 

Otherwise, go to step 8. 

8) Set j = j + 1. If j  231, then go to step 6, else go to step 9.  

9) Cyclically shift r left by 20 bits. By (7), compute the 

syndrome of this new r and its weight w(s). 

10) If 3 ≤ w(s) ≤ 4, then r = r – (s << 21) and cyclically shift 

r left by 21 bits to obtain the corrected c. Go to step 14. 

11) Compute the syndrome difference sdj = s – sj for 1 ≤ j ≤ 

231 and its weight w(sdj). 

12) If w(sdj) ≤ 3, then r = r – (sdj << 21) – ej and cyclically 

shift r left by 21 bits to obtain the corrected c. Go to step 

14. 

13) w(e) > 4. Declare a decoding failure. 

14) Stop or go to step 1 to correct next received word. 

 

V. SIMULATION RESULTS 

The proposed decoder written in C++ program is 

implemented on an Intel Q6600 PC with Windows XP 

operating system. All 112,791 error patterns are created and 

are inputted to the proposed decoder. The SSDDA can 

perfectly correct all error patterns with an average decoding 

speed of 11.082s per error pattern. In comparison, the 

average decoding time of the decoding algorithms given in 

[17] and [18] are about 49.355s and 30.397s per error 

pattern, respectively. Obviously, the average decoding time 

of the SSDDA is the fastest among the three decoders. 

Simulation results of the three decoding algorithms are 

shown in Table IV. 

TABLE IV: THE TIME TO DECODE  THE (41, 21, 9) QR CODE (IN S). 

Number of errors 1 2 3 4 Average 

Proposed SSDDA 0.3805 1.2768 7.4024 11.209 11.082 

FLTDA given in [17] 0.5734 0.6001 0.6141 54.528 49.355 

TLDA given in [18] 1.8066 2.0232 2.0611 32.547 30.397 

 

VI. CONCLUSIONS 

In this paper, a memory-efficient SSDDA with CLT is 

developed to correct up to four errors for the binary 

systematic (41, 21, 9) QR code. The main idea of the 

SDWDA is based on the fact that it exploits the weight of 

syndrome and the weight of syndrome difference to reduce 

the memory size of the lookup table. The memory size of the 

CLT is only 2.03 Kbytes, which can be embeded in any 

software and decoder chip. Moreover, the decoding time of 

the proposed SSDDA is faster than the TLDAs given in [17] 

and [18] in software. It is expected that the memory size and 

the decoding time can be further reduced in the future while 

maintaining the same decoding capability of the code. 
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