

Abstract—Importance of real-time data analysis has been

felt since early ‘90s and thus processing of streaming data

(from either sensor networks or telecom switches or web and

other disparate systems) is the demand of the industries

worldwide. Quicker detection of fraudulent activities in a

financial system is the order of the day. Thus capital market

surveillance, if can be performed by using the streaming input

of various trading transactions, without being stored, that

would be beneficial to the regulatory authorities and stock

exchanges. In this paper, we describe how stream processing

using a data stream management system (DSMS) can be used

for the above task and how effective would be that in terms of

performance and latency. We present results obtained from

using a commercial event stream processing system (IBM

InfoSphere Streams platform) for certain typical fraud

detection scenarios.

Index Terms—Capital market surveillance, data stream

management systems, high performance. low latency, stream

processing.

I. INTRODUCTION

In a capital market, investors and all sorts of

market-participants expect a transparent, influence-free,

open market for trading stocks, options, commodities etc.

The responsibility to ensure the above lies on the exchanges

where instruments are traded. They are guided by the

regulatory authorities and as per the laws of the land. But

history of market manipulations seems to be a phenomenon

since the inception of these kinds of markets. Thus capital

market surveillance is a highest priority activity for the

exchanges and regulatory authorities.

In modern world, all financial transactions happen

electronically through web-based systems. This has enabled

many people to perform trading in the capital market. As a

result, huge amount of data gets generated from various

sources and the rate of such generation of such data-streams

is very high. Therefore, there is a pressing demand to detect

market manipulations by identifying anomaly in trading as

fast as possible i.e. in a near-real time mode. On the other

hand, while the techniques or algorithms for such detection

are though available to the authorities but constraints for

executing them on stream of real-time data are posing

obstacles. In this paper, we will describe in brief what a data

stream management system (DSMS) is and a novel way to

use a DSMS platform for some methods of capital market

Manuscript received March 6, 2012; revised May 5, 2012.

The authors are with the Innovation Labs, Tata Consultancy Services

Ltd Bengal Intelligent Park Ltd. Bldg # D, Salt Lake Electronic Complex,

Kolkata, India (e-mail: aniruddha.mukherjee@tcs.com,

prasun.bhattacharjee@tcs.com, debnath.mukherjee@tcs.com,

prateep.misra@tcs.com).

surveillance.

This paper is organized as follows. In Section 2 we

introduce the definitions of Event Processing and Stream

Processing. In Section 3 we narrated briefly various projects

which dealt with stream management or data stream

processing. In Section 4 we discuss approach towards real

time capital market surveillance. In Section 5 we narrated

the scenarios for real time capital market surveillance.

Finally in Section 6 we present results of our study of use

of stream processing in capital market surveillance in a lab

environment. Six scenarios of capital market transactions

have been considered. In each of these scenarios our Stream

Processing system processes trade data in real time and tries

to detect aberrations in trading pattern. We run the system

with sufficiently large volume of real data form a major

stock exchange. Our fraud detection solution has been

implemented through IBM InfoSphere Streams product. We

compare the results obtained from this solution with that

obtained from another one that uses an open source Java

based Complex Event Processing (CEP) product called

ESPER. The result obtained from using the Streams is

shown to be superior.

II. STREAM PROCESSING

A. Event Streams, Windows and Event Stream Processing

According to the Event Processing Glossary [1] published

by the Event Processing Technical Society, any

phenomenon happening or contemplated as happening can

be treated as an event.

An event stream is a linearly ordered sequence of events

and usually ordered by time [1] i.e. it flows as vectors

{data-tuple, timestamp} and a component of the structure of

an event is called an event attribute.

A bounded portion of an event stream is called a window

[1] of event and thus a window defines a subsequence of an

event stream.

The event stream processing is defined as the computing

on inputs that are event streams [1]

Companies can improve the timeliness, agility, and

information quality of their operations if they handle events

in a systematic way that leverages advances in the

contemporary understanding of how events workFinal Stage

When you submit your final version, after your paper has

been accepted, prepare it in two-column format, including

figures and tables.

B. Data Stream Management Systems

Data management scientists have understood the

importance of a new class of data-intensive applications that

requires managing data streams, i.e., data composed of

Data Stream Management System and Capital Market

Surveillance

Aniruddha Mukherjee, Prasun Bhattacharjee, Debnath Mukherjee, and Prateep Misra

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

410

continuous, real-time sequence of items. Streaming

applications pose new and interesting challenges for data

management systems. Such application domains require

queries to be evaluated continuously as opposed to the one

time evaluation of a query for traditional applications.

Streaming data flows/arrives continuously and queries must

be evaluated on such unbounded data sets. Data Stream

Management System or DSMS (also called SDMS Stream

Data Management System), is a system to deal with high

volume of unbound data streams where the data is provided

on real-time and continuous basis. The platform which

enables processing of stream-data is called Stream

Processing Engines or SPE.

SPEs use specialized primitives and constructs (e.g.,

time-windows) to express stream-oriented processing logic

and supports SQL operations on streams (as well as on

stored data simultaneously). SPEs offer the best capabilities

since they are designed and optimized from scratch to

address the requirements of stream-data processing. On the

other hand, paradigms of DBMS and Rule Engines were

originally architected for a different class of applications

with different underlying assumptions and requirements [2].

C. Architecture of a Data Stream Management System

Fig. 1 shows the architectural layers in a DSMS. A

DSMS has the following features or properties:

 Query is registered and persistent as continuous query

 Does sequential access to data (in streams); hence data
is transient

 Resource (mainly memory) is limited and query
evaluation is done through one-pass method –
continuous update of results

 Query plan is adaptive and hence query answer is
sometimes approximate; whereas processing speed is
critical to produce in near real-time results

Fig. 1. Architecture of a data stream management system (DSMS)

III. VARIOUS STREAM PROCESSING PROJECTS

A number of requirements must be met by any given

system in order for it to be considered as a stream processing

engine. These requirements include high availability,

scalability, and optimizations. As well as the desired

capabilities which includes real-time computation on the

data contained within an event, and the ability to detect and

possibly react to simple and complex events instantly is also

important [3].

Huge amount of efforts were devoted all over the globe

since late 1990s to create an efficient stream processing

platform and define a language which would be an extension

of Structured Query Languages (SQL) and capable of

handling data in streams, in continuous manner [4]. The

main areas where it was implemented are telecom call

record applications, Sensor network, Network security,

financial applications and Web-usage log application. A few

of them are narrated briefly in the following paragraphs.

Tribeca (1997): A project at Bellcore, USA for network

traffic analysis. It is a software system for querying

arbitrarily long streams of information from a live network

feed or from a tape or from a disk (i.e from a single source)

and applies compiled queries to the stream

XFilter (2000): Content based filtering system for XML

documents. It is a high-performance, scalable selective

dissemination of information (SDI) system and uses a

language called XPath.

NiagraCQ (2000): A project at University of

Wisconsin-Madison and its goal is to is to develop a

distributed database system for querying distributed XML

data sets using a query language like XML-QL.

Xyleme (2001): Its goal was to build a dynamic

warehouse for massive volume of XML data obtained from

web. It uses content based filtering system for high

throughput.

Hancock (2001): A language developed at ATandT Labs,

for processing large-scale data. It is C based and designed to

describe signatures of callers. It provides data abstraction

mechanism and can control abstraction to facilitate looping

over records. This can be used for various mass surveillance

applications too.

Cougar (2002): Object based querying paradigm and used

a declarative query language with object oriented stream

modeling. This project was supported by DARPA and

Cornell Information Assurance Institute.

TelegraphCQ (2002): It is a project of Berkley Database

Research group of University of California and uses a

relational based querying model which is called

Continuously Adaptive Continuous Queries (CACQ).

STREAM (STanfordstREamdatAManager, 2003): It

belongs to relational based querying paradigm and was a

prototype DSMS developed by Stanford University, which

used CQL (continuous query language).

Aurora (2003): It’s a collaboration of Brandies University,

Brown University and MIT for a scalable distributed stream

processing. It uses procedural model of querying where

users can specify query plan and data flow.

The Linear Road Benchmark (2004): designed by Aurora

team and STREAM team – a typical simulation prototype

for DSMS.

Borealis (2005): It superseded the Aurora project and is

distributed multi-processor version of Aurora. A giant

network of operators, each node has query processors (QP),

high-availability is possible and here dynamic revision of

query result is possible.

OpenCQ (2007): A project of Gerogia Tech University

which has produced a distributed data stream processing

system. It organizes the nodes into virtual network

hierarchy.

Tapestry (2002): Xerox Palo Alto Research Center had

built this system, which was designed to support

collaborative filtering. This means that people collaborate to

help one another perform filtering by recording their

reactions to documents they read. Such reactions may be that

a document was particularly interesting (or particularly

uninteresting). These reactions, more generally called

annotations, can be accessed by others’ filters.

DDDSSSMMMSSS

 Streamed Output Register

Queries

DBMS

Stored

Output

Files, Msgs. etc.

Eg. Alerts on Dashboard

Capability to access database
in both read and writes,
modes

Input
Data
Stream

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

411

Infosphere Streams (2010): It is an IBM’s commercial

product. It provides an execution platform and services for

user-developed applications that ingest, filter, analyze, and

correlate potentially massive volumes of continuous data

streams. It supports high volume, structured and

unstructured streaming data sources such as images, audio,

voice, VoIP, video, TV, financial news, radio, police

scanners, web traffic, email, chat, GPS data, financial

transaction data, satellite data, sensors, badge swipes, etc.

However, it should be installed on a Linux O/s. All sorts of

operations on streams are done through a language called

stream processing language (SPL).

IV. REAL TIME CAPITAL MARKET SURVEILLANCE USING

STREAM PROCESSING ENGINE (SPE)

The rate at which the capital market transactions are

generated is extremely fast – often going up to more than a

million messages / second. Traditional approaches of storing

the data in a data warehouse and then processing it via

statistical analysis and data mining packages are often

inadequate at these data rates. However, the problem of

surveillance or fraud detection on streaming market feeds

can be addressed through the efficient use of an SPE.

How IBM’s InfoSphere Streams has been used in various

large scale high-performance low-latency stock market

applications for the market makers, have been given in [5]

and [3].

An example of how monitoring of trading activity in an

exchange is done on streaming data is shown in Fig. 2

(below). The system consists of a stream processing engine

that takes as inputs all orders that are being placed by market

participants. All orders pass through two filters, one which

tracks all executed (or retained) orders and the other tracks

all cancel orders. The outputs of these filters are two events-

streams, namely the “Executed Order Stream” and the

“Cancel Order Stream”. These two streams are then input to

the correlation engine that matches executed (or retained)

and cancel orders from the same participant and accumulate

the matched values for specified time windows (say X days

or Y hours). Whenever the ratio of total cancel to total

executed (or retained) orders exceeds a particular threshold,

an alert is output. The generated alerts can then be further

investigated by the surveillance department of the exchange.

Fig. 2. Monitoring orders using an SPE

V. MARKET SURVEILLANCE POC

We now present the details of a proof of concept project

that investigates the effectiveness of SPEs in real time

surveillance applications [6].

The following six scenarios as mentioned below were

tested. Trade data from a major stock exchange was used to

test the scenarios:

A. Long gap with Last Traded Date

An alert is generated when the trading for a security

happens after a gap of “d” days, where “d” is a predefined

threshold.

B. Anomaly in Average Trade Price and Quantity

An alert is generated when today’s average trade price of

a security deviates more from yesterday’s average price by x%

and its today’s trade volume deviates more from yesterday’s

trade volume by y%. Here “x” and “y” are predefined

thresholds.

C. Anomaly with Respect to Normal Values

An alert is generated when the abnormal trading activity

for price, volume and trade count happens in a security in the

following manner

Trade Count > Normal Trade count on a day

AND

[Trade Volume > Normal Volume for the day

OR

Trade Price > Normal Price for the day]

The normal values for a particular symbol can itself be

learnt by the system based on past statistics. Normal values

are those values that do not exceed statistical deviation

bounds.

D. High-Low Variation

It is defined as the variation between the high price (H)

and the low price (L) of a security, during a trading session,

expressed as a percentage of the previous close price (P).

i.e. High-Low Variation = {(H – L) ⁄ P} x 100.

An alert is generated when the high-low variation exceeds

a predefined threshold.

E. Price Variation

It is defined as the variation between the last trade price

(LTPt) and the previous close price (P) of a security

expressed as a percentage of the previous close price (P).

i.e. Price Variation = {(LTPt – P) ⁄ P} x 100.

An alert is generated when the price variation exceeds a

predefined threshold value.

F. Consecutive Trade Price Variation

It is defined as the variation between the last trade price

(LTPt) and the previous trade price (LTPt-1) of a security

expressed as a percentage of the previous trade price

(LTPt-1)

i. e. Consecutive Trade Price Variation ΔLTP = {(LTPt –

LTPt-1) ⁄ LTPt-1} x 100.

An alert is generated when the ΔLTP exceeds a

predefined value threshold.

The scenarios 4, 5 and 6 above have been detailed in [7].

For each of the scenario, a file containing real life trade

data was used as input. The data in the file was read by a

special operator that streamed the data to the processing

system – thus simulating a real-time market feed. Another

file that contains the summary data of the immediately

previous day served as the second input to the system. This

file provided static/fixed inputs required for the stream

processing system. The third input was a file containing the

list of selected symbols. Output alerts were saved in an

Execute

Filter

Cancel

Filter

Correlator Alerts All

Orders

Order

Stream

Executed

Stream

Cancel

Stream

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

412

output file.

Diagrammatically, the process flow of a typical scenario

of ours is shown in Fig. 3, below:

Fig. 3. Experiment process flow

VI. TEST SETUP AND RESULTS

The test setup and results obtained are described in the

following sections.

A. Hardware and Software Used

Hardware – An Intel Xeon E5504 based server having 2

CPUs, each with four cores (total 8 cores) and RAM of 12

GB and six SAS disks each 146 GB capacity

Software – The operating system was Red-Hat Enterprise

Linux (ver. 5.4); the programming languages used were SPL

(Stream Processing Language), C++ and SQL; as the stream

processing engine, we used IBM “Infosphere Streams” (ver.

1.2), Esper (an open-source product) which is an Java-based

Complex Event Processing (CEP) engine and used for

comparison purposes with SPE.

B. Results Obtained

The results of running the scenarios described in Section 7

are listed in Table I. It also depicts the time taken to process

2.382629 million input records for each scenario through the

Infosphere Streams and also the time to process a

record/tuple (in microsecond) are shown there.

TABLE III: PERFORMANCE RESULTS UNDER INFOSPHERE STREAMS

Scenario

Records

read and

processed

Time taken to

complete the run

Time taken to

process 1 tuple

(µ sec)

1. Long Gap 2,382,629
10 sec 695

millisecond
4.5

2. Price and

Quantity

anomaly

2,382,629
19 sec 31

millisecond
8.0

3. Abnormal

Trades
2,382,629

18 sec 569

millisecond
7.8

4. High-Low

Variation
2,382,629

5 sec 449

millisecond
2.3

5. Price

Variation
2,382,629

18 sec 63

millisecond
7.6

6. Consecutive

Trade Price

Variation

2,382,629
5 sec 810

millisecond
2.4

We compared the results obtained with an SPE based

solution, with a CEP based solution. The same scenarios

were tested with a solution based on the Esper CEP. The

following Table II shows the performances of the above six

scenarios under Esper CEP (columns are same as in Table I).

TABLE II: PERFORMANCE UNDER ESPER CEP PLATFORM

Scenario

Records

read and

processed

Time taken to

complete the

run

Time taken to

process 1 tuple

(µ sec)

1. Long Gap 2,382,629
41 sec 603

millisecond
17.461

2. Price and

Quantity

anomaly

2,382,629
40 sec 973

millisecond
17.197

3. Abnormal

Trades
2,382,629

57 sec 723

millisecond
24.227

4. High-Low

Variation
2,382,629

25 sec 843

millisecond
10.846

5. Price

Variation
2,382,629

36 sec 939

millisecond
15.503

6. Consecutive

Trade Price

Variation

2,382,629
29 sec 187

millisecond
12.250

Clearly the performance under Esper CEP is 2.2 to 4.7

times inferior to that under Infosphere Streams SPE. While

Infosphere Streams can process a tuple/record within 2.3 to

8 microseconds, the same takes 10.8 to 24.2 microseconds

under Esper CEP’s DSMS. This also establishes the fact that

Java is about 3 times slower than ‘C’.

We have further experimented to know the processing

time taken for each and every tuple under the Streams

platform and after analyzing the outcome we obtained the

following figures as given in the Table III below.

TABLE III: DIFFERENT STATISTICS FOR TIME TAKEN TO CREATE OUTPUT

TUPLES

Scenario

Different Statistics of time taken to generate

output tuples (in microsecond)

M

i

n

.

Ma

x.

Me

an

M

e

d

i

a

n

95
th

pe

rc

en

til

e

98
th

pe

rc

en

til

e

99
th

%

pe

rc

en

til

e

99.

9
th

per

cen

tile

1. Long Gap 3 106
4.3

3
4 5 6 6 8

2. Price and

Quantity

anomaly

6 204
7.2

3
7 9 9 10 13

3. Abnormal

Trades
4 921

5.4

4
5 7 7 8 11

4. High-Low

Variation
4 89

5.9

5
6 8 8 8 12

5. Price

Variation
1 14

2.1

7
2 3 3 3 4

6.

Consecutive

Trade Price

Variation

3 40
5.1

1
5 6 6 7 8

From the above statistics, we conclude that 99% of the

stream-tuples were processed within 10 microseconds. The

figures in the “Max.” column are such larger than the “Mean”

or “Median” because of delays in inter process

communications, which was caused by the various daemon

process running under the Linux O/s.

Trade Data

(Today’s)

Summary Data

(Yesterday’s)

Other Data

(User Defined)

Stream Processing

Engine

(Continuous Query)

[Rule / Scenario

Evaluation]
Alert

Data

Store

Console
Alert Msg 1

Alert Msg 2

… … …

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

413

VII. FUTURE WORK ON STREAM PROCESSING IN FINANCIAL

DOMAIN

Primarily due to a lack of clear-cut criteria for identifying

anomalous activity in financial domain, various theoretical

methodologies after being applied in this domain, mixed

results are disseminated.

We propose to continue research work on applying some

of the data mining techniques, as described in [8] for data in

streams to acquire knowledge and insights about such

financial data stream. These stream mining can help in

defining effective fraud detection criteria. Few points

towards this direction are briefly given below [6]:

 Statistical distribution based mining through which
mean. standard deviation of stock-price or VWAP can
be estimated and co-related in real-time with historical
data and/or current prior windows of data

 A pattern finding exercise on order
placements/cancellations may lead to a strong
association rule for the surveillance upon a specific set
of market participation

 Real-Time Streams Mining would provide us
knowledge in formation of clusters on some attribute(s)
in stock trading like buy/sell orders placed, buy/sell
orders matured to trades, cancelled buy/sell orders etc.

 Depending on the above clustering, one may define
conditions of outlier detection

VIII. CONCLUSION

Deployment of stream processing engines can be

beneficial to financial transaction processing systems since

it delivers high performance and low latency. Therefore, its

benefits may be reaped in market surveillance applications

as well, where it can provide attractive performance for the

industry people. By suitable arrangements of computing

nodes and cores within those nodes, performance can further

be enhanced by reducing latency to a great extent.

ACKNOWLEDGMENT

We would like to thank IBM for providing the InfoSphere

Streams product to use at our labs and Mr. Senthil Nathan,

Research Member of IBM, T J Watson Labs., USA for his

continual support while developing the solution. We would

also like to thank Mahesh Jambunathan, T. Arul and

members of the TCS BaNCS Market Infrastructure Group,

for their valuable inputs and review of the solution.

REFERENCES

[1] Glossary of Terms (ver. 1.1). (July 2008). D. Luckham and R.

Schulte.[Online]. Available: http://www.epts.com (last accessed on

24-Sep-2010).

[2] M. Stonebraker U. Çetintemel, and S. Zdonik, “The 8 requirements of

real-time stream processing,” ACM SIGMOD Record, vol. 34, issue 4,

pp. 42-47, December 2005.

[3] X. J. Zhang, H. Andrade, and B. Gedik et al., “Implementing a

high-volume, low-latency market data processing system on

commodity hardware using IBM middleware,” in Proc. of 2nd

Workshop on High Performance Computational Finance, Article No.

7, Portland, Oregon, USA, 2009.

[4] M. Dylan, “An Analysis of Stream processing Languages,”

Department of Computing, Macquarie University, Sydney – Australia,

2009.

[5] B. Gedik, H. Andrade, K. L. Wu, P. S. Yu, and M. C. Doo, “SPADE:

The System S declarative stream processing engine,” in Proc. of

SIGMOD’08, pp. 1123-1134, June 2008, Vancouver, BC, Canada.

[6] A. Mukherjee, P. Diwan, P. Bhattacharya, D. Mukherjee, and P. Misra,

“Capital Market Surveillance using Complex Event Processing

Technology,” in Proc. of 2nd ICCTD 2010 Conference, November

2010, Cairo, Egypt, pp. 577-582.

[7] Surveillance in Stock Exchanges Module Workbook. [Online].

Available: http://www.nseindia.com.

[8] J. Han and M. Kamber, “Data Mining: Concepts and Techniques,

Morgan Kaufmann Publishers,” 2nd Edition, 2008.

Aniruddha Mukherjee is currently an employee of

Tata Consultancy Services Limited, India, which is

largest software exporter of Asia. This author is an

masters degree holder of Statistics (M. Stat.) from

Indian Statistical Institute, Kolkata, India in 1984 and

has about 24 years of experience in information

technology industry. Apart from leading software

projects of various business domains and hardware

platforms, he has been involved with innovation labs. of the company,

where real-time analytics related work are being experimented for

high-performance, low-latency aspects.

International Journal of Computer Theory and Engineering, Vol. 4, No. 3, June 2012

414

