



Abstract—Computational problems have significance from

the early civilizations. These problems and solutions are used for

the study of universe. Numbers and symbols have been used for

mathematics, statistics. After the emergence of computers the

number and objects needs to be arranged in a particular order

either ascending and descending orders. The ordering of these

numbers is generally referred to as sorting. Sorting has many

applications in computer systems, file management, memory

management. Sorting algorithm is an algorithm by which

elements are arranged in a particular order following some

characteristic or law. A number of sorting algorithms have been

proposed with different time and space complexities. In this

research author develop a new sorting technique to keep in view

the existing techniques. Author also proposed the algorithm i.e.

Relative Split and Concatenate Sort, implements the algorithm

and then compared results with some of the existing sorting

algorithms. Algorithm’s time and space complexity is also being

the part of this paper. With respect to complexity sorting

algorithms mainly can be divided into 2 categories: O(n2) and

O(nlogn). The proposed algorithm Split and Concatenate Sort is

under the category of O(n2) and is efficient, in terms of time

complexity, than existing algorithms lay in this category. It is

discovered that the algorithms proposed in this research is

relatively simpler and efficient than some of the existing well

known sorting algorithms i.e. bubble sort, insertion sort and

selection sort.

Index Terms—Relative, concatenate, split, sort, RSCS, time

complexity.

I. INTRODUCTION

Sorting is defined in English Language Dictionary [1] as

“Sorting is a process by which the sedimentary particles

become separated by some particular characteristic”. It is

method by which elements are arranged in a particular order

following some characteristic or law. In computer jargon,

sorting is to place records or elements is particular sequence

based on the rules or arrangement, followed by the record. So,

the term “Sorting” is used for all the techniques used to

arrange data in the desired order. Sorting gained a lot of

importance in computer sciences and its applications are in

file systems, sequential and multiprocessing computing, and a

core part of database systems. A number of sorting algorithms

have been proposed with different time and space

complexities. There is no one sorting algorithm that is best for

each and every situation. Donald Knuth in [2], reports that

“computer manufacturers of the 1960s estimated that more

Manuscript received February 24, 2012; revised March 29, 2012.

Abdul Wahab Muzaffar, Juwaria Shafiq, and Wasi Haider Butt are with

the National University of Sciences and Technology (NUST), Islamabad,

Pakistan (e-mail: Wahab_muzaffar2000@ yahoo.com,

juwaria.shafiq@gmail.com, butt.wasi@gmail.com).

Dr. Naveed Riaz is with the Shaheed Zulfiqar Ali Bhutto Institute of

Science and Technology (e-mail: nransari@hotmail.com).

than 25 percent of the running time on their computers was

spend on sorting, when all their customers were taken into

account. In fact, there were many installations in which the

task of sorting was responsible for more than half of the

computing time. Therefore a lot more consideration was put

on the sorting jargon.

In particular sorting may fall into two categories [3]: 1)

Ordering: placing elements of same kind in particular

sequence based on their properties. 2) Categorizing: placing

elements in same group or under same label based on their

properties.

Time Complexity of sorting algorithms mainly falls into

two classes i.e. O(n²) and O(nlogn). O(n²) algorithms works

iteratively, where as those with O(nlogn) time complexity are

more efficient and divide-and-conquer in nature while works

recursively. O(nlogn) sorting algorithms are: merge sort

proposed by Von Neumann in 1945, Shell‟s sort in 1959, and

quick sort by Hoare in 1962 [4].

To search the information efficiently the arrangement of

data is very important. To facilitate the human, computers

consume a substantial time in ordering the data. The

computational problems always have a cumbersome effect on

the researchers on one hand and open the opportunities for

them on the other hand. The ultimate intention of so much

sorting techniques is the cost and complexity reduction of the

algorithms [5].

To insert images in Word, position the cursor at the

insertion point and either use Insert | Picture | From File or

copy the image to the Windows clipboard and then Edit | Paste

Special | Picture (with “Float over text” unchecked).

International Journal of Computer Theory and Engineering

reserves the right to do the final formatting of your paper.

II. RESEARCH OBJECTIVES

This research is carried out with an objective to propose a

new sorting algorithm i.e. Relative Split and Concatenate Sort,

analyses of complexity and running time with some of the

existing sorting algorithms. This sorting algorithm lies under

the class of algorithms having O(n²) complexity. Author

believes this algorithm will contribute a bit more in the

existing of computation.

III. LITERATURE REVIEW

In this chapter a review of existing sorting techniques,

history of formation methodologies as well as algorithms are

presented. The chapter also discusses the applications and

limitations of sorting algorithms. Comparison of the

algorithms is summarized and presented at the end of the

chapter in tabular form.

Relative Split and Concatenate Sort (RSCS-V1)

Abdul Wahab Muzaffar, Naveed Riaz, Juwaria Shafiq, and Wasi Haider Butt

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

304

mailto:juwaria.shafiq@gmail.com

A. Categories of Sorting

Sorting is broadly categorized into two major categories:

Internal sorting and external sorting [6]

1) Internal Sorting

This sorting category is called internal as the whole sorting

process takes place in the main memory, as data to be sorted is

small enough to be fit into the main memory. Bubble Sort,

Cocktail Sort, Insertion Sort, Shell Sort, Selection Sort, and

Quick Sort are some well known sorting algorithms lie under

this category [7].

2) External Sorting

This sorting category is used when the data being sorted is

in large amount and doesn‟t fit into the main memory. Merge

sort and Heap Sort come under this category of sorting [8].

B. Taxonomy of Sorting Algorithms

“Taxonomy is the practice and science of classification.

The word finds its roots in the Greek taxis (meaning 'order',

'arrangement') and νόμος, nomos ('law' or 'science')” [9].

There are multiple taxonomies of sorting algorithms [6].

Knuth proposed a sorting taxonomy by dividing the sorting

algorithms under three categories [10]: 1) Insertion, 2)

Selection and 3) Exchange.

Their well known examples are simple Insertion Sort,

Selection Sort and exchange sort respectively. Various trees

of sorting algorithms has been proposed, which shows that the

sorting algorithms moves from higher level to abstract

algorithm and then to lower ones. In Knuth‟s introduction to

sorting he describes:

Insertion sort, which takes the item one at a time, and each

new item, is inserted into its proper position by comparing it

with the previously sorted items. Exchange sort, in which if

two elements are found to be out of order, they are

interchanged. This process is repeated until no more

exchanges are needed. Selection sort, in which the smallest

item is located and somehow separated from the rest: the next

smallest is then selected, and so on.

Taxonomy presented by Green and Barstow in [11]. They

describe sorting process in three steps:

Divide the set S which is to be divided into two parts say S1

and S2. Now sort these two parts getting S1‟ and S2‟ and Join

the parts to get Sorted list.

This taxonomy suggested by Susan M. Merritt [12] divides

the sort into two categories: easysplit/hardjoin and

hardsplit/easyjoin. The directly algorithms which results from

this taxonomy are quick and merge sort, other algorithms are

derived conventionally from this scheme. For example, shell

sort can still be understood as an application of insertion sort

on various subsets of the input set (easysplit/ hardjoin);

heapsort is still a selection sort that uses a convenient data

structure (hardsplit/easyjoin). In fact it can be argued that all

comparison-based sorting algorithms fit neatly into this

taxonomy: Each is some instance of an easysplit/hardjoin or a

hardsplit/easyjoin algorithm, with some lower level detail or

details uniquely characterizing it [12].

C. Existing Sorting Algorithms

A number of sorting algorithms are currently used in the

field of computer science. This section will briefly discuss

some of the trendy sorting techniques among them. These are

following:

1) Bubble Sort:

Bubble sort is said to be first sorting algorithm and so

pioneer in sorting. It is very easy to understand and easy to

implement so most widely used. Bubble sort is a sequential

sorting algorithm, it sort the items in passes, in each pass list[i]

is compared with list [i+1] and values are exchanged if not in

order. In each pass one value is moved to the left and this will

be the least value during the pass [13].These steps continue

till the entire list is sorted and no swapping is needed more.

Main disadvantage of bubble sort is that it takes n²

comparisons then the length of the list e.g. if the list is of 10

elements, bubble sort takes 100 comparisons to sort the list.

This is very inefficient sort as compared to today‟s sorting

algorithms, still used in different applications. Complexity of

bubble sort for average case and worst case is O(n²). When we

have a sorted list and apply bubble sort it shows a behavior of

O(n), showing its best case complexity [5]. Bubble sort is

more advantages in terms of memory as it takes less memory.

2) Cocktail Sort:

Cocktail sort is also based on the same methodology as

bubble sort, also known as shaker sort, bidirectional bubble

sort, cocktail shaker sort (this also refers to a variant of

(selection sort), ripple sort, shuttle sort or happy hour sort, is a

variation of bubble sort that is both a stable sorting algorithm

and a comparison sort [14]. The cocktail sort is different from

bubble sort, as it sorts the list from both directions. Cocktail

sort is a bit complex than bubble sort in implementation. It is

simple in nature and solves the problem with “turtles” like in

bubble sort. The average and the worst case complexity of

cocktail sort is equal to bubble sort i.e. O(n²)[5].

3) Friends Sort:

Friends sort is a previous effort of the authors of this paper.

Friend sort was proposed in 2009. It is a unique sorting

algorithm, idea is to assume the first value as smallest and

comparing it with the rest of the list and assuming the last

value as biggest and comparing it with the rest of the list [5].

The running time of this algorithm is efficient than bubble sort

and cocktail sort but inefficient than insertion sort and

selection sort. Friend sort shows a behavior of O(n) for a

sorted list as a best case. Average and worst case complexity

of friend sort is O(n²).

4) Selection sort

Selection sort is another renowned sorting algorithm. It

scans the list of items and finds the smallest item by putting it

in the first index of the list, then starts scanning the list for

second smallest item and put it in the second index. This

scanning continues until the largest item and put it in the last

index of the list. Its main disadvantage is that it is inefficient

for large lists, its performance is worst than insertion sort for

large number of items. It takes „n‟ number of passes for a list

of length „n‟ [17]. Complexity of selection sort for average

case and worst case is O(n²). When we have a sorted list and

apply selection sort it shows a behavior of O(n), showing its

best case complexity. Selection sort is more advantages in

terms of memory as it takes less memory. The number of

interchanges and assignments in selection sort depends on the

original order of the items in the list, but the sum of these

operations do not exceed a factor of n² [17].

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

305

5) Insertion Sort:

Insertion sort is another sorting that is very simple, efficient

and well known technique. It takes one item in each pass and

inserts it to the exact index in a new list. Insertion sort is very

efficient for small lists. Its advantages are simple and easy to

implement. Its disadvantage is utilization of more memory as

compared to bubble sort and selection sort; also it becomes

very slow while list gets larger [18]. Complexity of selection

sort for average case and worst case is O(n²), while for the

best case it shows a behavior of O(n). The insertion sort

algorithm is a very slow algorithm when list is very large [18].

6) Merge Sort:

 Another algorithm, based on O(nlogn) category or

divide-and-conquer principle, is merge sort. It was proposed

by John von Neumann in 1945 [19]. The algorithm works by

dividing the unsorted list into two, sorting the two sub lists

recursively by applying the merge sort again. In the end

merging the sub lists. Its average case and worst case

complexity is O(nlogn), and shows a behavior of O(logn) in

the best case [19].

7) Quick Sort:

Quick sort is fastest among the sorting algorithms proposed

by Von Neumann in 1962 [5]. It is based on

divide-and-conquer technique. It takes any item as a pivot and

compare it with the rest of the elements in the list, keep track

of items less than pivot and greater than pivot. It then divides

the list and select pivot from divided lists and continues till

single item lefts, at the end it concatenates the whole lists.

Despite its slow worst case, quick sort is best practical choice.

Complexity of quick sort for worst case is O(n²), for the best

case it shows a behavior of O(log n) and average case is

Θ(nlogn) [20]. In most real-world data it is possible to make

design choices which minimize the probability of requiring

quadratic time [20].

8) Shell Sort:

It is also known as the generalized form of the insertion sort

as the elements by this sort takes longer jumps to get their

original positions. The worst case complexity of the algorithm

is O(n
2
) [21, 22]. It got its name after its presenter, Donald

Shell.

D. Research Methodology

Authors in this research paper propose a new sorting

algorithm and implement it in a high level language. Some of

the existing research in sorting is also being studied. The

proposed Relative Split and Concatenate sort is compared

with some of the well known existing sorting techniques i.e.

bubble sort, cocktail sort, insertion sort, selection sort, and

quick sort. The final analysis of the paper is in the form of

graphs showing the running time comparison of Relative Split

and Concatenate sort and existing sorting algorithms.

Authors also show the complexity of Relative Split and

Concatenate sort for Best case, Average case, and Worst case.

E. Comparison of Different Sorting Algorithms

The following table is taken from [23], shows the

comparison of different existing sorting algorithms in terms of

best, average and worst running time complexity:

TABLE I: COMPARISON OF DIFFERENT SORTING ALGORITHMS

Method Time Space
Stabilit

y
Type

Best

Averag

e
Worst

Bubble O(n) O(n2) O(n2)
Constan

t

Stabl

e

Exchang

e

Cocktail O(n) O(n2) O(n2)
Constan

t

Stabl

e

Exchang

e

Insertion O(n) O(n2) O(n2)
Constan

t

Stabl

e
Insertion

Merge
O(log

n)

O(nlog

n)

O(n

log n)

Depend

s

Stabl

e

Merge

Sort

Quick
O(log

n)

O(nlog

n)
O(n2)

Constan

t

Stabl

e

Exchang

e

Selection O(n) O(n2) O(n2)
Constan

t

Stabl

e
Selection

Shell O(n) O(n) O(n2)
Constan

t

Stabl

e
Insertion

IV. PROPOSED ALGORITHM

A. Algorithm1 (RSCS-V1)-Steps:

The Steps of the proposed algorithm are as follows:

1) Divide the list into 3 sub-lists.

2) Take average of each of the sub-list.

3) Sort the three averages and named as large, medium and

small.

4) Compare the 1st element of the list with each average.

5) If the element is less than (<) small average, put it in a

new list of smaller items.

6) Else if the element is greater than (>) large average, put it

in a new list of larger elements.

7) Else put it in a new list of medium elements.

8) Take next element, if it is smaller than the smaller

average, compare it with the elements already presented

in the smaller array, and put it at its exact location.

9) Else if it is larger than the larger average, compare it with

the elements already presented in the larger array, and put

it at its exact location.

10) Else compare it with the elements in the medium array

and put it at its exact location.

11) Repeat these steps for the whole list.

B. Algorithm1 (RSCS-V1)-Psedo code:

1) RelativeSplitandConcatenateSort –V1(List)

First: = 0, Last: = LENGTH [List], Part: = Last/3

List1:=1stPart [List], List2:=2ndPart [List]

List3:=3rdPart [List], Avg1:=AVERAGE [List1]

Avg2:=AVERAGE [List2], Avg3:=AVERAGE [List3]

j := 0, len2 := 0, len3 := 0, len4:=0;

For i  1 to Last

 if (List[i]>=Avg1 ||List[i]> Avg2||List[i]>Avg3)

 if (len2 == 0)

 large [len2] = List[i];

 else if (List[i] >= large[len2-1])

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

306

 large [len2] = arr1[i]

 else

 j:=len2-1;

 while j > 0 andand List[i] < large[j-1]

 j:=j-1

 For k  j to len2-1

 large [k + 1] = large[k]

 large [j] = List [i]

 len2:= len2 + 1;

 else if (List[i]<=avg3)

 if (len3 == 0)

 small [len3] = List[i];

 else if (List[i] >= small[len3-1])

 small [len3] = List[i];

 else

 j:=len3-1;

 while j > 0 andand arr1[i] < small[j-1]

 j := j - 1;

 For k  j to len3-1

 small [k + 1] = small [k]

 small [j] = List[i];

 len3:= len3 + 1;

else if(List[i]<avg1 || List[i]>avg3)

 if (len4 == 0)

 mid [len4] := List[i];

 else if (List[i] >= List[len4 - 1])

 mid [len4] := List[i];

 else

 l := len4 - 1;

 while l > 0 andand List[i] < mid[l – 1]

 l := l - 1;

For m  len4-1 to 1

 mid[m + 1] := mid[m]; mid[l] = inputlist [i];

 len4 = len4 + 1;

C. Algorithm1(RSCS-V1):Running Cost Analysis

The main structure of the algorithm depicts that there is an

outer main loop within which there lies another loop. The

outer loop will run n number of times, of the elements of the

list and inner loop will make its way n times in worst case

analysis, i.e. if the whole list to be sorted is in reverse order

(descending while ascending is needed or ascending when

descending is needed).

The length of the array: n

Outer Loop runs: n

Inner Loop runs: n

Comparison Statements: c

So, Total Time: n*n-1*c

Total Time: n*n-1*c

Ignoring Constants we will get; Total Time: n*n=n2

By keen observing it the worst case running cost of

algorithm is calculated to be O(n2). The behavior of the

algorithm in the best case will be O(n), depicting that the

elements in the list are in sorted form (descending or

ascending whatever needed). Similarly the average case of the

running cost will be O(n2) depending upon the elements in the

list.

V. COMPARISON WITH EXISTING SORTING ALGORITHMS

A. Proposed Algorithm: Relative Split and Concatenate

Sort (RSCS V-1)

Relative Split and Concatenate sort is implemented in

C# .NET and compared with the algorithms lie under the

category of O(n²) running time complexity i.e. bubble sort,

cocktail sort, insertion sort, selection sort. For each

comparison, lists of different sizes were generated and sorted.

The sizes were 5000, 10000, 20000, 50000, 80000 and

100000. Minimum number was kept zero and the maximum

was kept 10000 always. Following are the results of these

experiments. Graphical as well as textual description of the

results is presented for convenience. Input list is generated

randomly and the experiments were performed on a system

with following specifications:

 Processor 2.0Ghz

 RAM 256MB

1) Comparison with Bubble Sort

Fig. V.1. RSCS-V1 v/s bubble sort

In the above graph, at x-axis we have placed number of

elements in the list to be sorted and at y-axis we have placed

the time taken by program for execution in milliseconds. It

can be seen clearly that Relative Split and Concatenate sort

(RSCS-V1) shows much better performance than Bubble sort

that is obvious from the graph.

2) Comparison with Cocktail Sort

Fig. V.2. RSCS-V1 v/s cocktail sort

The above graph is same as that of bubble sort that at x-axis

are the numbers of items and along y-axis are the execution

times in milliseconds. From the above graph it is depicted that

Relative Split and Concatenate sort (RSCS-V1) shows clearly

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

307

efficiency than Cocktail sort.

3) Comparison with Selection Sort

Fig. V.3. RSCS-V1 v/s selection sort

Above graph depicts the performance difference of

Selection and the Relative Split and Concatenate sort

(RSCS-V1). Along x-axis is the number of items in the input

list while along y-axis execution times. Relative Split and

Concatenate sort (RSCS-V1) shows a clear domination over

Selection sort.

4) Comparison with Insertion Sort

Fig. V.4. RSCS-V1 v/s insertion sort

Above graph depicts the performance difference of

Insertion and the Relative Split and Concatenate sort

(RSCS-V1). Along x-axis is the number of items in the input

list while along y-axis is the execution times. Relative Split

and Concatenate sort (RSCS-V1) is clearly efficient than

Insertion sort.

VI. CONCLUSION

Proposed sorting algorithm lies under the class of

algorithms having O(n²) complexity. By comparing this sort

with existing sorting algorithms, it is depicted from the graphs

in the previous section that this sort has clear edge, in running

time, over other O(n²) category algorithms i.e. bubble sort,

cock tail sort, insertion sort, and selection sort. Comparisons

also shows that Relative Split and Concatenate sort is

inefficient than O(nlogn) category algorithms i.e. merge sort

and quick sort. Relative Split and Concatenate sort takes more

memory which is its trade off in terms of time and space.

Summarizing the whole discussion, it is clear from the results

that the proposed algorithm has got its position almost above

than the middle order algorithms. As it has beaten the old

algorithms and has been beaten by the most efficient

algorithms. As it is an n2 algorithm so if we only compare it

with n2 algorithms, we will see that it is almost among the best

n2 algorithms.

VII. FUTURE WORK

As in the proposed idea (Relative Split and Concatenate

Sort-V1), we take only three averages and then fit elements on

the base of comparison of that. This methodology can be

made dynamic i.e. recursion may be involved so that in every

call again arithmetic mean may be calculated and

comparisons may be made. Authors are intended to

incorporate binary search, with the current Algorithm, for

finding the location of the number to be placed in the list. Also

other ways also exist. The algorithm can be enhanced further

in a number of ways. Any other existing methodology can be

merged with this to get more efficient results. Any

enhancement is appreciated and encouraged.

REFERENCES

[1] Sorting. (2009). [Online]. Available:

http://dictionary.reference.com/browse/sorting, Accessed October 25,

2009.

[2] T. Philippas and Z. Yi,“A Simple, Fast Parallel Implementation of

Quicksort and its Performance, Evaluation on SUN Enterprise 10000,”

IEEE- Euro micro Conference on Parallel, Distributed and

Network-Based Processing (Euro-PDP’03), 2003.

[3] D. Knuth, “The Art of Computer Programming, Volume 3: Sorting and

Searching,‟‟ Third Edition. Addison-Wesley, 1997, pp. 138–141, of

Section 5.2.3: Sorting by Selection.

[4] A. Agapitos and S. M. Lucas, “Evolving Efficient Recursive Sorting

Algorithms,” 2006 IEEE Congress on Evolutionary Computation

Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July

16-21, 2006.

[5] Z. Iqbal, H. Gull, and A. W. Muzaffar, “A New Friends Sort

Algorithm,” 2nd IEEE International Conference on Software

Engineering and Information Technology, pp. 326-329.

[6] D. Knuth,“The Art of Computer Programming, Volume 3: Sorting and

Searching,‟‟ Third Edition. Addison-Wesley, 1997.

[7] IInternal Sort. (2009). [Online]. Available:

http://en.wikipedia.org/wiki/Internal_sort, Accessed October 25,

2009.

[8] External Sorting. (2009). [Online]. Available:

http://en.wikipedia.org/wiki/External_sorting, Accessed October 25,

2009

[9] Taxonomy. (2010). [Online]. Available:

http://en.wikipedia.org/wiki/Taxonomy, Accessed January 10, 2010.

[10] D. E. Knuth, “The Art of Computer Programming,” vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973.

[11] C. Green and D. Barstow, “On program synthesis knowledge,” Artif.

Infd. vol. 10, pp. 241-279. 1978.

[12] S. M. Merritt, “An inverted taxonomy of Sorting Algorithms.

Programming Techniques and Data Structures,” Communications of

ACM, vol. 28, no. 1, ACM, 1985

[13] J. D. Fix and R. E. Ladner, “Sorting by Parallel Insertion on a

One-Dimensional Subbus Array,” IEEE Transactions on Computers,

vol. 47, no. 11, November 1998.

[14] Cocktail Sort. (2009). [Online]. Available:

http://en.wikipedia.org/wiki/Cocktail_sort Accessed December 25,

2009.

[15] Comb Sort. (2009). [Online]. Available:

http://en.wikipedia.org/wiki/Comb_sort, Accessed October 25, 2009.

[16] Heap Sort. (2009). [Online]. Available:

http://en.wikipedia.org/wiki/Heap_sort, Accessed October 25, 2009.

[17] S. Lipschutz, Theory and Problems of Data Structures, Schaum’s

Outline Series: International Edition, McGraw-Hill, 1986, pp.

324–325.

[18] S. Lipschutz, Theory and Problems of Data Structures, Schaum’s

Outline Series: International Edition, McGraw-Hill, 1986, pp.

322–323.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

“Introduction to Algorithms,” 2nd edition, MIT Press and

McGraw-Hill, ISBN 0-262-03293-7, pp. 27–37, 2001.

[20] T. H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein, “Introduction to Algorithms, Second Edition,” MIT Press and

McGraw-Hill, 2001, pp.145–149.

[21] B. Shahzad and M. T. Afzal, “Enhanced Shell Sorting Algorithm,”

World Academy of Sciences, Journal, vol. 27.

[22] Shell Sort. (2009). [Online]. Available:

http://en.wikipedia.org/wiki/Shell_sort, Accessed January 12, 2010.

[23] Comparison of different sorting algorithm. [Online]. Available:

http://en.wikipedia.com/sorting_algorithm, accessed may 20, 2010.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

308

http://dictionary.reference.com/browse/sorting
http://en.wikipedia.org/wiki/Internal_sort
http://en.wikipedia.org/wiki/External_sorting
http://en.wikipedia.org/wiki/Taxonomy
http://en.wikipedia.org/wiki/Comb_sort
http://en.wikipedia.org/wiki/Heap_sort
http://en.wikipedia.com/sorting_algorithm

