



Abstract—These Quality of a software component can be

expressed in terms of level of number of faults present in data.

Quality estimations are made using fault data available from

previously developed similar type of projects and the training

data consisting of software measurements. In this paper, an

attempt is made to use Batch Gradient Descent (BGD), Batch

Gradient Descent with momentum (BGDWM), Variable

Learning Rate (VLR), Variable Learning Rate training with

momentum (VLRM) and Resilient Backpropagation (RB)

based neural network approach to identify the relation

between the various qualitative as well as quantitative factor of

the modules with the number of faults present in the module

that will be helpful for prediction of the level of number of

faults present in the modules. The dataset used is elicited from

31 completed software projects in the consumer electronics

industry. The data were gathered using a questionnaire

distributed to managers of recent projects. The performance of

the algorithms is recorded in terms of MAE, RMSE and

Accuracy percentage values.

Index Terms—Neural network, quantitive, qualittative,

software fault, defect data, and software quality

I. INTRODUCTION

A software fault is a defect that causes software failure in

an executable product. In software engineering, the non-

conformance of software to its requirements is commonly

called a bug. Software Engineers distinguish between

software faults, software failures and software bugs. In case

of a failure, the software does not do what the user expects

but on the other hand fault is a hidden programming error

that may or may not actually manifest as a failure and the

non-conformance of software to its requirements is

commonly called a bug .

A software quality model is a useful tool for meeting the

objectives of software reliability and software testing

initiatives of different projects. Metrics available in the early

lifecycle data can be used to verify the need for increased

quality monitoring during the development. Different

modeling techniques can be used to identify fault prone

modules[1]-[11].

In this study, we investigate whether qualitative and

quantitative factors can be used to identify level of number

of faulty software modules using different neural network

approaches.

Manuscript received February 22, 2012; revised March 28, 2012.

 Parvinder S. Sandhu is with the Deptt. Of CSE and IT Rayat and Bahra
Institute of Engg. and Bio-Technology, Mohali, India.

Suman Lata and Dalveer Kaur Grewal are with the Deptt. Of CSE/IT

Lovely Professional University, Jalandhar, India.

II. METHODOLOGY

The methodology consists of the following steps:

A. Find the Quantitivative and Qualittiative attributes

The first step is to find the structural code and

requirement attributes of software systems i.e. software

metrics. The real-time defect data sets are taken from

http://promisedata.org/repository. The Qualitative and

quantitative dataset is about 31 projects completed in a

consumer electronics company (one row per project). There

is a mixture of qualitative attributes (these are measured on

a 5 point ranked scale VL, L, M, H, VH) and quantitative

attributes whose scale is stated [12].

Qualitative factors

The Quantitative factors are grouped under five topics

[12]:

 Specification and Documentation process

 New Functionality

 Design and Development process

 Testing and Rework

 Project Management
Each factor is named and described by a question to be

answered. The descriptive questions were specifically

tailored for the organization providing the project data.

The following are the Specification and documentation

process attributes [12]:

1) Relevant Experience of Spec and Doc Staff: How
would you rate the experience and skill set of your team
members for executing this project during the
requirements and specifications phase?

2) Quality of Documentation inspected: How would you
rate the quality of the requirements given by the client
or other groups?

3) Regularity of Spec and Doc Reviews: Have all the
Requirements, Design Documents and Test
Specifications been reviewed in the project?

4) Standard Procedures Followed: In your opinion, how
effective was the review procedure?

5) Quality of Documentation inspected: What was the
review effectiveness in the project for the requirements
phase?

6) Spec Defects Discovered in Review: In your opinion, is
the defect density of spec reviews on the high side?

7) Requirements Stability: How stable were the
requirements in your project?

The following are the details of the new functionality

attributes [12]:

1) Complexity of new functionality: What was the
complexity of the new development or new features
that happened in your project?

2) Scale of New functionality implemented: How large
was the extent of working on new functionality rather

Neural Network Approach for Software Defect Prediction

Based on Quantitative and Qualitative Factors

Parvinder S. Sandhu, Suman Lata, and Dalveer Kaur Grewal

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

298

than just enhancing the older functionalities in your
project?

3) Total no. of Inputs and Outputs: For your product
domain, would you rate the total no of outputs/inputs
(newly developed / enhanced) as high?

The following are the Design and development process

attributes [12]:

1) Relevant Development Staff Experience: How would
you rate the experience and skill set of your team
members for executing this project during the design
and development phase?

2) Programmer capability: On an average, how would you
assess the Quality of code produced by the team
members?

3) Defined processes followed: What was the review
effectiveness in the project for the Design and
Development phase?

4) Development Staff motivation: What is your opinion
about the motivation levels of your team members?

The following are the Testing and Rework attributes [12]:

5) Testing Process Well Defined: How effective was the
testing process adopted by your project?

6) Staff Experience –Unit Test: What was the level of
software test competence of those performing the unit
test?

7) Staff Experience –Independent Test: How would you
rate the experience and skill set of the independent test
engineers (Integration, functional or subsystem testing,
Alpha, Beta)?

8) Quality of Documented Test Cases: What was the
extent of the defects that were found using formal
testing against the intuitive/random testing?

The following are the Project Management attributes

[12] :

1) Dev. Staff Training Quality: What is the coverage of
the identified project / process related trainings as well
as trainings identified as per the roles, by the team
members?

2) Configuration Management: How effective is the
project’s document management and configuration
management?

3) Project Planning: Has the project planning been done
adequately?

4) Scale of Distributed Communication: How many
sites/groups were involved in the project?

5) Stakeholder involvement: To what extent were the key
project stakeholders involved?

6) Customer involvement: How good was customer
interaction in the project?

7) Vendor Management: How would you rate the Vendor
/Sub-contractor Management (if applicable)?

8) Internal communication/ interaction: How would you
the rate the quality of internal interactions /
communication within the team?

9) Process Maturity: What’s your opinion about process
maturity in the project?

Qualitative data are expressed on a 5-point ordinal scale.

The ordinal values used are: Very High, High, Medium,

Low, Very Low. The data values were gathered using a

questionnaire, which was completed by the project manager,

project quality manger or other senior project staff. The

number of faults present in the modules is also expressed on

a 5-point ordinal scale: Very High, High, Medium, Low and

Very Low.

Quantitative Factors

The following are the Quantitative factors are [12]:

 Software size: the size, in KLoC of the developed
code and the development language

 Effort: development effort measured in person
hours for the software development, from
specification review to unit test

B. Analyze, Refine Metrics and Normalize the Metric

Values

In the next step the metrics are analyzed, refined and

normalized and then used for modeling of fault prediction in

software systems.

C. Explore Different Neural Network Techniques

It is very important to find the suitable algorithm for

modeling of software components into different levels of

fault severity in software systems. The following five Neural

Network algorithms are experimented:

 Batch Gradient Descent

 Batch Gradient Descent with momentum

 Variable Learning Rate

 Variable Learning Rate training with momentum

 Resilient Backpropagation

1) Backpropagation Algorithm:

There are many variations of the backpropagation

algorithm, several of which are described in the literature.

The simplest implementation of backpropagation learning

updates the network weights and biases in the direction in

which the performance function decreases most rapidly, the

negative of the gradient. One iteration of this algorithm can

be written as:

gxx kkkk 
1

 (1)

where, xk is a vector of current weights and biases, gk is the

current gradient, and αk is the learning rate.

There are two different ways in which this gradient

descent algorithm can be implemented: incremental mode

and batch mode. In incremental mode, the gradient is

computed and the weights are updated after each input is

applied to the network. In batch mode, all the inputs are

applied to the network before the weights are updated.

In batch mode the weights and biases of the network are

updated only after the entire training set has been applied to

the network. The gradients calculated at each training

example are added together to determine the change in the

weights and biases.

In batch steepest descent algorithm weights and biases are

updated in the direction of the negative gradient of the

performance function.

Hence, Batch Gradient Descent without momentum

Training Algorithm can train any network as long as its

weight, net input, and transfer functions have derivative

functions. Backpropagation is used to calculate derivatives

of performance PERF with respect to the weight and bias

variables X. Each variable is adjusted according to gradient

descent:

X

PERF
X l r




 (2)

where lr is the learning rate .

Training stops when any of these conditions occurs:

1) The maximum number of Epochs (repetitions) is

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

299

reached.

2) The maximum amount of Time to train has been

exceeded.

3) Performance has been minimized to the Performance

Goal.

4) The performance gradient falls below Minimum

Performance Gradient value.

5) Validation performance has increased more than

Maximum number of validation Failures value

Gradient descent with momentum backpropagation is a

network training function that updates weight and bias

values according to gradient descent with momentum. It can

train any network as long as its weight, net input, and

transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of

performance PERF with respect to the weight and bias

variables X. Each variable is adjusted according to gradient

descent with momentum:

X

PERF
X mlXm crPERFc




)1((3)

where ӘXPERF he previous change to the weight or bias, lr is

the learning rate and mc is the momentum constant.

Training stops when any of these conditions mentioned in

Batch Gradient Descent without momentum Training

Algorithm occurs.

2) Variable Learning Rate:

With standard steepest descent, the learning rate is held

constant throughout training. The performance of the

algorithm is very sensitive to the proper setting of the

learning rate. If the learning rate is set too high, the

algorithm can oscillate and become unstable. If the learning

rate is too small, the algorithm takes too long to converge. It

is not practical to determine the optimal setting for the

learning rate before training, and, in fact, the optimal

learning rate changes during the training process, as the

algorithm moves across the performance surface.

Variable Learning Rate without momentum is a network

training function that updates weight and bias values

according to gradient descent with adaptive learning rate.

Here, Backpropagation is used to calculate derivatives of

performance DPERF with respect to the weight and bias

variables X. Each variable is adjusted according to gradient

descent:

X

PERF
X l r




 (4)

Each of epoch, if performance decreases toward the goal,

then the learning rate is increased by the factor lr_inc. If

performance increases by more than the factor max_perf_inc,

the learning rate is adjusted by the factor lr_dec and the

change, which increased the performance, is not made.

Training stops when any of these conditions mentioned in

Batch Gradient Descent without momentum Training

Algorithm occurs.

Gradient descent w/momentum and adaptive lr

backpropagation or Variable Learning Rate Training with

momentum is a network training function that updates

weight and bias values according to gradient descent

momentum and an adaptive learning rate.

In this algorithm Backpropagation is used to calculate

derivatives of performance PERF with respect to the weight

and bias variables X. Each variable is adjusted according to

the gradient descent with momentum:

X

PERF
X mlXm crPERFc




 (5)

where ӘXPERF he previous change to the weight or bias, lr is

the learning rate and mc is the momentum constant.

For each epoch, if performance decreases toward the goal,

then the learning rate is increased by the factor lr_inc. If

performance increases by more than the factor max_perf_inc,

the learning rate is adjusted by the factor lr_dec and the

change, which increased the performance, is not made.

Training stops when any of these conditions mentioned in

Batch Gradient Descent without momentum Training

Algorithm occurs.

3) Resilient Backpropagation:

Multilayer networks typically use sigmoid transfer

functions in the hidden layers. These functions are often

called "squashing" functions, because they compress an

infinite input range into a finite output range. Sigmoid

functions are characterized by the fact that their slopes must

approach zero as the input gets large. This causes a problem

when you use steepest descent to train a multilayer network

with sigmoid functions, because the gradient can have a

very small magnitude and, therefore, cause small changes in

the weights and biases, even though the weights and biases

are far from their optimal values.

The purpose of the resilient backpropagation training

algorithm is to eliminate these harmful effects of the

magnitudes of the partial derivatives. Only the sign of the

derivative is used to determine the direction of the weight

update; the magnitude of the derivative has no effect on the

weight update. The size of the weight change is determined

by a separate update value. The update value for each

weight and bias is increased by some factor whenever the

derivative of the performance function with respect to that

weight has the same sign for two successive iterations.

Resilient Backpropagation can train any network as long as

its weight, net input, and transfer functions have derivative

functions. In this algorithm Backpropagation is used to

calculate derivatives of performance PERF with respect to

the weight and bias variables X. Each variable is adjusted

according to the following equation:

)(g
X

signXX  (6)

where the elements of ΔX are all initialized to 0 and gX is the

gradient. At each iteration the elements of ΔX are modified.

If an element of gX changes sign from one iteration to the

next, then the corresponding element of deltaX is decreased

by delta_dec. If an element of gX maintains the same sign

from one iteration to the next, then the corresponding

element of deltaX is increased by delta_inc [13].

In the implementation first the network is created and

training is performed on the training data. Thereafter the

trained network is tested by testing data in the testing phase.

The results of the different algorithms are expressed in terms

of MAE, RMSE and Accuracy values. The details of the

different criteria used are in next step. The following steps

will be followed to train a Neural Network:

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

300

• Load the data

• Divide data into Training, Validation and Test data

• Set number of hidden neurons

• Training is accomplished by sending a given set of

inputs through the network and comparing the results with a

set of target outputs.

• If there is a difference between the actual and target

outputs, the weights are adjusted to produce a set of outputs

closer to the target values.

• Network weights are determined by adding an error

correction value to the old weight.

• The amount of correction is determined

• This Training procedure is repeated until the

network performance no longer improves.

• If the network is successfully trained, it can then be

given new sets of input and generally produce correct results

on its own

D. Comparison of Algorithms

The comparisons are made on the basis of the more

accuracy and least value of MAE and RMSE error values.

Accuracy value of the prediction model is the major criteria

used for comparison. The mean absolute error is chosen as

the standard error. The technique having lower value of

mean absolute error is chosen as the best fault prediction

technique.

1) Mean Absolute Error

Mean absolute error, MAE is the average of the

difference between predicted and actual value in all test

cases; it is the average prediction error [13]. The formula for

calculating MAE is given in equation 7.

n

cacaca nn
 ...

2211
 (7)

Assuming that the actual output is a, expected output is c.

2) Root Mean-Squared Error

RMSE is frequently used measure of differences between

values predicted by a model or estimator and the values

actually observed from the thing being modeled or estimated

[13]. It is just the square root of the mean square error as

shown in equation 8.

     
n

nn cacaca  
222

...2211 (8)

The mean-squared error is one of the most commonly

used measures of success for numeric prediction. This value

is computed by taking the average of the squared differences

between each computed value and its corresponding correct

value. The root mean-squared error is simply the square root

of the mean-squared-error. The root mean-squared error

gives the error value the same dimensionality as the actual

and predicted values.

The mean absolute error and root mean squared error is

calculated for each machine learning algorithm i.e. Neural

Network.

III. RESULTS AND DISCUSSIONS

The proposed Neural based methodology is implemented

in MATLAB 7.4. MATLAB (Matrix Laboratory)

environment is one such facility which lends a high

performance language for technical computing. The Batch

Gradient Descent (BGD), Batch Gradient Descent with

momentum (BGDWM), Variable Learning Rate (VLR),

Variable Learning Rate training with momentum (VLRM)

and Resilient Backpropagation (RB) algorithms are

experimented for training a neural network separately. The

above said algorithms are applied on the dataset and the

performance of the above algorithms is shown as Error v/s

Epoch graph in the figures 1 to 5.

Fig. 1. Performance of the batch gradient descent algorithm for fault
dataset

Fig. 2. Performance of the batch gradient descent with momentum
algorithm

Fig. 3. Performance of the variable learning rate algorithm

During the training of Neural Network with Batch

Gradient Descent (BGD) algorithm the Mean Square Error

(MSE) value stabilizes at 1.66701 after 5
th

 epoch of training

and the training stops after 35 epochs as shown in figure 1.

In case of Batch Gradient Descent with momentum

(BGDWM) algorithm the MSE value stabiles to 1.66701

after 70
th

 epoch as shown in figure 2. As observed from

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

301

figures 3 and 4 showing training with Variable Learning

Rate (VLR) and Variable Learning Rate with momentum

(VLRM) algorithms the MSE value stabiles after 250
th

epoch at 0.661235 and 0.525382 values respectively. The

Resilient Backpropagation (RB) algorithm produces the

MSE value 1.66701, as shown in figure 5, which is equal to

the MSE value evidenced in the BGD and BGDWM

algorithms.

Fig. 4. Performance of the variable learning rate with momentum
algorithm for fault dataset

Fig. 5. Performance of the resilient backpropagation algorithm for fault
dataset

TABLE I: RESULTS OF DIFFERENT NEURAL NETWORK BASED ALGORITHMS

FOR PREDICTION OF FAULTS

Sr.

No

.

Algorithm MAE RMSE
Accuracy

%

1
Batch Gradient Descent

without momentum
1.1405 1.2911 41.9355

2
Batch Gradient Descent with
momentum

1.1405 1.2911 41.9355

3
Variable Learning Rate

without momentum
0.6541 0.8132 54.8387

4
Variable Learning Rate

training with momentum
0.5445 0.7248 77.4194

5 Resilient Backpropagation 1.1405 1.2911 41.9355

The MAE, RMSE and Accuracy % of the five algorithms

experimented is shown in the Table I. The Batch Gradient

Descent without momentum algorithm, Batch Gradient

Descent with momentum and Resilient Backpropagation

algorithms shows 1.1405, 1.2911 and 41.9355 as MAE,

RMSE and Accuracy% values. Whereas Variable Learning

Rate without momentum algorithm have produced 0.6541,

0.8132 and 54.8387 as MAE, RMSE and Accuracy%

values. In case of Variable Learning Rate training with

momentum algorithm MAE, RMSE and Accuracy% values

calculated are 0.5445, 0.7248 and 77.4194 respectively.

IV. CONCLUSION

Prediction of Level of faults in modules supports software

quality engineering through improved scheduling and

project control. It is a key step towards steering the software

testing and improving the effectiveness of the whole process.

Fault prediction is used to improve software process control

and achieve high software reliability.

In this study, we investigate whether qualitative and

quantitative factors can be used to identify level of number

of faulty software modules. We compare the performance of

Batch Gradient Descent (BGD), Batch Gradient Descent

with momentum (BGDWM), Variable Learning Rate (VLR),

Variable Learning Rate training with momentum (VLRM)

and Resilient Backpropagation (RB) based Neural Network

for the fault dataset. Variable Learning Rate training with

momentum algorithm shows best results among the five

algorithms experimented with least values of MAE and

RMSE calculated as 0.5445 and 0.7248 respectively. The

Accuracy% of prediction of the level of number of faults for

Variable Learning Rate training with momentum algorithm

is also highest i.e. 77.4194.

The performance of Batch Gradient Descent without

momentum algorithm, Batch Gradient Descent with

momentum and Resilient Backpropagation algorithms

comes out to be the same for the fault dataset used and the

results of the Variable Learning Rate without momentum

are second best but much below than the best one.

It is therefore, concluded the Variable Learning Rate with

momentum based neural network model is implemented and

the best algorithm for classification of the software

components into different level of number of faults present

in the modules of the software systems.

The future work can be extended in following directions:

• Most important attribute can be found for fault
prediction and this work can be extended to further
programming languages. More algorithms can be evaluated
and then we can find the best algorithm.

• Further investigation can be done and the impact of
attributes on the fault prediction can be found.

• Other dimensions of quality of software can be
considered for mapping the relation of attributes and fault
tolerance.

REFERENCES

[1] Y. Jiang, B. Cukic, and T. Menzies, “Fault Prediction Using Early
Lifecycle Data,” ISSRE 2007, the 18th IEEE Symposium on Software
Reliability Engineering, IEEE Computer Society, Sweden, 2007, pp.
237-246.

[2] N. Seliya, T. M. Khoshgoftaar, and S. Zhong, “Analyzing software
quality with limited fault-proneness defect data,” in proceedings of the
Ninth IEEE international Symposium on High Asssurance System
Engineering, Germany, 2005, pp. 89-98.

[3] J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Transactions on Software Engineering, vol. 18, issue:
5, pp. 423-433, 1992.

[4] P. Bellini, “Comparing Fault-Proneness Estimation Models,” 10th
IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS'05), China, 2005, pp. 205-214.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

302

[5] F. Lanubile, A. Lonigro, and G. Visaggio, “Comparing Models for
Identifying Fault-Prone Software Components,” in Proceedings of
Seventh International Conference on Software Engineering and
Knowledge Engineering, USA, 1995, pp. 12-19.

[6] N. E. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Transactions on Software Engineering, vol. 25, issue: 5,
pp. 675-689, 1999.

[7] Runeson, C. Wohlin, and M. C. Ohlsson, “A Proposal for Comparison
of Models for Identification of Fault-Proneness,” Journal of System
and Software, vol. 56, issue: 3, pp. 301–320, 2001

[8] Runeson, C. Wohlin, and M. C. Ohlsson, “A Proposal for Comparison
of Models for Identification of Fault-Proneness,” Journal of System
and Software, vol. 56, issue: 3, pp. 301–320, 2001.

[9] V. U. B. Challagulla, F. B. Bastani, I. L. Yen, and Pau1, “Empirical
assessment of machine learning based software defect prediction
techniques,” 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, USA, pp. 263-270, 2005.

[10] S. Basu, A. Banerjee, and R. Moorey, “Semi-Supervised Clusering by
Seeding,” in Proceedings of the 19th International Conference on
Machine Learning, Sydney, 2002, pp. 19-26

[11] C. E. Brodely and M. A. Friedl, “Identifying mislabeled training Data.”
Journal of Artificial Intelligence Research, vol. 11, pp.131-167, 1999.

[12] Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Lukasz
Radlinski, and Paul Krause, “Project Data Incorporating Qualitative
Factors for Improved Software Defect,” in Proceedings of the
PROMISE workshop, 2007.

[13] Mathworks [Online]. Available: www.mathworks.com/help

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

303

