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Abstract—These Quality of a software component can be 

expressed in terms of level of number of faults present in data. 

Quality estimations are made using fault data available from 

previously developed similar type of projects and the training 

data consisting of software measurements. In this paper, an 

attempt is made to use Batch Gradient Descent (BGD), Batch 

Gradient Descent with momentum (BGDWM), Variable 

Learning Rate (VLR), Variable Learning Rate training with 

momentum (VLRM) and Resilient Backpropagation (RB) 

based neural network approach to identify the relation 

between the various qualitative as well as quantitative factor of 

the modules with the number of faults present in the module 

that will be helpful for prediction of the level of number of 

faults present in the modules. The dataset used is elicited from 

31 completed software projects in the consumer electronics 

industry. The data were gathered using a questionnaire 

distributed to managers of recent projects. The performance of 

the algorithms is recorded in terms of MAE, RMSE and 

Accuracy percentage values. 

 
Index Terms—Neural network, quantitive, qualittative, 

software fault, defect data, and software quality 

 

I. INTRODUCTION  

A software fault is a defect that causes software failure in 

an executable product. In software engineering, the non-

conformance of software to its requirements is commonly 

called a bug. Software Engineers distinguish between 

software faults, software failures and software bugs. In case 

of a failure, the software does not do what the user expects 

but on the other hand fault is a hidden programming error 

that may or may not actually manifest as a failure and the 

non-conformance of software to its requirements is 

commonly called a bug .  

A software quality model is a useful tool for meeting the 

objectives of software reliability and software testing 

initiatives of different projects. Metrics available in the early 

lifecycle data can be used to verify the need for increased 

quality monitoring during the development. Different 

modeling techniques can be used to identify fault prone 

modules[1]-[11]. 

In this study, we investigate whether qualitative and 

quantitative factors can be used to identify level of number 

of faulty software modules using different neural network 

approaches.   
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II. METHODOLOGY  

The methodology consists of the following steps: 

A. Find the Quantitivative and Qualittiative attributes 

The first step is to find the structural code and 

requirement attributes of software systems i.e. software 

metrics. The real-time defect data sets are taken from 

http://promisedata.org/repository. The Qualitative and 

quantitative dataset is about 31 projects completed in a 

consumer electronics company (one row per project). There 

is a mixture of qualitative attributes (these are measured on 

a 5 point ranked scale VL, L, M, H, VH) and quantitative 

attributes whose scale is stated [12]. 

Qualitative factors 

The Quantitative factors are grouped under five topics 

[12]: 

 Specification and Documentation process  

 New Functionality  

 Design and Development process  

 Testing and Rework  

 Project Management  
Each factor is named and described by a question to be 

answered. The descriptive questions were specifically 

tailored for the organization providing the project data.  

The following are the Specification and documentation 

process attributes [12]: 

1) Relevant Experience of Spec and Doc Staff: How 
would you rate the experience and skill set of your team 
members for executing this project during the 
requirements and specifications phase? 

2) Quality of Documentation inspected: How would you 
rate the quality of the requirements given by the client 
or other groups? 

3) Regularity of Spec and Doc Reviews: Have all the 
Requirements, Design Documents and Test 
Specifications been reviewed in the project? 

4) Standard Procedures Followed: In your opinion, how 
effective was the review procedure? 

5) Quality of Documentation inspected: What was the 
review effectiveness in the project for the requirements 
phase? 

6) Spec Defects Discovered in Review: In your opinion, is 
the defect density of spec reviews on the high side? 

7) Requirements Stability: How stable were the 
requirements in your project? 

The following are the details of the new functionality 

attributes [12]: 

1) Complexity of new functionality: What was the 
complexity of the new development or new features 
that happened in your project? 

2) Scale of New functionality implemented: How large 
was the extent of working on new functionality rather 
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than just enhancing the older functionalities in your 
project? 

3) Total no. of Inputs and Outputs: For your product 
domain, would you rate the total no of outputs/inputs 
(newly developed / enhanced) as high? 

The following are the Design and development process 

attributes [12]: 

1) Relevant Development Staff Experience: How would 
you rate the experience and skill set of your team 
members for executing this project during the design 
and development phase? 

2) Programmer capability: On an average, how would you 
assess the Quality of code produced by the team 
members? 

3) Defined processes followed: What was the review 
effectiveness in the project for the Design and 
Development phase? 

4) Development Staff motivation: What is your opinion 
about the motivation levels of your team members? 

The following are the Testing and Rework attributes [12]: 

5) Testing Process Well Defined: How effective was the 
testing process adopted by your project? 

6) Staff Experience –Unit Test: What was the level of 
software test competence of those performing the unit 
test? 

7) Staff Experience –Independent Test: How would you 
rate the experience and skill set of the independent test 
engineers (Integration, functional or subsystem testing, 
Alpha, Beta)? 

8) Quality of Documented Test Cases: What was the 
extent of the defects that were found using formal 
testing against the intuitive/random testing? 

The following are the Project Management attributes  

[12] : 

1) Dev. Staff Training Quality: What is the coverage of 
the identified project / process related trainings as well 
as trainings identified as per the roles, by the team 
members? 

2) Configuration Management: How effective is the 
project’s document management and configuration 
management? 

3) Project Planning: Has the project planning been done 
adequately? 

4) Scale of Distributed Communication: How many 
sites/groups were involved in the project? 

5) Stakeholder involvement: To what extent were the key 
project stakeholders involved? 

6) Customer involvement: How good was customer 
interaction in the project? 

7) Vendor Management: How would you rate the Vendor 
/Sub-contractor Management (if applicable)? 

8) Internal communication/ interaction: How would you 
the rate the quality of internal interactions / 
communication within the team? 

9) Process Maturity: What’s your opinion about process 
maturity in the project? 

Qualitative data are expressed on a 5-point ordinal scale. 

The ordinal values used are: Very High, High, Medium, 

Low, Very Low. The data values were gathered using a 

questionnaire, which was completed by the project manager, 

project quality manger or other senior project staff. The 

number of faults present in the modules is also expressed on 

a 5-point ordinal scale: Very High, High, Medium, Low and 

Very Low. 

Quantitative Factors 

The following are the Quantitative factors are [12]: 

 Software size: the size, in KLoC of the developed 
code and the development language  

 Effort: development effort measured in person 
hours for the software development, from 
specification review to unit test 

B. Analyze, Refine Metrics and Normalize the Metric 

Values  

In the next step the metrics are analyzed, refined and 

normalized and then used for modeling of fault prediction in 

software systems.   

C. Explore Different Neural Network Techniques    

It is very important to find the suitable algorithm for 

modeling of software components into different levels of 

fault severity in software systems. The following five Neural 

Network algorithms are experimented: 

 Batch Gradient Descent  

 Batch Gradient Descent with momentum 

 Variable Learning Rate  

 Variable Learning Rate training with momentum 

 Resilient Backpropagation 

1) Backpropagation Algorithm: 

There are many variations of the backpropagation 

algorithm, several of which are described in the literature. 

The simplest implementation of backpropagation learning 

updates the network weights and biases in the direction in 

which the performance function decreases most rapidly, the 

negative of the gradient. One iteration of this algorithm can 

be written as: 

gxx kkkk 
1

 (1) 

where, xk   is a vector of current weights and biases, gk is the 

current gradient, and αk is the learning rate. 

There are two different ways in which this gradient 

descent algorithm can be implemented: incremental mode 

and batch mode. In incremental mode, the gradient is 

computed and the weights are updated after each input is 

applied to the network. In batch mode, all the inputs are 

applied to the network before the weights are updated.  

In batch mode the weights and biases of the network are 

updated only after the entire training set has been applied to 

the network. The gradients calculated at each training 

example are added together to determine the change in the 

weights and biases. 

In batch steepest descent algorithm weights and biases are 

updated in the direction of the negative gradient of the 

performance function.  

Hence, Batch Gradient Descent without momentum 

Training Algorithm can train any network as long as its 

weight, net input, and transfer functions have derivative 

functions. Backpropagation is used to calculate derivatives 

of performance   PERF with respect to the weight and bias 

variables X.  Each variable is adjusted according to gradient 

descent: 

X

PERF
X l r




  (2) 

where  lr is the learning rate .  

Training stops when any of these conditions occurs: 

1) The maximum number of Epochs (repetitions) is 
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reached. 

2) The maximum amount of Time to train has been 

exceeded. 

3) Performance has been minimized to the Performance 

Goal. 

4) The performance gradient falls below Minimum 

Performance Gradient value. 

5) Validation performance has increased more than 

Maximum number of validation Failures value  

Gradient descent with momentum backpropagation is a 

network training function that updates weight and bias 

values according to gradient descent with momentum. It can 

train any network as long as its weight, net input,  and 

transfer functions have derivative functions. 

Backpropagation is used to calculate derivatives of 

performance PERF with respect to the weight and bias 

variables X.  Each variable is adjusted according to gradient 

descent with momentum: 

X

PERF
X mlXm crPERFc




 )1(  (3) 

where ӘXPERF he previous change to the weight or bias, lr is 

the learning rate  and mc is the momentum constant. 

Training stops when any of these conditions mentioned in 

Batch Gradient Descent without momentum Training 

Algorithm occurs. 

2) Variable Learning Rate: 

With standard steepest descent, the learning rate is held 

constant throughout training. The performance of the 

algorithm is very sensitive to the proper setting of the 

learning rate. If the learning rate is set too high, the 

algorithm can oscillate and become unstable. If the learning 

rate is too small, the algorithm takes too long to converge. It 

is not practical to determine the optimal setting for the 

learning rate before training, and, in fact, the optimal 

learning rate changes during the training process, as the 

algorithm moves across the performance surface. 

Variable Learning Rate without momentum is a network 

training function that updates weight and bias values 

according to gradient descent with adaptive learning rate. 

Here, Backpropagation is used to calculate derivatives of 

performance DPERF with respect to the weight and bias 

variables X.  Each variable is adjusted according to gradient 

descent: 

X

PERF
X l r




  (4) 

Each of epoch, if performance decreases toward the goal, 

then the learning rate is increased by the factor lr_inc.  If 

performance increases by more than the factor max_perf_inc,  

the learning rate is adjusted by the factor lr_dec and the 

change, which increased the performance, is not made. 

Training stops when any of these conditions mentioned in 

Batch Gradient Descent without momentum Training 

Algorithm occurs. 

Gradient descent w/momentum and adaptive lr 

backpropagation or Variable Learning Rate  Training with 

momentum is a network training function that updates 

weight and bias values according to gradient descent 

momentum and an adaptive learning rate. 

In this algorithm Backpropagation is used to calculate 

derivatives of performance PERF with respect to the weight 

and bias variables X.  Each variable is adjusted according to 

the gradient descent with momentum: 

X

PERF
X mlXm crPERFc




  (5) 

where ӘXPERF he previous change to the weight or bias, lr is 

the learning rate  and mc is the momentum constant.  

For each epoch, if performance decreases toward the goal, 

then the learning rate is increased by the factor lr_inc.  If 

performance increases by more than the factor max_perf_inc,  

the learning rate is adjusted by the factor lr_dec and the 

change, which increased the performance, is not made. 

Training stops when any of these conditions mentioned in 

Batch Gradient Descent without momentum Training 

Algorithm occurs. 

3) Resilient Backpropagation:  

Multilayer networks typically use sigmoid transfer 

functions in the hidden layers. These functions are often 

called "squashing" functions, because they compress an 

infinite input range into a finite output range. Sigmoid 

functions are characterized by the fact that their slopes must 

approach zero as the input gets large. This causes a problem 

when you use steepest descent to train a multilayer network 

with sigmoid functions, because the gradient can have a 

very small magnitude and, therefore, cause small changes in 

the weights and biases, even though the weights and biases 

are far from their optimal values.  

The purpose of the resilient backpropagation training 

algorithm is to eliminate these harmful effects of the 

magnitudes of the partial derivatives. Only the sign of the 

derivative is used to determine the direction of the weight 

update; the magnitude of the derivative has no effect on the 

weight update. The size of the weight change is determined 

by a separate update value. The update value for each 

weight and bias is increased by some factor whenever the 

derivative of the performance function with respect to that 

weight has the same sign for two successive iterations. 

Resilient Backpropagation can train any network as long as 

its weight, net input,  and transfer functions have derivative 

functions. In this algorithm Backpropagation is used to 

calculate derivatives of performance PERF with respect to 

the weight and bias variables X.  Each variable is adjusted 

according to the following equation: 

)(g
X

signXX   (6) 

where the elements of ΔX are all initialized to 0 and gX is the 

gradient.  At each iteration the elements of ΔX are modified.  

If an element of gX changes sign from one iteration to the 

next, then the corresponding element of deltaX is decreased 

by delta_dec.  If an element of gX  maintains the same sign 

from one iteration to the next,  then the corresponding 

element of deltaX is increased by delta_inc   [13]. 

In the implementation first the network is created and 

training is performed on the training data. Thereafter the 

trained network is tested by testing data in the testing phase. 

The results of the different algorithms are expressed in terms 

of MAE, RMSE and Accuracy values. The details of the 

different criteria used are in next step. The following steps 

will be followed to train a Neural Network: 
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• Load the data 

• Divide data into Training, Validation and Test data 

• Set number of hidden neurons 

• Training is accomplished by sending a given set of 

inputs through the network and comparing the results with a 

set of target outputs. 

• If there is a difference between the actual and target 

outputs, the weights are adjusted to produce a set of outputs 

closer to the target values. 

• Network weights are determined by adding an error 

correction value to the old weight. 

• The amount of correction is determined  

• This Training procedure is repeated until the 

network performance no longer improves. 

• If the network is successfully trained, it can then be 

given new sets of input and generally produce correct results 

on its own 

D. Comparison of Algorithms     

The comparisons are made on the basis of the more 

accuracy and least value of MAE and RMSE error values. 

Accuracy value of the prediction model is the major criteria 

used for comparison. The mean absolute error is chosen as 

the standard error. The technique having lower value of 

mean absolute error is chosen as the best fault prediction 

technique. 

1) Mean Absolute Error 

Mean absolute error, MAE is the average of the 

difference between predicted and actual value in all test 

cases; it is the average prediction error [13]. The formula for 

calculating MAE is given in equation 7. 

n

cacaca nn
 ...

2211
 (7) 

Assuming that the actual output is a, expected output is c. 

2) Root Mean-Squared Error  

RMSE is frequently used measure of differences between 

values predicted by a model or estimator and the values 

actually observed from the thing being modeled or estimated 

[13]. It is just the square root of the mean square error as 

shown in equation 8. 

     
n

nn cacaca  
222

...2211  (8) 

The mean-squared error is one of the most commonly 

used measures of success for numeric prediction. This value 

is computed by taking the average of the squared differences 

between each computed value and its corresponding correct 

value. The root mean-squared error is simply the square root 

of the mean-squared-error. The root mean-squared error 

gives the error value the same dimensionality as the actual 

and predicted values.  

The mean absolute error and root mean squared error is 

calculated for each machine learning algorithm i.e. Neural 

Network. 

 

III. RESULTS AND DISCUSSIONS 

The proposed Neural based methodology is implemented 

in MATLAB 7.4. MATLAB (Matrix Laboratory) 

environment is one such facility which lends a high 

performance language for technical computing. The Batch 

Gradient Descent (BGD), Batch Gradient Descent with 

momentum (BGDWM), Variable Learning Rate (VLR), 

Variable Learning Rate training with momentum (VLRM) 

and Resilient Backpropagation (RB) algorithms are 

experimented for training a neural network separately. The 

above said algorithms are applied on the dataset and the 

performance of the above algorithms is shown as Error v/s 

Epoch graph in the figures 1 to 5. 

 

Fig. 1. Performance of the batch gradient descent algorithm for fault 
dataset 

 

Fig. 2. Performance of the batch gradient descent with momentum  
algorithm 

 

Fig. 3.  Performance of the variable learning rate algorithm 

 

During the training of Neural Network with Batch 

Gradient Descent (BGD) algorithm the Mean Square Error 

(MSE) value stabilizes at 1.66701 after 5
th

 epoch of training 

and the training stops after 35 epochs as shown in figure 1. 

In case of Batch Gradient Descent with momentum 

(BGDWM) algorithm the MSE value stabiles to 1.66701 

after 70
th

 epoch as shown in figure 2. As observed from 
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figures 3 and 4 showing training with Variable Learning 

Rate (VLR) and Variable Learning Rate with momentum 

(VLRM) algorithms the MSE value stabiles after 250
th
 

epoch at 0.661235 and 0.525382 values respectively. The 

Resilient Backpropagation (RB) algorithm produces the 

MSE value 1.66701, as shown in figure 5, which is equal to 

the MSE value evidenced in the BGD and BGDWM 

algorithms. 

 

Fig. 4. Performance of the variable learning rate with momentum 
algorithm for fault dataset 

 

Fig. 5. Performance of the resilient backpropagation algorithm for fault 
dataset 

TABLE I: RESULTS OF DIFFERENT NEURAL NETWORK BASED ALGORITHMS 

FOR PREDICTION OF FAULTS 

Sr. 

No

. 

Algorithm MAE RMSE 
Accuracy

% 

1 
Batch Gradient Descent 

without momentum 
1.1405 1.2911 41.9355 

2 
Batch Gradient Descent with 
momentum 

1.1405 1.2911 41.9355 

3 
Variable Learning Rate 

without momentum 
0.6541 0.8132 54.8387 

4 
Variable Learning Rate  

training with momentum 
0.5445 0.7248 77.4194 

5 Resilient Backpropagation 1.1405 1.2911 41.9355 

 
The MAE, RMSE and Accuracy % of the five algorithms 

experimented is shown in the Table I. The Batch Gradient 

Descent without momentum algorithm, Batch Gradient 

Descent with momentum and Resilient Backpropagation 

algorithms shows  1.1405, 1.2911 and 41.9355 as MAE, 

RMSE and Accuracy% values. Whereas  Variable Learning 

Rate without momentum algorithm have produced 0.6541, 

0.8132 and  54.8387 as MAE, RMSE and Accuracy% 

values. In case of Variable Learning Rate training with 

momentum algorithm MAE, RMSE and Accuracy% values 

calculated are 0.5445,  0.7248 and  77.4194  respectively. 

 

IV. CONCLUSION 

Prediction of Level of faults in modules supports software 

quality engineering through improved scheduling and 

project control. It is a key step towards steering the software 

testing and improving the effectiveness of the whole process. 

Fault prediction is used to improve software process control 

and achieve high software reliability.  

In this study, we investigate whether qualitative and 

quantitative factors can be used to identify level of number 

of faulty software modules. We compare the performance of 

Batch Gradient Descent (BGD), Batch Gradient Descent 

with momentum (BGDWM), Variable Learning Rate (VLR), 

Variable Learning Rate training with momentum (VLRM) 

and Resilient Backpropagation (RB) based Neural Network 

for the fault dataset. Variable Learning Rate training with 

momentum algorithm shows best results among the five 

algorithms experimented with least values of MAE and 

RMSE calculated as 0.5445 and 0.7248 respectively. The 

Accuracy% of prediction of the level of number of faults for 

Variable Learning Rate training with momentum algorithm 

is also highest i.e. 77.4194.  

The performance of Batch Gradient Descent without 

momentum algorithm, Batch Gradient Descent with 

momentum and Resilient Backpropagation algorithms 

comes out to be the same for the fault dataset used and the 

results of the Variable Learning Rate without momentum 

are second best but much below than the best one. 

It is therefore, concluded the Variable Learning Rate with 

momentum based neural network model is implemented and 

the best algorithm for classification of the software 

components into different level of number of faults present 

in the modules of the software systems.  

The future work can be extended in following directions: 

• Most important attribute can be found for fault 
prediction and this work can be extended to further 
programming languages. More algorithms can be evaluated 
and then we can find the best algorithm. 

• Further investigation can be done and the impact of 
attributes on the fault prediction can be found. 

• Other dimensions of quality of software can be 
considered for mapping the relation of attributes and fault 
tolerance. 
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