
  

 

Abstract—A new method for fault diagnosis of discrete event 

systems modeled by Neural Petri Nets (NPNs) is presented in 

this paper. Assuming that the PN structure and initial marking 

are known, faults are modeled by unobservable transitions.  

Neural networks (NNs) have important role to improve the 

method. The outputs of them are connected to unobservable 

transitions and yield the percentage of faults that may happen 

for prioritize the faults by online computation of the set of 

possible fault events. In this method the operator checks the 

fault that has more value at first. So we reduce the time that 

spends for repairing the system. Moreover, the graphical 

representation of the nets allows the diagnoser agent to compute 

off-line reduced portions of the net in order to improve the 

efficiency of the online computation, without a big increase in 

terms of memory requirement. 

 
Index Terms—Discrete event systems (DES), fault diagnosis, 

Neural networks (NNs), Petri nets (PNs)  

 

I. INTRODUCTION 

The diagnostics of industrial processes is a scientific 

discipline aimed at the detection of faults in industrial plants, 

their isolation, and finally their identification. Its main task is 

the diagnosis of process anomalies and faults in process 

components, sensors and actuators. Early diagnosis of faults 

that might occur in the supervised process renders it possible 

to perform important preventing actions. Moreover, it allows 

one to avoid heavy economic losses involved in stopped 

production, the replacement of elements and parts [1]. 

The operation of large and complex systems requires that 

the coordination systems possess fault recovery capabilities. 

In automated manufacturing systems, this ability is included 

mainly to eliminate unnecessary risks to humans or 

hazardous situations into the system as well as to maintain the 

production rate. However, introducing this capability to the 

coordination system possesses challenging problems that 

have been addressed through several approaches and 

methods. Most of these approaches include stages, such as 

detection, isolation, and confinement of the fault [2]. 

Discrete event systems (DES) based methodologies for 

fault diagnosis are applicable not only to systems normally 

modeled as DES, but also to systems that traditionally are 

treated as continuous-time dynamic systems. In general, DES 

approaches to fault diagnosis are suitable for failures that 
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cause a distinct change in the state of system components but 

do not bring the system to a halt: examples are equipment 

failures (stuck failure of valves, stalling of actuators, 

controller failures, etc.) usual in flight control systems or 

heating and air conditioning systems, and process failures 

(buffer overflow) usual in manufacturing systems [3]. 

Recently, neural networks (NNs) have been applied to the 

fault diagnosis problem because of their good capabilities in 

function approximation. Specifically, online approximation 

method using NNs has been presented for identifying the 

fault functions [4], [5]. 

In [6] a new architecture for a fault diagnosis competitive 

neural network is introduced. In this system, the test matrix 

and the probability vector of faults are not known a prior. The 

neural system starts from a completely vague state and the 

weights of connections, which affect the possibility of 

detecting the fault in each unit, are modified during the 

learning procedure on the base of different tests. 

In [7] faults are not explicitly taken into account in the 

model,  and two types of faults have been defined: a place 

fault that corrupts the net marking, and a transition fault that 

causes an incorrect  update of the marking after events 

occurrences and In [3] just the maximum and minimum of 

faults are detected and they are not sure if the specific fault 

would occurs or not. 

In this paper a new technique for the fault diagnosis is used. 

Faults are modeled by unobservable transitions. Moreover, 

we assume that there may be additional unobservable 

transitions associated with the system legal behaviour and 

that the marking reached after the firing of any transition is 

unknown. The Petri nets (PNs) are connected to NNs and the 

weights of NNs are training then the outputs of NNs specify 

the percentage of each fault that may happen. The proposed 

diagnoser works on-line: it waits for the firing of an 

observable transition and employs an algorithm based on the 

definition and solution of some integer linear programming 

problems to decide whether the system behaviour is normal 

or exhibits some possible faults. The results characterize the 

properties that the PN modeling the system fault behaviour 

has to fulfill in order to reduce the on-line computational 

effort. 

A good compromise to speed up the online diagnosis is to 

precompute something offline. This is particularly efficient 

when PN are used to model the plant. In fact, working on the 

net structure some useful information can be computed 

offline improving the efficiency of the online diagnosis, 

without a big increase in terms of memory request. In this 

paper it is shown that the programming problems to be solved 

by the diagnoser can be formulated on reduced portions of the 

net properly computed offline. 
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II. BACKGROUNDS AND BASIC ASSUMPTIONS 

A. Basic Petri Nets Notation 

Petri nets (PNs) are a graphical and mathematical 

modeling tool applicable to many systems. They are a 

promising tool for describing and studying information 

processing systems that are characterized as being concurrent, 

asynchronous, distributed, parallel, nondeterministic, and/or 

stochastic. As a graphical tool, PNs can be used as a visual 

communication aid similar to flow charts, block diagrams, 

and networks. In addition, tokens are used in these nets to 

simulate the dynamic and concurrent activities of systems. As 

a mathematical tool, it is possible to set up state equations, 

algebraic equations, and other mathematical models 

governing the behavior of systems. A Petri net (PN) is a 

particular kind of directed graph, together with an initial state 

called the initial marking, 0M . The underlying graph N of a 

PN is a directed, weighted, bipartite graph consisting of two 

kinds of nodes, called places and transitions, where arcs are 

either from a place to a transition or from a transition to a 

place. In graphical representation, places are drawn as circles, 

transitions as bars or boxes. Arcs are labeled with their 

weights (positive integers), where a k-weighted arc can be 

interpreted as the set of k parallel arcs. Labels for unity 

weight are usually omitted. A marking (state) assigns to each 

place a non negative integer. If a marking assigns to place p a 

nonnegative integer k, we say that p is marked with k tokens. 

Pictorially, we place k black dots (tokens) in place p. A 

marking is denoted by M, an m-vector, where m is the total 

number of places. The p
th

 component of M, denoted by M(p), 

is the number of tokens in place p [8].For a complete review 

on PNs refer to [8]. A formal definition of a PN is given in 

Table I. 

B.  Marking Projections 

Definition : A PN [8] is a bipartite graph described by 

PN=(P, T, Pre, Post), where P is a set of places with 

cardinality m, T is a set of transitions with cardinality n,  Pre: 

P×T→N and Post: P×T→N are the pre- and post-incidence 

matrices, respectively, which specify the arcs connecting 

places and transitions. Matrix C=Post-Pre is the m × n 

incidence matrix of the net PN. Table I shows a formal 

definition of a PN. 

For the pre- and post-sets we use the dot notation, e.g., 

t={pP: Pre(p,t)>0}. The state of a PN is given by its 

current marking, which is a mapping M: P→N, assigning to 

each place of the net a nonnegative number of tokens. A PN 

system 〈 
0

, MPN  is a net PN with an initial marking 

0M . A transition T
f

t   is enabled at a marking M if and 

only if (iff) for each jtp . , it holds M(p)≥Pre(p, jt ) and we 

write 
j

tM [  to denote that Tt j   is enabled at marking 

M. Let 
kbbb ttt ...

21
  be a sequence of transitions and let 

k=|σ| be its length, given by the number of transitions that σ 

contains. If a transition Tt   appears in the sequence σ, we 

write t . Moreover, the notation [M indicates that 

the sequence σ is enabled at M and MM [  indicates that 

the enabled sequence σ may fire at M yielding M’. We also 

denote qt )(


 the firing vector associated with a sequence 

σ, i.e., qt )(


 if transition t is contained q times in σ. A 

marking M is said reachable from 
0

, MPN iff there 

exists a firing sequence σ such that MM [
0

. The set of 

TABLE I: FORMAL DEFINITION OF A PETRI NET 

A Petri net is a 5-tuple, PN = (P, T, F, W,
0

M ) where: 

},...,,{
21 m

pppP   is a finite set of places, 

},...,,{
21 n

tttT   is a finite set of transitions, 

Pre : P × T → N (Post : P × T → N) 

C=Post-Pre 

F   (P x T) U (T x P) is a set of arcs (flow relation), 

W: F   {1, 2, 3, ... } is a weight function, 
Mo: p → {0, 1, 2, 3, ... } is the initial marking, 

P ∩ T =    and P U T ≠ . 

A Petri net structure N = (P, T, F, W) without any specific initial marking is 
denoted by N. 

A Petri net with the given initial marking is denoted by (N,
0

M ). 

all markings reachable from 
0

M  defines the reachability set 

 of 
0

, MPN and is denoted by 

}[:|{),(
00

MMMMPNR   . 

C. Neural Petri Net 

Artificial neural networks (ANN) are highly parallel and 

distributed computation structures that can learn from 

experience and perform inferences. PNs, on the other hand, 

provide an effective modeling framework of distributed 

systems. The basic concepts of PNs are utilized to develop 

ANN-like multilayered PNs architectures of distributed 

systems [9]. 

The NPN is formally defined as a 6 tuple: NPN = (P, T, Z, 

A,C, 0M ) where: 

P: is a set of places; 
T: is a set of transitions; 

Z: is set of arcs, Z   (P×T)  (T×P); 

A: is a pattern of connectivity among places and transitions; 
C: is a set of states of outputs of NNs. 

The resulting NPN is a feed forward network with 

alternating columns of transitions. 

In [10], they built ANN-like architectures of distributed 

intelligence that can learn from experience. The resulting 

Neural Petri Net (NPN) is feedforward network with 

alternating columns of places ad transition. 

The NPN is a pure PN (self –loops are not allowed). This 

leads to a feedforward architecture. The interaction of ANN 

with the environment is through the unobservable transitions 

and places. Fig.1 shows a simple NPN. 
6

t is an unobservable 

transition and models a faulty behavior of a system. The 

inputs of ANN }...{
51

XX  are connected to places (a, b…e) 

and the output of ANN yields the percentage of fault 
6

t  that 

may happen.  
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Fig. 1. A neural Petri net 

 

III. GENERALIZED MARKING 

Let m be the current net marking, C=Post-Pre be the 

incidence matrix and σ be a firing sequence of transitions 

k
tt ...

1
  such that 

kk
mtmtmtm  ...[[[

2211
, and this 

is denoted as kmm [ . If a sequence σ fires, a new marking 

 is reached. From the state equation it follows that for the 

firing count vector σ it is possible to write 

0 mCm  . 

Suppose that where ε is a sequence of unobservable 

transitions and 
0

Tt  . Let )(.,tCmCem
t

 . It may 

happen that μ has negative components, since t may not be 

enabled under the marking m. The negative components in μ 

mean that the unobservable sequence ε must have fired in 

order to explain the firing of t, which is the unique observed 

event. A marking that may have negative components is 

called g-markin
2

g .  

Suppose that a fault event is associated to the unobservable 

transition ft , and that one wants to know if 
f

t  has occurred 

prior to the observation of t. Note that it is not necessary to 

compute explicitly ε or its firing count vector ε, but simply to 

check if ε( ft ) is greater than zero. 

The following example shows how the evolution rules for 

the g-marking given above can lead to negative marking 

components. For a complete review on g-marking refer to [3]. 

Example : Consider the net N in Fig. 2 and let         
0

 [0 

0 0 1 0 0] T  be the initial g-marking of the net and }...{ 86 tt  

be unobservable transitions. If the firing of 
03

Tt   is 

observed, then 
3

t  may fire, since an observable transition is 

always enabled under any g-marking. The firing of 
3

t  yields 

the g-marking  )(.,
301

tCmu [0 -1 0 2 1 0] T  . The 

negative marking 1

2
|1


p

  means that an unobservable 

sequence must have fired to explain the firing of 
3

t .  

Throughout this paper, the negative components of a 

g-marking represent the tokens that are needed to explain 

either the firing of an observed transition, or the firing of an 

unobservable transition that must have fired. 

As far as the fault diagnosis is concerned, the g-markings 

allow the fault diagnosis agent to store in a compact way all 

the needed information about the state space estimation. 

 

IV. FAULT DETECTION 

The approach used in this paper is based on the fact that the 

firing of an observable transition requires a proper marking of 

its input places. If the same event is associated to more than 

one transition, the observation of an event could not 

necessarily correspond to the firing of a single transition. 

Taking into account this problem complicates too much 

the approach. A similar assumption is not required for 

unobservable transitions, which can be assumed to be 

associated to an arbitrary event, since such event is 

unobservable. 

If an observable transition fires then if the new marking 

has negative components, the fault diagnoser will start 

working. The inputs of ANN are connected to the places. If 

the number of tokens in a place was positive, the related input 

of ANN would be 0 and if the number of tokens in another 

place was negative the related input of ANN would be 1. The 

outputs of ANN yield the percentage of faults that may 

happen. In this way we prioritize the faults and at first the 

operator checks the fault that has more value. So in this 

method we reduce the time that spends for repairing the 

system. The difference between outputs of ANN and the 

value that operator had have after checking the system be the 

error and the weights of ANN is training then these stages 

repeat again. 

 
Fig. 2. Example of Petri net model 
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Example: A Manufacturing System 

Let us consider the manufacturing system whose PN model 

is shown in Fig. 3, with },,,,,,,,,{
109876543210
ttttttttttT   

and }.,,{
131211

0

tttT
u

  

This manufacturing system consists of three machines, 

1
M ,

2
M  and 

3
M , which process parts conveyed on 

equipments. The system has two operators, 1F  and 2F . 1F  

could manage 
1

M  and 
2

M . 2F  could manage 
1

M  and 
3

M . 

In each equipment the operation is performed in two stages. 

Stage1: works with 
1

M . 

Stage2: works with 
2

M  or 
3

M  

• 1t   fires when a new equipment is received. 

• 2t  fires when 1F  starts working on equipment with 
1

M . 

• 3t  fires when 1F  finishes working on equipment with 
1

M . 

• 4t  fires when 2F  starts working on equipment with 
1

M . 

• 5t  fires when 2F  finishes working on equipment with 
1

M . 

• 6t  fires when 1F  starts working on equipment with 
2

M . 

• 7t  fires when 1F  finishes working on equipment with 
2

M . 

• 8t  fires when 2F  starts working on equipment with 
3

M . 

• 9t  fires when 2F  finishes working on equipment with 
3

M . 

• 10t  fires when the operation on equipment is finished. 

• 1211, tt  and 13t  model the faulty behaviors of 21, MM  and 

3
M . 

• The initial number of tokens in 7654 ,,, pppp and 8P  

model the fact that the machines and operators are waiting. 

Some execution steps of the proposed method are reported in 

Tab. II. In this case, if the estimated g-marking has negative 

components, then the firing of transition that are modeled as 

faults would test and NNs that are connected to these 

transitions would work and compute the percentage of faults 

may happen to perform fault detection and identification. 

 

V. CONCLUSION 

The paper addresses the fault detection problem of 

Discrete Event Systems (DES) and proposes an on-line 

diagnoser in a Neural Petri Net (NPN) framework. A 

procedure observes and stores the sequence of system events 

and decides on-line whether the system behavior is normal or 

some faults may have occurred. To this aim, at each observed 

event it is provide the possible occurred faults or certifies the 

system normal behaviour. In order to achieve this result, 

g-markings are introduced in this paper. G-markings are net 

markings that may have negative components and whose 

estimation is always unique. The online computation consists 

of solving programming problems formulated on net 

structure and based on g-markings. 

TABLE II: EXECUTION OF THE FAULT DETECTION ALGORITHM ON THE NET 

OF FIG. 3. 

Action μ The 

percenta

ge of 

fault 11t  

may 

happen 

The 

percent

age of 

fault 

12t  

may 

happen 

The 

percent

age of 

fault 

13
t  

may 

happen 

Initialization [0 0 0 1 1 1 1 1 0 0 0 

0] 

33% 33% 33% 

1t  fires [1 0 0 1 1 1 1 1 0 0 0 

0] 

   ---    ---    --- 

4t  fires [0 0 0 0 1 1 1 0 0 1 0 
0] 

   ---    ---    --- 

8t  fires [0 -1 0 0 1 0 1 -1 0 1 
0 1] 

10.35% 15.63
% 

80.2% 

9t  fires [0 -1 1 0 1 1 1 0 0 1 0 

0] 

12.32% 40.33

% 

39.92

% 

5t  fires [0 0 1 1 1 1 1 1 0 0 0 

0] 

   ---    ---    --- 

2t  fires [-1 0 1 0 1 1 0 1 1 0 0 

0] 

75.32% 14.26

% 

10.23

% 

6t  fires [-1 -1 1 0 0 1 -1 1 1 0 

1 0] 

80.64% 65.45

% 

12.78

% 

With respect to the approaches proposed in the related 

literatures, the proposed method specify the percentage of 

faults in order to provide a reasonably efficient method 

suitable use with large systems. However, the algorithm use 

some off-line calculations based on the structure of the 

considered Petri net (PN) system in order to decrease the 

memory capacity. In this way, the proposed fault detection 

technique can be more easily applicable. 

Further improvements in the efficiency of the proposed 

method could be obtained if we assume that after an event 

sequence occurrence the reached marking is known or 

univocally determined. In this situation, an incremental 

solution approach could be devised. However, identifying the 

conditions necessary to univocally determine the reached 

marking is expected to require a significant amount of effort 

to be specified and developed. Hence, this issue will be 

tackled in a successive work. 
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Fig. 3. NPN model of the manufacturing system. 
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