



Abstract—A new method for fault diagnosis of discrete event

systems modeled by Neural Petri Nets (NPNs) is presented in

this paper. Assuming that the PN structure and initial marking

are known, faults are modeled by unobservable transitions.

Neural networks (NNs) have important role to improve the

method. The outputs of them are connected to unobservable

transitions and yield the percentage of faults that may happen

for prioritize the faults by online computation of the set of

possible fault events. In this method the operator checks the

fault that has more value at first. So we reduce the time that

spends for repairing the system. Moreover, the graphical

representation of the nets allows the diagnoser agent to compute

off-line reduced portions of the net in order to improve the

efficiency of the online computation, without a big increase in

terms of memory requirement.

Index Terms—Discrete event systems (DES), fault diagnosis,

Neural networks (NNs), Petri nets (PNs)

I. INTRODUCTION

The diagnostics of industrial processes is a scientific

discipline aimed at the detection of faults in industrial plants,

their isolation, and finally their identification. Its main task is

the diagnosis of process anomalies and faults in process

components, sensors and actuators. Early diagnosis of faults

that might occur in the supervised process renders it possible

to perform important preventing actions. Moreover, it allows

one to avoid heavy economic losses involved in stopped

production, the replacement of elements and parts [1].

The operation of large and complex systems requires that

the coordination systems possess fault recovery capabilities.

In automated manufacturing systems, this ability is included

mainly to eliminate unnecessary risks to humans or

hazardous situations into the system as well as to maintain the

production rate. However, introducing this capability to the

coordination system possesses challenging problems that

have been addressed through several approaches and

methods. Most of these approaches include stages, such as

detection, isolation, and confinement of the fault [2].

Discrete event systems (DES) based methodologies for

fault diagnosis are applicable not only to systems normally

modeled as DES, but also to systems that traditionally are

treated as continuous-time dynamic systems. In general, DES

approaches to fault diagnosis are suitable for failures that

Manuscript received February 20, 2010; revised March 25, 2012.

Roya Rangharanghi Hokmabad has been graduated from University of
Tabriz (e-mail: r.rangarangi87@ms.tabrizu.ac.ir).

Mohammad Ali Badamchizadeh is with the Department of Control,

Faculty of Electrical and Computer Engineering, University of Tabriz
(e-mail: mbadamchi@tabrizu.ac.ir).

Sohrab Khanmohammadi is with the Control Engineering Department,

Faculty of Electrical and Computer Engineering, University of Tabriz
(e-mail:khan@tabrizu.ac.ir).

cause a distinct change in the state of system components but

do not bring the system to a halt: examples are equipment

failures (stuck failure of valves, stalling of actuators,

controller failures, etc.) usual in flight control systems or

heating and air conditioning systems, and process failures

(buffer overflow) usual in manufacturing systems [3].

Recently, neural networks (NNs) have been applied to the

fault diagnosis problem because of their good capabilities in

function approximation. Specifically, online approximation

method using NNs has been presented for identifying the

fault functions [4], [5].

In [6] a new architecture for a fault diagnosis competitive

neural network is introduced. In this system, the test matrix

and the probability vector of faults are not known a prior. The

neural system starts from a completely vague state and the

weights of connections, which affect the possibility of

detecting the fault in each unit, are modified during the

learning procedure on the base of different tests.

In [7] faults are not explicitly taken into account in the

model, and two types of faults have been defined: a place

fault that corrupts the net marking, and a transition fault that

causes an incorrect update of the marking after events

occurrences and In [3] just the maximum and minimum of

faults are detected and they are not sure if the specific fault

would occurs or not.

In this paper a new technique for the fault diagnosis is used.

Faults are modeled by unobservable transitions. Moreover,

we assume that there may be additional unobservable

transitions associated with the system legal behaviour and

that the marking reached after the firing of any transition is

unknown. The Petri nets (PNs) are connected to NNs and the

weights of NNs are training then the outputs of NNs specify

the percentage of each fault that may happen. The proposed

diagnoser works on-line: it waits for the firing of an

observable transition and employs an algorithm based on the

definition and solution of some integer linear programming

problems to decide whether the system behaviour is normal

or exhibits some possible faults. The results characterize the

properties that the PN modeling the system fault behaviour

has to fulfill in order to reduce the on-line computational

effort.

A good compromise to speed up the online diagnosis is to

precompute something offline. This is particularly efficient

when PN are used to model the plant. In fact, working on the

net structure some useful information can be computed

offline improving the efficiency of the online diagnosis,

without a big increase in terms of memory request. In this

paper it is shown that the programming problems to be solved

by the diagnoser can be formulated on reduced portions of the

net properly computed offline.

Fault Diagnosis of Discrete Event Systems Using Hybrid

Petri Nets

R. Rangarangi Hokmabad, M. A. Badamchizadeh, and S. Khanmohammadi

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

288

II. BACKGROUNDS AND BASIC ASSUMPTIONS

A. Basic Petri Nets Notation

Petri nets (PNs) are a graphical and mathematical

modeling tool applicable to many systems. They are a

promising tool for describing and studying information

processing systems that are characterized as being concurrent,

asynchronous, distributed, parallel, nondeterministic, and/or

stochastic. As a graphical tool, PNs can be used as a visual

communication aid similar to flow charts, block diagrams,

and networks. In addition, tokens are used in these nets to

simulate the dynamic and concurrent activities of systems. As

a mathematical tool, it is possible to set up state equations,

algebraic equations, and other mathematical models

governing the behavior of systems. A Petri net (PN) is a

particular kind of directed graph, together with an initial state

called the initial marking, 0M . The underlying graph N of a

PN is a directed, weighted, bipartite graph consisting of two

kinds of nodes, called places and transitions, where arcs are

either from a place to a transition or from a transition to a

place. In graphical representation, places are drawn as circles,

transitions as bars or boxes. Arcs are labeled with their

weights (positive integers), where a k-weighted arc can be

interpreted as the set of k parallel arcs. Labels for unity

weight are usually omitted. A marking (state) assigns to each

place a non negative integer. If a marking assigns to place p a

nonnegative integer k, we say that p is marked with k tokens.

Pictorially, we place k black dots (tokens) in place p. A

marking is denoted by M, an m-vector, where m is the total

number of places. The p
th

 component of M, denoted by M(p),

is the number of tokens in place p [8].For a complete review

on PNs refer to [8]. A formal definition of a PN is given in

Table I.

B. Marking Projections

Definition : A PN [8] is a bipartite graph described by

PN=(P, T, Pre, Post), where P is a set of places with

cardinality m, T is a set of transitions with cardinality n, Pre:

P×T→N and Post: P×T→N are the pre- and post-incidence

matrices, respectively, which specify the arcs connecting

places and transitions. Matrix C=Post-Pre is the m × n

incidence matrix of the net PN. Table I shows a formal

definition of a PN.

For the pre- and post-sets we use the dot notation, e.g.,

t={pP: Pre(p,t)>0}. The state of a PN is given by its

current marking, which is a mapping M: P→N, assigning to

each place of the net a nonnegative number of tokens. A PN

system 〈 
0

, MPN is a net PN with an initial marking

0M . A transition T
f

t  is enabled at a marking M if and

only if (iff) for each jtp . , it holds M(p)≥Pre(p, jt) and we

write 
j

tM [to denote that Tt j  is enabled at marking

M. Let
kbbb ttt ...

21
 be a sequence of transitions and let

k=|σ| be its length, given by the number of transitions that σ

contains. If a transition Tt  appears in the sequence σ, we

write t . Moreover, the notation [M indicates that

the sequence σ is enabled at M and MM [indicates that

the enabled sequence σ may fire at M yielding M’. We also

denote qt )(


 the firing vector associated with a sequence

σ, i.e., qt )(


 if transition t is contained q times in σ. A

marking M is said reachable from 
0

, MPN iff there

exists a firing sequence σ such that MM [
0

. The set of

TABLE I: FORMAL DEFINITION OF A PETRI NET

A Petri net is a 5-tuple, PN = (P, T, F, W,
0

M) where:

},...,,{
21 m

pppP  is a finite set of places,

},...,,{
21 n

tttT  is a finite set of transitions,

Pre : P × T → N (Post : P × T → N)

C=Post-Pre

F  (P x T) U (T x P) is a set of arcs (flow relation),

W: F {1, 2, 3, ... } is a weight function,
Mo: p → {0, 1, 2, 3, ... } is the initial marking,

P ∩ T =  and P U T ≠ .

A Petri net structure N = (P, T, F, W) without any specific initial marking is
denoted by N.

A Petri net with the given initial marking is denoted by (N,
0

M).

all markings reachable from
0

M defines the reachability set

 of 
0

, MPN and is denoted by

}[:|{),(
00

MMMMPNR   .

C. Neural Petri Net

Artificial neural networks (ANN) are highly parallel and

distributed computation structures that can learn from

experience and perform inferences. PNs, on the other hand,

provide an effective modeling framework of distributed

systems. The basic concepts of PNs are utilized to develop

ANN-like multilayered PNs architectures of distributed

systems [9].

The NPN is formally defined as a 6 tuple: NPN = (P, T, Z,

A,C, 0M) where:

P: is a set of places;
T: is a set of transitions;

Z: is set of arcs, Z  (P×T) (T×P);

A: is a pattern of connectivity among places and transitions;
C: is a set of states of outputs of NNs.

The resulting NPN is a feed forward network with

alternating columns of transitions.

In [10], they built ANN-like architectures of distributed

intelligence that can learn from experience. The resulting

Neural Petri Net (NPN) is feedforward network with

alternating columns of places ad transition.

The NPN is a pure PN (self –loops are not allowed). This

leads to a feedforward architecture. The interaction of ANN

with the environment is through the unobservable transitions

and places. Fig.1 shows a simple NPN.
6

t is an unobservable

transition and models a faulty behavior of a system. The

inputs of ANN }...{
51

XX are connected to places (a, b…e)

and the output of ANN yields the percentage of fault
6

t that

may happen.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

289

Fig. 1. A neural Petri net

III. GENERALIZED MARKING

Let m be the current net marking, C=Post-Pre be the

incidence matrix and σ be a firing sequence of transitions

k
tt ...

1
 such that

kk
mtmtmtm  ...[[[

2211
, and this

is denoted as kmm [. If a sequence σ fires, a new marking

 is reached. From the state equation it follows that for the

firing count vector σ it is possible to write

0 mCm  .

Suppose that where ε is a sequence of unobservable

transitions and
0

Tt  . Let)(.,tCmCem
t

 . It may

happen that μ has negative components, since t may not be

enabled under the marking m. The negative components in μ

mean that the unobservable sequence ε must have fired in

order to explain the firing of t, which is the unique observed

event. A marking that may have negative components is

called g-markin
2

g .

Suppose that a fault event is associated to the unobservable

transition ft , and that one wants to know if
f

t has occurred

prior to the observation of t. Note that it is not necessary to

compute explicitly ε or its firing count vector ε, but simply to

check if ε(ft) is greater than zero.

The following example shows how the evolution rules for

the g-marking given above can lead to negative marking

components. For a complete review on g-marking refer to [3].

Example : Consider the net N in Fig. 2 and let 
0

 [0

0 0 1 0 0] T be the initial g-marking of the net and }...{ 86 tt

be unobservable transitions. If the firing of
03

Tt  is

observed, then
3

t may fire, since an observable transition is

always enabled under any g-marking. The firing of
3

t yields

the g-marking )(.,
301

tCmu [0 -1 0 2 1 0] T . The

negative marking 1

2
|1


p

 means that an unobservable

sequence must have fired to explain the firing of
3

t .

Throughout this paper, the negative components of a

g-marking represent the tokens that are needed to explain

either the firing of an observed transition, or the firing of an

unobservable transition that must have fired.

As far as the fault diagnosis is concerned, the g-markings

allow the fault diagnosis agent to store in a compact way all

the needed information about the state space estimation.

IV. FAULT DETECTION

The approach used in this paper is based on the fact that the

firing of an observable transition requires a proper marking of

its input places. If the same event is associated to more than

one transition, the observation of an event could not

necessarily correspond to the firing of a single transition.

Taking into account this problem complicates too much

the approach. A similar assumption is not required for

unobservable transitions, which can be assumed to be

associated to an arbitrary event, since such event is

unobservable.

If an observable transition fires then if the new marking

has negative components, the fault diagnoser will start

working. The inputs of ANN are connected to the places. If

the number of tokens in a place was positive, the related input

of ANN would be 0 and if the number of tokens in another

place was negative the related input of ANN would be 1. The

outputs of ANN yield the percentage of faults that may

happen. In this way we prioritize the faults and at first the

operator checks the fault that has more value. So in this

method we reduce the time that spends for repairing the

system. The difference between outputs of ANN and the

value that operator had have after checking the system be the

error and the weights of ANN is training then these stages

repeat again.

Fig. 2. Example of Petri net model

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

290

Example: A Manufacturing System

Let us consider the manufacturing system whose PN model

is shown in Fig. 3, with },,,,,,,,,{
109876543210
ttttttttttT 

and }.,,{
131211

0

tttT
u



This manufacturing system consists of three machines,

1
M ,

2
M and

3
M , which process parts conveyed on

equipments. The system has two operators, 1F and 2F . 1F

could manage
1

M and
2

M . 2F could manage
1

M and
3

M .

In each equipment the operation is performed in two stages.

Stage1: works with
1

M .

Stage2: works with
2

M or
3

M

• 1t fires when a new equipment is received.

• 2t fires when 1F starts working on equipment with
1

M .

• 3t fires when 1F finishes working on equipment with
1

M .

• 4t fires when 2F starts working on equipment with
1

M .

• 5t fires when 2F finishes working on equipment with
1

M .

• 6t fires when 1F starts working on equipment with
2

M .

• 7t fires when 1F finishes working on equipment with
2

M .

• 8t fires when 2F starts working on equipment with
3

M .

• 9t fires when 2F finishes working on equipment with
3

M .

• 10t fires when the operation on equipment is finished.

• 1211, tt and 13t model the faulty behaviors of 21, MM and

3
M .

• The initial number of tokens in 7654 ,,, pppp and 8P

model the fact that the machines and operators are waiting.

Some execution steps of the proposed method are reported in

Tab. II. In this case, if the estimated g-marking has negative

components, then the firing of transition that are modeled as

faults would test and NNs that are connected to these

transitions would work and compute the percentage of faults

may happen to perform fault detection and identification.

V. CONCLUSION

The paper addresses the fault detection problem of

Discrete Event Systems (DES) and proposes an on-line

diagnoser in a Neural Petri Net (NPN) framework. A

procedure observes and stores the sequence of system events

and decides on-line whether the system behavior is normal or

some faults may have occurred. To this aim, at each observed

event it is provide the possible occurred faults or certifies the

system normal behaviour. In order to achieve this result,

g-markings are introduced in this paper. G-markings are net

markings that may have negative components and whose

estimation is always unique. The online computation consists

of solving programming problems formulated on net

structure and based on g-markings.

TABLE II: EXECUTION OF THE FAULT DETECTION ALGORITHM ON THE NET

OF FIG. 3.

Action μ The

percenta

ge of

fault 11t

may

happen

The

percent

age of

fault

12t

may

happen

The

percent

age of

fault

13
t

may

happen

Initialization [0 0 0 1 1 1 1 1 0 0 0

0]

33% 33% 33%

1t fires [1 0 0 1 1 1 1 1 0 0 0

0]

 --- --- ---

4t fires [0 0 0 0 1 1 1 0 0 1 0
0]

 --- --- ---

8t fires [0 -1 0 0 1 0 1 -1 0 1
0 1]

10.35% 15.63
%

80.2%

9t fires [0 -1 1 0 1 1 1 0 0 1 0

0]

12.32% 40.33

%

39.92

%

5t fires [0 0 1 1 1 1 1 1 0 0 0

0]

 --- --- ---

2t fires [-1 0 1 0 1 1 0 1 1 0 0

0]

75.32% 14.26

%

10.23

%

6t fires [-1 -1 1 0 0 1 -1 1 1 0

1 0]

80.64% 65.45

%

12.78

%

With respect to the approaches proposed in the related

literatures, the proposed method specify the percentage of

faults in order to provide a reasonably efficient method

suitable use with large systems. However, the algorithm use

some off-line calculations based on the structure of the

considered Petri net (PN) system in order to decrease the

memory capacity. In this way, the proposed fault detection

technique can be more easily applicable.

Further improvements in the efficiency of the proposed

method could be obtained if we assume that after an event

sequence occurrence the reached marking is known or

univocally determined. In this situation, an incremental

solution approach could be devised. However, identifying the

conditions necessary to univocally determine the reached

marking is expected to require a significant amount of effort

to be specified and developed. Hence, this issue will be

tackled in a successive work.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

291

Fig. 3. NPN model of the manufacturing system.

REFERENCES

[1] K. Patan, Artificial Neural Networks for the Modelling and Fault

Diagnosis of Technical Processes, Springer Pub, 2008.

[2] R. Isermann, “Process fault detection based on modeling and
estimation methods. A Survey,” Automatica, vol. 20, pp. 387–404,

1984.

[3] F. Basile, P. Chiacchio, and G. Tommasi, “An efficient approach for
online diagnosis of discrete event systems,” IEEE Trans. Automatic

control, vol. 54, no. 4, pp. 748-759, Apr. 2009.

[4] S. Huang and K. K. Tan, “Fault Detection and Diagnosis Based on
Modeling and Estimation Methods,” IEEE Trans. On neural networks,

vol. 20, no. 5, pp. 872-881, May 2009.

[5] A. T. Vemuri and M. M. Polycarpou, “Neural-network-based robust
fault diagnosis in robotic systems,” IEEE Trans. Neural Netw, vol. 8,

no. 6, pp. 1410–1420, Nov. 1997.

[6] S. Khanmohammadi, I. Hasanzadeh, and H. R. Zarei Poor, “Fault
diagnosis competitive neural network with prioritized modification

rule of connection weights,” ELS. Artificial Intelligence in Engineering,

vol. 14, pp. 127-132, 2000.
[7] Y. Wu and C. N. Hadjicostis, “Algebraic approaches for fault

identification in discrete-event systems,” IEEE Trans. Automat.

Control, vol. 50, no. 12, pp. 2048–2053, Dec. 2005.
[8] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.

IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989.

[9] P. T. T. Binh and N. D Tuyen, “Fault Diagnosis of Power System
Using Neural Petri Net and Fuzzy Neural Petri Net,” IEEE, 2006.

[10] Richard Zurawski and Mengchi Zhou “Petri Nets and industrial

application: A tutorial,” IEEE Trans. on industrial electronic, vol. 41,
no. 6, Dec, 1994.

Roya Rangharanghi Hokmabad was born in Tabriz,

Iran in 1982. She received her B.S. degree in Electrical

Engineering from Azad University of Tabriz, Iran in

2005 and her Ms. C. degree in Control engineering form

University of Tabriz in 2011. Her research interests are
fault tolerant, Neural networks, Intelligent control.

 Mohammad Ali Badamchizadeh was born in Tabriz,
Iran, in December 1975. He received the B.S. degree

in Electrical Engineering from University of Tabriz in

1998. He received the M.Sc. and Ph.D. degree in
Control Engineering from University of Tabriz in

2001 and 2007, respectively. He is now assistant

professor in the Faculty of Electrical and Computer
engineering at University of Tabriz. His research

interests include Hybrid dynamical systems, Stability

of systems, Adaptive Control and intelligent systems.

Sohrab Khanmohammadi received his B.S. degree

in Industrial Engineering from Sharif University, Iran
in 1977 and M.Sc. degree in Automatic from

University Paul Sabatie, France in 1980 and his Ph.D.

degree in Automatic from National University,
ENSAE, France in 1983. He is now a professor of

Electrical Engineering at University of Tabriz. His

research interests are Fuzzy control, Artificial
Intelligence applications in Control and Simulation on

industrial systems and human behavior. Email: khan@tabrziu.ac.ir

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

292

