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Abstract—Compressed sensing is one of the newest problems 

in signal processing area. Recently greedy algorithms, such as 

matching pursuit (MP), orthogonal matching pursuit (OMP), 

iterative hard thresholding (IHT) and so on, are become 

applicable methods for compressed sensing problem. In this 

paper we propose an efficient technique for thresholding in IHT 

method. Proposed method simulation results in comparison 

with OMP and IHT methods, lead us to faster reconstruction 

and same SNR for reconstructed signal. 

 
Index Terms—Compressed sensing, iterative hard 

thresholding, matching pursuit, orthogonal matching pursuit.  

 

I. INTRODUCTION 

According to Shannon Nyquist theorem in fidelity signal 

reconstruction, the sampling rate of signal must be at least 

twice of highest frequency present in signal. This often 

results in too many samples and high memory. In real world 

the most of signals have sparse coefficient or good estimated 

with sparse coefficient in some orthonormal basis, wavelet, 

FFT, curvelet, and so on. Compressed Sensing (CS) [1] [2] 

seeks to represent a signal using a number of linear, 

non-adaptive measurements and using sparse property to 

combine acquisition and compression into one step and 

compress the signal at the time of sampling. In CS we need 

far fewer samples than Nyquist rate to recover original signal. 

Recent years many different methods have been proposed to 

reconstruct signal in CS problem. The two most common 

approaches are greedy [3] and convex relaxation methods [4].  

Iterative greedy algorithm reconstructs signal one step at a 

time by selecting the atom best correlated with the residual 

part of the signal and uses it to update the current 

approximation. Then it produces a new approximant by 

projecting the signal onto the dictionary elements that have 

already been selected [5]. Basis pursuit (BP) finds signal 

representations in overcomplete dictionaries by convex 

optimization. It obtains the decomposition that minimizes the 

L1-norm of the coefficients occurring in the representation. 

Due to depending of it to global optimization, it could stably 

superresolve in ways which OMP cannot. But the major 

advantage of OMP is that it admits simple and fast 

implementation [6] [7]. This paper is organized as follows: 

Section II introduces the formulation of CS problem. Section 

III, we introduce the necessary notations, including the OMP, 

IHT algorithms. Then we present our main result concerning 

IHT and OMP. Section IV presents an efficient thresholding 
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to improve IHT complexity and archive faster algorithm for 

large scale signal. Simulation results are discussed in section 

V. Finally, Section VI makes conclusions. 

 

II. CS PROBLEM 

The following notations will be used in this paper. 

Variable y is a d-dimensional real or complex vector. 

Variable x is a n-dimensional real or complex vector. Matrix 

𝛷  is a d × n real or complex matrix whose transpose 

(hermitian transpose) is 𝛷𝑇
. 

Convex problem, such as Basis Pursuit (BP) problem is 

tabloid in finding least of L1-norm solution. 

Underdetermined linear system y which is y= 𝛷×x [8], can 

be approximate using BP as:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑏 1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝛷 × 𝑏 = 𝑦    𝐵𝑃          (1) 

Despite this difficulty, it is shown in [1] that under certain 

conditions, the sparse representation can be accurately 

reconstructed using non-adaptive linear measurements which 

it is formulated as O. (d × log (n)). 

 

III. GREEDY ALGORITHM 

Greedy methods are other set of algorithms which they are 

used for efficiently reconstruction of signals from 

compressed sensing observations. Two IHT and OMP 

algorithms of this set are explain as follow: 

A. IHT Algorithm 

In [9], IHT algorithm is used to solve the k sparse problem. 

Let 𝑏0 = 0,  IHT algorithm can write as a follow iterative 

function: 

 𝑏𝑛+1 = 𝐻𝑘  𝑏
𝑛 + 𝛷𝑇 𝑦 + 𝛷 × 𝑏𝑛                    (2) 

where 𝑏𝑛+1is reconstructed signal after n-time iteration. Also 

𝐻𝑘(𝑥)  is the non-linear operator which sets all variables 

except sets the largest (in magnitude) k elements of x to zero. 

The convergence of this algorithm was proven in [9] under 

condition   𝛷 2 < 1 . In this case, the above algorithm 

converges to a local minimum of the optimization problem 

as:  

𝑚𝑖𝑛𝑥 𝑦 − 𝛷𝑥 2
2        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑥 0 < 𝑘          (3) 

B. OMP Algorithm 

Suppose x is a k sparse signal in  𝑅𝑛 . OMP is one of the 

greedy methods which is used to solve equation (1). In this 

method, the measurement matrix Φ is considered as a 

dictionary with 𝛷𝑖columns which are considered as atoms. 

Variable y (y =  𝛷 × x) is a family of k measurement 
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vectors 𝑦1 …… . . 𝑦𝑘  . This vector is a linear combination 

from k column of Φ. Due to reconstruction of the sparse 

signal we have to identify that which columns of Φ 

participate in the measurement vector y [3]. Meanwhile 

iterations, OMP selects out one atom from the dictionary 

which minimizes the difference. These atoms are called the 

residual, between b and its approximation. Starting iterations 

with  𝑟0 = 𝑦 , OMP selects the k-th atom as: 

 𝜆𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 =   𝑟𝑘−1, 𝛷𝑖  .                       (4) 

also it updates the residual as: 

 𝑟𝑘 = 𝑦 − 𝑃
𝑠𝑝𝑎𝑛  𝛷𝜆1 ,𝛷𝜆2 ,….,𝛷𝜆𝑘

 
× 𝑦.               (5) 

here, 𝑃𝐹  is the orthogonal projection into the subspace F. 

experimental results show that the same number of 

measurements using OMP can provide reconstructions which 

are compatible to those by BP. However, OMP requires much 

less execution time in comparison with BP. 
 

IV. THE PROPOSED METHOD FOR TRESHOLDING 

In this section we introduce an efficient thresholding 

method for IHT algorithm that has two follow advantages: 

 Using this method, we don’t need  more than a 

few sparse component of signal. 

 This tresholding method cuse to low complexity 

in recovery algorithm. 

IHT algorithm uses threshold operator 𝐻𝐾(𝑥)  which 

selects k largest coefficient component in magnitude of 

signal x. In proposed method, we modify threshold operator 

to 𝐻𝛳(𝑥) which is: 

𝐻𝛳 𝑥 =  
𝑥                  𝑖𝑓        𝑥 ≥ 𝛳

0                  𝑖𝑓         𝑥 < 𝛳
                       (6) 

Meanwhile iterations, we select coefficients which they 

are greater than a threshold level.  Also we decrease threshold 

value using an exponential function in next iterations. In 

other hand, threshold value is defined as a follow function: 

 𝛳 = 𝛼𝑒−𝑘𝛽                                     (7) 

where α and β are constant. Now proposed method can write 

as a iterative function: 

𝑏𝑛+1 = 𝐻𝛳 𝑏
𝑛 + 𝛷𝑇 𝑦 + 𝛷 × 𝑏𝑛                      (8) 

where  𝑏0 = 0 . Practically, It is necessary to stop the 

algorithm after a finite number of iterations. A possible 

stopping criterion is  𝑦 − 𝛷 × 𝑏𝑛+1 2 < 𝜖 where 𝜖 =  𝑒 2 

where e models possible observation noise due to, for 

example, sensor noise or quantization errors in digital 

systems. Also we can select α equal to maximum value in 

approximated signal 𝛷𝑇 × 𝑦. Also we can select β after n 

iteration threshold value live in under of smaller coefficient 

which is a decline rate of threshold value.  

Hence our proposed method’s algorithm (proposed 

method for Signal Recovery) steps are as follows:   

INPUT: 

 Obtain d×n measurement matrix Φ. 

 Obtain d-dimensional data vector y. 

 Maximize minimum component in magnitude of 

signal y. 

OUTPUT: 

 Estimate 𝑏  in 𝑅𝑛  for the ideal signal. 

PROCEDURE: 

1) Initialize vector  𝑏0 = 0 , iteration counter t=1, 

α=max(y) and β=k*min(y), 0<k<1. 

2) while the stopping criterion is not met, do   

𝑏𝑡+1 = 𝐻𝛳 𝑏
𝑡 + 𝛷𝑇 𝑦 + 𝛷 × 𝑏𝑡       

               𝑡𝑕𝑒𝑛 𝑡 = 𝑡 + 1. 
 

V. SIMULATIONS AND RESULTS 

We used exactly sparse signals of length N = 512, with the 

support of the signal randomly selected from a uniform 

distribution. The non-zero coefficients were drawn from a 

standard Gaussian distribution. The signals were measured 

using a measurement matrix Φ which satisfy RIP property 

and  𝛷𝑖 2 < 1.  Also, depend on input SNR, we added 

arbitrary white noise with measurement vector y=Φ×x+e. 

Simulating all explained methods attendant our proposed 

method resulted follow figures and tables. All results are 

average over 100 iterations. 

 
Fig. 1. SNR of reconstructed sparse signal. Nonzero coefficient=10   iteration 

number=700 

 
Fig. 2. SNR of reconstructed sparse signal. Nonzero coefficient=10   iteration 

number=200 

Initially we generated sparse signal with SNR=250 dBm. 

Then we started to measure using a measurement matrix Φ 

under varying number of measurements. Then we executed 

OMP, IHT and proposed recovery algorithms with the data 
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vector y=Φ×x+e. For first stage we generated sparse signal 

with 10 nonzero coefficients. Fig.1 and Fig.2 illustrates the 

SNR results of reconstructed signal in 700 iterations and 200 

iterations respectively. 

Fig.1 and 2 indicate that IHT and Knockout algorithms are 

appropriate algorithms for small number of nonzero 

coefficients. For same results in comparison with OMP, we 

must run IHT and Knockout with more iteration which 

accrues to high executed time. For small number of iterations, 

the performance of IHT and Knockout are less than OMP. 

Table I and Table II result about recovery performance of 

mentioned algorithms for sparse signal with 10 nonzero 

components. 

TABLE I: SNR AND ELAPSED TIME FOR RECOVERY SIGNAL OF LENGTH512 

AND SPARSITY EQUAL TO 10, NUMBER OF MEASUREMENT=50. 

Nonzero component=10      number of measurement=40 

 SNR(dB) Elapsed 

time(s) 

Iteration 

number 

OMP 248.01 3.17 --------- 

245.32 3.47 --------- 

IHT 19.20 73.02 350 

48.98 329.67 700 

Proposed 

method 

65.38 66.26 350 

146.01 316 700 

 
TABLE II: SNR AND ELAPSED TIME FOR RECOVERY SIGNAL OF LENGTH512 

AND SPARSITY EQUAL TO 10, NUMBER OF MEASUREMENT=50 

Nonzero component=10      number of measurement=50 

 SNR(dB) Elapsed 

time(s) 

Iteration 

number 

OMP 252 4.14 --------- 

255.70 4.09 --------- 

IHT 85.77 76.14 350 

192.89 328.4 700 

Proposed 

method 

97.03 69.18 350 

200.82 314.32 700 

 

TABLE III:  SNR AND ELAPSED TIME FOR RECOVERY SIGNAL OF 

LENGTH512 AND SPARSITY EQUAL TO 100, NUMBER OF 

MEASUREMENT=300 

Nonzero component=100                                       number of 

measurement=300 

 SNR(dB) Elapsed 
time(s) 

Iteration 
number 

OMP 253.09 414.03 --------- 

253.29 432.15 --------- 

IHT 254.02 144.47 200 

254.07 212.27 300 

Proposed 

method 

217.16 84.53 200 

253.94 118.69 300 

 

In this stage we performed above step for sparse signal 

with 100 nonzero coefficients. Fig.3 illustrates SNR of 

recovered signal with OMP is higher than IHT and Knockout 

but executed time for OMP and IHT is very more than 

Knockout method. Then we added additive Gaussian noise to 

achieve input SNR of 50dB and performed the stage one. 

Fig.4 shows that each three algorithms have same 

performance but Knockout method has lower executed times. 

Table III and Table IV show some results about recovery 

performance of above algorithms for sparse signal with 10 

nonzero components. 

TABLE IV: SNR AND ELAPSED TIME FOR RECOVERY SIGNAL OF 

LENGTH512 AND SPARSITY EQUAL TO 100, NUMBER OF 

MEASUREMENT=250 

Nonzero component=100                                       number of 

measurement=250 

 SNR(dB) Elapsed 

time(s) 

Iteration 

number 

OMP 238.76 305.6 --------- 

238.16 301.4 --------- 

IHT 177.55 178.41 200 

243.92 124.95 300 

Proposed 
method 

138.05 65.14 200 

190.28 94.84 300 

 

 
Fig. 3. SNR of reconstructed sparse signal. Nonzero coefficient=100   

iteration number=200 

 

Fig. 4. SNR of reconstructed sparse signal. Nonzero coefficient=100   

iteration number=200, input SNR=50dBm 

 

 
Fig. 5. SNR of reconstructed sparse signal. Nonzero coefficient=100   

iteration number=150, input SNR=100dBm 
 

Not bad we mention here that whatever nonzero 

components in sparse signal increase the measurements 
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number must be increase for exact reconstruction and 

Knockout perform recovery role better. For more intuition we 

performed recovery process with 120 nonzero components in 

sparse signal. We used 250 to 300 measurements and 150 

iterations for IHT and Knockout methods. Fig.5 indicates that 

Knockout method has same performance with IHT and OMP 

method but Knockout is faster. 
 

VI. CONCLUSION 

The performance of greedy algorithms is examined in this 

work. Greedy algorithms are more practicable than BP 

recovery algorithms because of greedy algorithms is faster 

than BP algorithms. In this paper, a novel approach of 

thresholding in greedy algorithm was proposed. This 

thresholding led to low complexity computational in IHT.   In 

large scale signal where we have greater than %15 sparsity, 

this method is appropriate due to fast recovery. In this paper 

simulation results on variety of sparsity showed that 

Knockout method has performance as same as OMP and IHT 

but  Knockout method is very faster than other two 

algorithms and can recover exact signals in much less time. 
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