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Abstract—This paper presents a new approach for image 

denoising based on compressed sensing. In this method, an 

unknown noisy image of interest is observed (sensed) through a 

limited number linear functional in random projection, then 

original image is reconstructed using the observation vector and 

the existed recovery algorithms such as L1_minimization. 

Simulation results inform this method is an efficient method for 

image denoising. 

 
Index Terms—Noise reduction, image processing, image 

denoising, compressed sensing.  

 

I. INTRODUCTION 

Image denoising is an open problem and has received 

considerable attention in the literature for several decades. 

Most of the conventional spatial filtering techniques as the 

mean filter and Gaussian filter have the disadvantage of 

blurring the edges when reducing noise. Although the median 

filter can preserve edges, the fine structures are suppressed 

and it tends to produce regions of constant or nearly constant 

intensity in homogeneous image regions. The adaptive 

minimum mean squared error (MMSE) filter outperforms the 

two kinds of filters mentioned above by analyzing the local 

image intensity statistics. However, there is no guarantee that 

such a denoised image with high PSNR has acceptable visual 

quality. 

In recent years, wavelet transform (WT) based methods 

have been applied to the problem of noise reduction and have 

been shown to outperform the traditional Wiener filter, 

Median filter, and modified Lee filter in terms of root mean 

squared error (MSE), peak signal noise ratio (PSNR) and 

other evaluation methods. 

Using transform based methods, first step we transform 

image data to frequency or time-frequency domain using 

DFT and Wavelet respectively, then keep only some large 

coefficients using the properly thresholding level and throw 

away rest. The small number of largest coefficients that has 

main information of image is kept and most noise coefficients 

that are small will be set to zero. When we reconstruct the 

image from these coefficients, the noise has been reduced. 

However, if the noise or image’s parameters change, the 

thresholding level and our algorithms must be amended. 

In addition to mentioned above image denoising methods, 

we use compressive sensing [1] as a new method for image 

denoising [2] which eliminate both transforming and 

thresholding steps [3]. Compressive sensing performs 

sampling and compression in one step then will perform 
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reconstructing and denoising signal simultaneously. This 

paper has the following structure: In Section II we introduce 

the Compressive sensing and reconstructing methods; in 

Section III we relate Compressive sensing to the image 

denoising problem; in Section IV we look at some numerical 

results and finally conclude in Section V. 

 

II. COMPRESSIVE SENSING 

Shannon Nyquist theorem presents sampling rate need at 

least two times faster than the signal bandwidth for fidelity 

signal reconstructing. Compressive sensing theory basically 

presents that the sparse or compressible signals can be 

reconstructed from a surprisingly small number of linear 

measurements, which provides that the measurements satisfy 

an incoherence property. Algebraically, for reconstructing a 

sparse signal 𝑥 ∈ 𝑅𝑛  which has a few non-zero coefficients, 

we need 𝑚 ≪ 𝑛 linear non-adaptive measurements which are 

observed from:  

𝑦 = 𝜙 × 𝑋                                        (1) 

where 𝜙 is a 𝑅𝑚×𝑛   matrix, which is called sensing matrix 

and y is a 𝑅𝑚  vector, which is called observation vector. The 

sampling matrix is usually treated by random selection of the 

entries; among the well-known random matrices are i.i.d 

Gaussian [2] and Rademacher [10] matrices. 

The two appealing algorithmic approaches for signal 

recovery which are basis pursuit (L1-minimization) [1] and 

greedy pursuit such as Orthogonal Matching Pursuit (OMP) 

and iterative hard thresholding (IHT) [4] [5], have been 

received much attention. 

Using L1-minimization approach, Candes and Tao 

beautifully proved [6] the signal could reconstruct precisely 

by solving the linear program: 

(L1): 𝑚𝑖𝑛  𝑣 1   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦 =  𝜙𝑣            (2) 

Which prove the sensing matrix 𝜙 obeys a Restricted 

Isometric Condition which is defined as follow: Restricted 

Isometric Condition for sensing matrix definition: let 𝜙 be a 

measurement matrix. 𝜙 satisfies Restricted Isometric 

Condition (RIC) if there exists a constant number 𝛿𝑠 ∈ (0, 1) 

as: 

(1 − 𝛿𝑠) 𝑣 2  ≤   𝜙𝑣 2≤ (1 + 𝛿𝑠 ) 𝑣 2           (3) 

with every T-sparse vector 𝑣 ∈  𝑅𝑛  and |T| ≤| s |. The RIP 

and incoherence can be achieved with high probability 

simply by selecting  𝜙 as a random matrix [2]. 

 

III. COMPRESSED IMAGE DENOISING METHOD 

For image denoising, we first transform the image 

corrupted with noise to sparse domain using: 
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𝛷 = 𝛹 × (𝑥 + 𝑧)                                 (4) 

where z is the Additive noise. Then we sample from 𝛷 by 

mixing matrix 𝑀𝑚×𝑛  where M is stable and incoherence with 

the matrix transform: 

𝛹 𝑦 = 𝑀 × 𝛷 =  𝑀 × 𝛹 × (𝑥 + 𝑧)                 (5) 

and 𝑀𝑚×𝑛 ×𝛹 𝑛×𝑛  which would be called  the compressed 

sensing matrix 𝐴. According to the observation vector 𝑦 =
𝐴 × 𝑥 , we need to reconstruct the original image from this 

observation. It is known that sparsity is a basic principle in 

fidelity reconstruction. Also it is known the noise is not 

sparse in common domain. Hence most of part will be 

removed by compressed sensing due to recovery a just M 

dimensional vector of noise which is reconstructed. Also we 

can reconstruct the exact signal due to sparsity. Stated 

principle is basic idea for compressed sensing image 

denoising (CSID) (Fig.1) and has steps. 

CSID algorithm: 

 Firstly, Do sparse transform for signal 𝑋 + 𝑍 

formed by mixing signal 𝑋 and noise 𝑍, and obtain                         

𝛷 = 𝛹 × (𝑋 + 𝑍). 
 Secondly, Design a 𝑀 × 𝑁 dimensional observation 

matrix 𝜧 which is stable and unrelated with the 

transform basis 𝛹, then use 𝜧 to measure 𝛷  and 

acquire the observation vector  𝑌 =  𝛭 × 𝛷 =
 𝛭 × 𝛹 × (𝑋 + 𝑍). 

 Finally, Restore signal 𝑋′ by reconstructing 𝑌 

(There are many reconstruction algorithm, such as 

orthogonal matching pursuit method, etc.) which 

complete the denoising of signal 𝑋. 

 
Fig. 1. Compressive sensing denoising steps 

 

IV. SIMULATION AND RESULTS 

Several noisy monochrome images which corrupted with 

Additive Gaussian White noise are sampled with Gaussian 

Random compressive sensing matrices, and reconstructed 

with the corresponding algorithms. Representative results 

obtained with three of these images appear in Fig. 2–5. The 

used procedure was as follows. First, each original image was 

sparsified by computing its wavelet transform (Haar) and 

then retained pre-determined fraction (e.g., 5%, 10%, or 15%) 

of its wavelet coefficients via keeping the largest and setting 

the rest to zero. Typically, images were distorted by these 

operations, especially when the number of coefficients 

retained was small. None of the tested images exhibited 

natural sparsity in this wavelet basis (or in any of a few other 

bases tried) below 5–10%. Fig. 2 depicts results for a 64×64 

pixel synthetic image (the “Shepp-Logan phantom”) 

commonly used as a surrogate for MRI brain images. 

Distortion of the original image due to the sparsifying 

transformation is not evident at 15% sparsity and rather 

severe at 10% sparsity. In Fig.2, we added AWGN noise with 

zero mean and variance to the 15% sparsified images. Then 

we measured with measurement matrix, finally we have 

reconstructed related image by IHT algorithm. We performed 

similar step for the 10% sparsified images in Fig.3. 

Due to increasing the sparsity in the image, we can 

reconstruct the image using fewer measurements. Hence the 

complexity decreases. In Fig.3 we examine this algorithm for 

10% sparsify image. As shown in Fig.3, we can reconstruct 

the image with 3200 samples. 

In fig.4 we have compared IHT and OMP algorithms. 

Simulation results show that these algorithms have same 

performance but the run-time in IHT algorithm is 45 seconds 

and for OMP algorithm is 60 seconds, which inform IHT is 

faster than OMP.  

Finally in Fig.5, we have compared some known classic 

filters and CISD algorithms. These filters and achieving 

PSNR have been shown in Table I. Table I results indicate the 

compressive sensing can remove then white nose from the 

image as same as the classical filter. But with noticeable 

difference which inform in the compressive sensing method 

we don’t need to adapt the algorithm when the parameter of 

noise or signal have been changed. 

 
Fig. 2. a) original 64×64 phantom image, 

b) %15 sparsify image 

c) Noise-polluted image PSNR is 15dB 
d) Denoised image using CSID algorithm, PSNR of denoised image is 24dB 

and number of measurements are 3800 samples. 

 
Fig. 3. a) Original 64×64 phantom image, 

b) %10 sparsify image 

c) Noise-polluted image PSNR is 15dB 
d) Denoised image using CSID algorithm, PSNR of denoised image is 36dB 

and number of measurements are 3200 samples. 
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Fig. 4. a) %15 Sparsify image, 

b) Noise-polluted image PSNR is 10dB 

c) Denoised image, reconstructing algorithm is OMP PSNR is 29.4 dB 

d) Denoised image, reconstructing algorithm is IHT PSNR is 28 dB. 

 
Fig. 5. a) 64×64 Noise-polluted camera man image PSNR is 15dB 

b) Denoised image using Wiener filter 

c) Denoised image using Median filter 
d) Denoised image using Wavelet denoising 

e) Denoised image using Gaussian filter 
f) Denoised image using CSID method. 

TABLE I: COMPARISON PSNR RESULTS OF SOME KNOWN CLASSIC 

FILTERS AND CISD 

 

PSNR (dB) 

 

Image denoising Method 

23.45 dB Wiener filter 

18.74 dB Median filter 

24.06 dB Wavelet denoising 

19.11 dB Gaussian filter 

23.78 dB CSID method 

Then we were applied the compressive sensing algorithm 

for the MRI noisy image that has a PSNR equal to 10 dB. Per 

every step, we increased the number of measurements (or 

samples). As shown in Fig.6, according to increasing the 

number of measurements, the performance of denoising is 

growing. We show in Fig.7 the achieved PSNR with 

increasing the number of measurements. When the number of 

measurements is 1500, PSNR is equal to 10.3 dB for 

reconstructed MRI image and when the number of 

measurements is 3750, achieved PSNR is 29 dB. 

 
Fig. 6. Reconstructed image using OMP algorithm 

a) Noise-polluted MRI image PSNR is 10dB, 
b) Using 1800 samples PSNR is 14dB 

c)  Reconstructed image using 1800 samples PSNR is 22dB 

d) Reconstructed image using 1800 samples PSNR is 28dB 

 
Fig. 7. Achieved PSNR with increasing the number of measurements 

 

V. CONCLUSIONS 

In this paper, we presented and simulated a new approach 

for image denoising based on compressed sensing. In this 

method, an unknown noisy image of interest is observed 

(sensed) through a limited number linear functional in 

random projection, then original image is reconstructed using 

the observation vector and the existed recovery algorithms 

such as L1_minimization. Simulation results indicate we can 

reduce additive Gaussian white noise from the image using 
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compressive sensing. Sampling and compression 

accomplishing is one of steps of this method. Also, the 

reconstructing and denoising will are implementing in 

another step of this method. Using classical filter for image 

denoising, we need to redesign algorithm parameters owing 

to the change of signal parameters such as frequency, 

amplitude, etc. But in CISD algorithm, we don’t need to 

change the algorithm parameters when the image or noise 

parameters have been changed. Simulation results show that 

the performance of compressive sensing denoising is the 

same as classic filter or in some occasion fairly better than 

those. 
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