



Abstract—The string matching problem occupies a corner

stone in many computer science fields because of the

fundamental role it plays in various computer applications.

Thus, several string matching algorithms have been proposed

and applied in many applications, information retrieval, editors,

internet searching engines, firewall interception and searching

nucleotide or amino acid sequence patterns in genome and

protein sequence databases. Several important factors are

considered during the matching process such as the number of

character comparisons, number of attempts and the consumed

time. This research proposes a hybrid exact string matching

algorithm by combining the good properties of the Quick

Search and the Skip Search algorithms to demonstrate and

devise a better method to solve the string matching problem

with higher speed and lower cost. The hybrid algorithm was

tested using different types of standard data set. Regardless of

pattern lengths, the proposed hybrid algorithm provides better

outcomes and better reliability compared with the original

algorithms in terms of number of character comparisons and

number of attempts. Additionally, the hybrid algorithm

produced better quality in performance through providing less

time complexity for the worst and best cases comparing with

other hybrid algorithms.

Index Terms—Character comparisons, amino acids search,

exact pattern matching.

I. INTRODUCTION

As the term implies, string matching is used to check the

similarities of strings. To solve the string matching problem it

is necessary to find an algorithm which can locate the

similarities of strings. The typical string matching process is

conducted by using an algorithm which compares a short

string called pattern with a long string called text, its function

is to check whether this pattern is a substring of the text or not.

The process outputs the location of the pattern if occurs in the

text and returns a mismatch signal when no pattern occurs in

the text. In many fields, such as computer science, computer

engineering, bio-science, lexical analysis, database query and

so on, string matching processing is essential and therefore

applied intensively [1].

Formally, a string matching problem can be defined as

finding one or more occurrence of a given pattern string P of

Manuscript received February 20, 2012; revised March 31, 2012.

Mustafa Abdul Sahib Naser is with the Al-Mansour University College

Baghdad, Iraq.

Nur'Aini Abdul Rashid is with the currently the Deputy Dean of

Academic and Students Development in School of Computer Sciences,

Universiti Sains Malaysia.

Mohammed Faiz Aboalmaaly is with the interested in several areas of

research such as multimedia conferencing, mobile ad-hoc network

(MANET), pattern matching and parallel programming.

length m in a text string T of length n, which are built over a

finite alphabet set Σ of size σ.

 Definition 1: An alphabet Σ is a set of characters. The size

of the alphabet is denoted by σ and represented by an integer

number.

Definition 2: A string is a sequence of characters drawn

from an alphabet. The inputs of the string matching algorithm

are two strings, which are the pattern string p= p0 p1….pm-1

and the text string T= t0 t1…. tn-1 where n ≥ m.

Generally, string matching algorithms scan the text with

the aid of the sliding window mechanism. This mechanism

involves opening a window on the text of which its size is

equal to the pattern length m. Then it is followed by a

comparison between the characters of the window and the

characters of the pattern. This specific work of character

comparison is called an attempt. After matching or

mismatching all of the pattern characters with the window

characters, the window is shifted along the text according to

the heuristics of each algorithm [2].

Definition 3: A shift is defined as a safe skip to the number

of characters without missing any occurrence of the pattern in

the text [3].

Most of the exact string matching algorithms pre-process

the pattern before searching the text. The purpose of the

pre-processing phase is to maximize the length of the shift

during the searching phase and that happens by collecting

information about the pattern before starting the search of the

pattern in the text. The searching phase involves different

approaches for scanning the text to find the pattern

occurrences in the text [4].

Development of the algorithms is considered a critical step

in solving problems when the algorithms implemented

practically. The consumed time, performance, deficiency and

cost are considered important factors in developing the

algorithms. Many studies focus on the string matching

problem. The hybrid algorithms are considered an example

of such studies that deal with getting benefits from the

original algorithms and overcome their weaknesses. Quick

Search and Skip Search string matching algorithms are

considered in this study, and these algorithms differ in their

technique, performance, efficiency and usage.

The Quick Search is an efficient algorithm when using

large alphabets with a short pattern during the text search [4],

[5], but show less efficient behavior for small alphabets with

a long pattern. On the other hand, the Skip Search algorithm

[6] shows an efficient behavior when using small alphabets

with a long pattern. Based on the reverse behavior of the

early mentioned algorithms which deals with different

alphabet types and different pattern lengths, along with the

Quick-Skip Search Hybrid Algorithm for the Exact String

Matching Problem

Mustafa Abdul Sahib Naser, Nur'Aini Abdul Rashid, and Mohammed Faiz Aboalmaaly, Member,

IACSIT

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

259

long consumed time wasted in searching big sized data, the

important question that needs to be answered is “How to

overcome the performance weaknesses of the two existing

algorithms by proposing a hybrid algorithm which takes

advantage of the positive characteristics of both algorithms

to solve the string matching problem efficiently in any

alphabet type and any pattern length?".

The rest of the paper is organized as follows. Section 2

gives the review of several efficient algorithms. Section 3

describes the proposed hybrid algorithm in detail. Section 4

analyses of the proposed hybrid algorithm are discussed. In

Section 5, the experiment results of comparisons between the

proposed algorithm and the original algorithms are given.

And Section 6 is the conclusion and future work.

II. PREVIOUS WORKS

The character comparison between the pattern and the text

can be performed in different orders [2]. This section

classified the previous original string matching algorithm

according to the direction of the scanning window and then

discussed some of the previous hybrid algorithms.

A. From Left to Right

Brute Force [2] is the first string matching algorithm scans

the character of the window from left to right and shifts the

window exactly one position to the right after a mismatch or a

complete match. The Knuth-Morris-Pratt (KMP) [7]

algorithm is an improvement of the Brute Force algorithm,

which uses a shift function based on the notion of the prefixes

of the pattern and it is considered the first linear string

matching algorithm. Skip Search and KMP Skip Search

algorithms [6] behave like Knuth-Morris-Pratt algorithm by

scanning the characters of the window from left to right while

the algorithms use buckets to determine the starting positions

of the window in the text. The work of many algorithms

depends on automaton theory with the Knuth-Morris-Pratt

concepts. Search with an Automaton algorithm and Forward

DAWG Matching (FDM) algorithm [8] work with the

concept of the Knuth-Morris-Pratt (KMP) algorithm by

performing the character comparisons from left to right.

Search with an Automaton algorithm use the minimal

Deterministic Finite Automaton (DFA), while Forward

DAWG Matching algorithm uses the suffix automaton.

Moreover, some of the algorithms use the nondeterministic

form of the automata. Shift-Or (SO) [9] algorithm uses

bit-wise operations to accomplish its work, and also performs

character comparisons from left to right in the pattern and

involves keeping a set of all the prefixes of the pattern that

match a suffix of the text.

B. From Right to Left

The Boyer-Moore (BM) [10] algorithm is considered as

one of the most efficient string matching algorithms which

scan the characters of the window from right to left. There are

many variants of Boyer-Moore algorithm which are widely

recognized and used in various string matching applications.

Based on the concept of Boyer-Moore there are many

algorithm works with the automaton theory. The Reverse

Factor algorithm [11] scans the characters of the window

from right to left by calculating the smallest suffix automaton

in the deterministic form of the reverse pattern. In the

nondeterministic form of the automata, Backward

Nondeterministic DAWG Matching (BNDM) [12] algorithm

uses the suffix automaton of the reverse pattern in

nondeterministic form which is simulated by using

bit-parallelism.

C. In Any Order

Karp Rabin (KR) [13] algorithm uses the hashing

methodology for string searching. The algorithm provides a

simple and efficient method of avoiding quadratic number of

character comparisons in most practical situations.

Generally, the aim of a good algorithm is to minimize the

work done during each attempt and to maximize the length of

the shifts to reduce the number of character comparisons

through each attempt, as a result the time complexity will be

less. Some of the algorithms deal with combining more than

one algorithm to get an efficient advantage of the positive

properties of these algorithms. This type of algorithms is

called hybrid algorithms.

The SSABS algorithm [14] blends the advantages of

Quick Search and Raita string matching algorithms. The

authors proposed a fixed order of character comparisons

between the window and the pattern during each attempt

while the shifting of the window, after a complete match or a

mismatch, depends on the Quick Search bad character

function. Like Raita algorithm, SSABS algorithm compares

the rightmost character of the window and the pattern at first

and in the case of finding a match, the algorithm compares

the leftmost character of the window and the pattern and also

when finding a match, the remaining characters are compared

from right to left. In case of a mismatch in any of the existing

comparisons, the algorithm does not compare the remaining

characters and shifts the window depends on the value of the

Quick Search bad character function.

TVSBS algorithm [15] is a combination of

Berry–Ravindran and SSABS algorithms. The resulting

hybrid algorithm is efficient for applications related to

biological sequence search. In the pre-processing phase, the

TVSBS algorithm calculates the Berry-Ravindran bad

character function with suitable modifications. It stores the

bad character shift values in the one-dimensional array

instead of a two-dimensional array to reduce the accessing

time during the searching phase. The searching phase for this

hybrid algorithm is the same as the SSABS algorithm. The

procedure of the TVSBS algorithm presents goodness in

application related to exact string matching in biological

sequence database.

BRFS algorithm [16] is the result of combining the Fast

Search (FS) and Berry-Ravindran (BR) string matching

algorithms. The pre-processing phase of this hybrid

algorithm consists of computing the Boyer-Moore’s good

suffix function and Berry-Ravindran’s bad character function.

The searching phase procedure is the same as the Fast Search

algorithm which performs character comparisons from right

to left until a complete match or a mismatch occurs. The

BRFS algorithm has better performance for small alphabets

with a long pattern. It is therefore suitable for the application

related to biological sequence search.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

260

All the mentioned hybrid algorithms are resulted from

hybridizing two or more algorithms. They have advantage

characteristics in the performance over the original

algorithms. This performance makes the hybrid algorithm

has improved robustness and better behavior in different

applications by increasing the shift value and decreasing the

number of character comparison and the time required in the

search procedure.

III. THE PROPOSED ALGORITHM

After listing most of the well-known string matching

algorithms, this section discusses the proposed hybrid

solution that combines the Quick Search and the Skip Search

algorithms. Like the two existing algorithms, the efficiency

of the proposed hybrid algorithm lies in two phases which are

the pre-processing phase and the searching phase. The

characters in the pattern are pre-processed in the

pre-processing phase and this information is used in the

searching phase in order to reduce the total number of

character comparisons as well as the number of attempts.

A. Pre-Processing Phase

The pre-processing phase for the proposed hybrid

algorithm includes the process of building the pre-processing

phases for the two original algorithms. The pre-processing

phase for the hybrid algorithm is constructed by building the

Quick Search bad character table and the Skip Search

buckets.

The reason for using unincorporated method to construct

the pre-processing phase for the proposed hybrid algorithm

from the two original algorithms is due to the different

techniques of constructing the Quick Search bad character

table (qsBc) and the Skip Search buckets. The Quick Search

bad character table contains the rightmost location for each

alphabet in the pattern, while the Skip Search buckets contain

the leftmost location for all characters in the pattern.

The information getting from the pre-processing phase is

used in the searching phase in order to reduce the total

number of character comparisons as well as the number of

attempts. The pre-processing phase goes hand-in-hand with

the searching phase to improve the overall efficiency of the

algorithm by calculating larger shift values.

B. Searching Phase

The techniques in this phase depend on the searching

phase of the original algorithms using different orders with

modification during the matching operation. In general, the

searching phase of the hybrid algorithm will be arranged in

several stages. These stages clarify the work of the hybrid

algorithm during the matching operation.

Stage 1: at this stage, the algorithm examines the starting

search point S which has a position Tj in the text, whereas j is

equal to the pattern length m. The algorithm aligns the

character of this position and the pattern with the

corresponding position of this character in the bucket. The

benefit of this operation is that when the character in position

Tj does not occur in the pattern, the algorithm continues

shifting the pattern to the next Tj position in the text. In order

to avoid many character comparisons, this operation avoids

aligning the leftmost character of the pattern and the window

at the beginning of the searching phase. Furthermore, the

algorithm ensures that there is no possibility of a matching

occurring during the process of shifting the pattern to align

the next Tj position.

Stage 2: this stage follows the chosen starting search point

in stage 1. At this stage, comparisons occur between the

characters of the pattern and the window. The first

comparisons of the characters start from the leftmost

character of the pattern with the corresponding position of

this character in the window. If a complete match or a

mismatch between the characters happens, the algorithm

moves to stage 3.

Stage 3: at this stage, the algorithm calculates the shift

value of the Skip Search and the Quick Search respectively.

The Skip Search shift value of the hybrid algorithm is

calculated differently depending on two situations. The first

situation is when the character in the pattern (which matches

the corresponding position of Tj in the text) occurs in the last

position of the bucket. The shift value of this situation is

calculated by the following equation after discriminating the

first bucket position of the character which occurs in the next

Tj position of the text which is considered the next start

search point.

Skip shift = m + the current position of Tj (from the bucket) –

the next position of Tj (1)

The second situation is when the character in the pattern

(which matches the corresponding position of Tj in the text)

does not occur in the last position of the bucket. The shift

value of this situation is calculated by subtracting the next

position value from the current position value of this

character in the bucket.

The Quick Search shift value of the hybrid algorithm is

assigned for a character immediately next to the window.

This depends on the value of the rightmost occurrence of that

character in the pattern which is recorded in the Quick Search

bad character table.

After calculating the Skip Search and the Quick Search

shift values, the algorithm examines the bigger shift. If the

Skip Search shift is bigger, then the algorithm depends on

which Skip Search situation should be applied as shown in

Figure 1. If the shift amount of the Skip Search is equal to the

Quick Search shift, then the algorithm depends on the Skip

Search shift and moves to stage 2. Otherwise, the algorithm

moves into stage 4.

 Fig. 1. Skip search shift in the hybrid algorithm

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

261

Stage 4: this stage is applied if the hybrid algorithm

depends on the Quick Search shift. The operation of the

Quick Search shift in the hybrid algorithm depends on two

situations. The first situation is when the value of the

character immediately next to the window is less than or

equal to the pattern length m. In this situation, the current

position of Tj in the text moves in order to become equivalent

to the character’s position immediately next to the window

which is considered to be the new start search point and the

algorithm directly moves to stage 2 as shown in the following

pseudo code.

If (Quick Search Shift > Skip Search Shift) and (Quick

Search Shift ≤ m)

 Then

Current Position of Tj = Position Immediately Next to

the Window

The second situation is when the value of the character

immediately next to the window is bigger than the pattern

length m. In this situation, the current position of Tj in the

text moves in order to become equivalent to the character

position immediately next to the window plus the pattern

length m. This position is considered to be the new start

search point if the character in this position occurs in the

pattern. Otherwise, the algorithm continues shifting the

pattern to the next possible start search point and also the

algorithm directly moves to Stage 2 as shown in the

following pseudo code.

If (Quick Search Shift > Skip Search Shift) and (Quick

Search Shift > m)

Then

 Current Position of Tj = Position Immediately Next to

the Window + m

Figure 2 shows the function of the Quick Search shift

during the searching phase of the hybrid algorithm. All the

stages of the searching phase are repeated until the window is

positioned beyond n – m + 1.

Fig. 2. Quick search shift in the hybrid algorithm

IV. ANALYSIS OF THE PROPOSED ALGORITHM

The pre-processing phase of the proposed hybrid

algorithm is constructed by building the pre-processing phase

of both original algorithms used in the hybridization method.

Since the two original algorithms have the same

pre-processing time complexity which is O (m+σ), the

pre-processing’s time complexity of the hybrid algorithm is

detriment based on the time complexity of both original

algorithms and hence it is equals to O(2(m+σ)).

During the searching phase, the key factors defining the

average time complexity are the possibility of each individual

character occurring in the text and the alphabet size. Because

both these factors are highly indiscriminate and the lack of

any reliable prediction mechanism, this study admits that the

average time complexity cannot be exactly defined [15].

According to that, the searching phase time complexity for

the proposed algorithm is for the worst and best cases only.

Lemma 1: The time complexity is O (nm) in the worst case.

Proof: The worst case algorithm occurs when all the

characters of the pattern match with the characters of the text

at each attempt. This case can be realized when all the

characters in the pattern are the same as those in the text.

During this situation, the hybrid algorithm depends on the

shift provided by the skip shift only. According to that, every

character in the text is matched no more than m times and the

total character comparisons for n characters of the text cannot

be more than (nm), whereas the shift in this case is equal to

one and hence the time complexity is O (nm).

Example 1:

Text =“A A A A A A A A A A A A A A A A A A A A”

Pattern =“A A A A A”

The text length (n) = 20.

The pattern length (m) = 5.

The alphabet set (Σ) = (A) of size (σ) = 1.

Lemma 2: The time complexity is O (n⁄m) in the best case.

Proof: The best case complexity of the proposed hybrid

algorithm occurs when the characters of the pattern are

totally not matched with any character in the text at any

attempt. This case can be realized when all the characters in

the pattern are completely different from those in the text. In

this case and according to the hybrid algorithm behavior, the

algorithm will check the m-th text positions to delimit the

possible starting search point S in the text. Since there is no

match at all, the algorithm will provide n⁄m main iterations

during the searching phase without any character

comparisons and attempts until the pointer reaches to the end

of the text and hence the time complexity is O (n⁄m).

Example 1:

Text =“A A A A A A A A A A A A A A A A A A A A”

Pattern =“B B B B B”

The text length (n) = 20.

The pattern length (m) = 5.

The alphabet set (Σ) = (A, B) of size (σ) = 2.

In order to examine the performance of the proposed

hybrid algorithm, the worst and the best time complexity for

the searching phase is compared with two hybrid algorithms

stated in the literature. Also, a comparison for the

pre-processing time complexity of each hybrid algorithm is

also given shown in Table 1.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

262

TABLE I:COMPARISONS OF HYBRID ALGORITHMS COMPLEXITY

Algorithms

Pre-processin

g Time

Complexity

Searching

Time

Complexity

(Worst Case)

Searching

Time

Complexity

(Best Case)

TVSBS

Algorithm
O(σ + mσ)

O(m(n – m +

1))

O(n/(m +

2))

BRFS

Algorithm
O(m+ σ2) O(nm)

O(n/(m +

2))

Quick-Skip

Search

Algorithm

O(2(m+σ)) O(nm) O(n/m)

V. EXPERIMENTAL EVALUATION

A standard benchmark data is used which illustrates the

common uses of the string matching application. These types

contain the DNA sequence, protein sequence and English

text. The reasons of selecting these specific type of data is

because they differ in terms of alphabets size so the result

gained will be more accurate among the all algorithms and

the size of the data types used is 100 megabytes.

In order to analyze and discuss the actual behavior and to

decrease the random variation for each algorithm, the

running occurs in 5 times with different patterns for each

length. The patterns lengths are: 4, 6, 8, 10, 20, 40, 60, 80 and

100 characters which are chosen randomly from words inside

the text while five patterns were searched for each length and

then take the average. The results of the proposed hybrid

algorithm compared with the original algorithms in terms of

number of character comparisons and number of attempts.

The working environment used in implementing the

algorithms is a personal computer with 2.0 GHz Intel Core 2

Duo Processor, and 2 GB of RAM. The operating system

used in this experiment is Microsoft Windows Vista Service

Pack2, with Microsoft Visual C++ compiler.

A. Evaluating the Number of Character Comparison

1) Average Running Times of DNA Sequence Data Type

TABLE II: AVERAGE NUMBER OF CHARACTER COMPARISONS OF DNA

SEQUENCE. ALPHABET SIZE = 7.

Pattern Length Skip Search (SS)
Quick Search

(QS)
Hybrid (QSS)

4 41374497 49366673 35223805

6 39748644 45175832 32964853

8 37363660 44876000 28787361

10 36441125 43300707 25834517

20 35614031 29206874 24974752

40 34708725 29633987 22010773

60 34378964 27758511 20889449

80 34215572 29451867 19771123

100 33181347 31352130 16372368

2) Average Running Times of Protein Sequence Data Type

TABLE III:AVERAGE NUMBER OF CHARACTER COMPARISONS OF PROTEIN

SEQUENCE. ALPHABET SIZE = 20.

Pattern Length Skip Search (SS)
Quick Search

(QS)
Hybrid (QSS)

4 8607556 25545595 7406043

6 7887639 18889706 6365317

8 6959901 16089619 5760243

10 7418229 14185255 4829583

20 7458850 8947894 4356758

40 6635051 6899484 3953897

60 6795244 6151638 3724476

80 6694680 5644213 3533147

100 6689656 4985535 3518769

3) Average Running Times of English Text Data Type

TABLE IV: AVERAGE NUMBER OF CHARACTER COMPARISONS OF ENGLISH

TEXT. ALPHABET SIZE = 100.

Pattern Length Skip Search (SS)
Quick Search

(QS)
Hybrid (QSS)

4 9590612 30457873 7519612

6 8888589 21272393 6242738

8 8729178 18065563 5495307

10 6832820 14841982 5380871

20 6728571 9519256 4690644

40 6877695 6448313 4014436

60 6831379 5401421 3443087

80 7164099 4451513 2779310

100 6909799 4117679 2626494

B. Analyzing the Number of Character Comparison

Based on the empirical results shown in table 2, 3, 4, it is

clear that the DNA data type produces larger results for

number of character comparisons compared with other data

types especially when using short pattern lengths. This result

is caused by the size of the alphabets used which are

considered as a small alphabet size. This leads to producing

less number of shifts during the searching operation which

leads to a larger number of character comparisons.

Furthermore, when a small sized alphabet is used it leads too

many exact matching between the pattern and the window

especially when using short pattern lengths and as a result the

number of character comparisons tends to be greater than

using large alphabet sizes. Also, it must be observed that for

all algorithms, the number of character comparisons tends to

decrease significantly as the pattern length increases. This is

because, the shift provided by the algorithms increases if the

mismatch occurs, by that increasing the forward distance

taken by the pattern. In all cases, it can be seen that the hybrid

algorithm produces better results. The hybrid algorithm is

highly efficient in terms of number of character comparisons

than the original algorithms for short and long patterns

respectively as well as when using different data types.

C. Evaluating the Number of Attempts

1) Average Running Times of DNA Sequence Data Type

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

263

TABLE V: AVERAGE NUMBER OF NUMBER OF ATTEMPTS OF DNA

SEQUENCE. ALPHABET SIZE = 7.

Pattern Length Skip Search (SS)
Quick Search

(QS)
Hybrid (QSS)

4 25282517 35192710 22389453

6 25895761 32909817 20708859

8 25276133 30812265 18902520

10 25651039 30823717 17524454

20 24899958 22026198 18046927

40 25837273 21718409 15779217

60 25665193 20339958 15729218

80 26261647 23027420 14585324

100 25474945 24188623 12323918

2) Average Running Times of Protein Sequence Data Type

TABLE VI:AVERAGE NUMBER OF NUMBER OF ATTEMPTS OF PROTEIN

SEQUENCE. ALPHABET SIZE = 20.

Pattern Length Skip Search (SS)
Quick Search

(QS)
Hybrid (QSS)

4 6492151 23281128 5683046

6 6338840 17250592 5095329

8 5802705 14438298 4947206

10 6257809 12864914 4368470

20 6535248 8386797 3900834

40 6234336 6422117 3712920

60 6288577 5751047 3443499

80 6194243 5320302 3308175

100 6287236 4646832 3291172

3) Average Running Times of English Text Data Type

TABLE VII: AVERAGE NUMBER OF NUMBER OF ATTEMPTS OF ENGLISH

TEXT. ALPHABET SIZE = 100.

Pattern Length Skip Search (SS)
Quick Search

(QS)
Hybrid (QSS)

4 6969696 24335559 5647706

6 6734139 18474471 5177682

8 6597203 14951568 4818332

10 6139410 12654099 4725219

20 5851183 8403953 4300581

40 6134122 5852870 3694405

60 6367043 5041604 3130391

80 6482366 4082904 2623275

100 6189312 3866570 2443532

D. Analyzing Number of Attempts

Based on the empirical results shown in table 5, 6, 7, we

can observe that regardless of the data type, the output of the

number of attempts provided by the Skip Search algorithm

did not change significantly when the pattern length changed.

Also, we can observe that the Skip Search algorithm

produced less number of attempts than the Quick Search

algorithm when short pattern lengths were used.

It should be noted that the number of attempts produced by

the Quick Search algorithm decreases when the pattern

lengths increases for all data types except when using DNA

data type with long pattern lengths. In this situation, the

algorithm shows unstable behavior and this is caused by the

small size of alphabets used as well as the bad behavior for

the Quick Search bad character table when small alphabets

with long pattern lengths were used. However, the Quick

Search algorithm provided less number of attempts than the

Skip Search algorithm when long pattern lengths were used

in all data types.

The obtain result experimentally demonstrated that the two

original algorithms differ in behavior when using different

alphabet sizes with different pattern lengths during the

searching operation. Additionally, our experiments confirm

that the hybrid algorithm outperform the two original

algorithms in number of attempts when different alphabet

sizes with different pattern lengths were used.

VI. CONCLUSION AND FUTURE WORK

This paper aimed to hybridize the Quick Search and Skip

Search exact string matching algorithms. Based on the design

presented in section three, the hybridization method

produced an algorithm depending on the good properties of

the original algorithms. The performance of the proposed

hybrid algorithm has shown improvement when compared

with the original algorithms. The hybrid algorithm provided

better results in number of character comparisons and

number of attempts when searching different data types with

different pattern lengths than the original algorithms.

Therefore, it is feasible that this method can be used in

applications related to exact pattern matching with any

alphabet type and variant pattern lengths. A future work may

be presented in paralyzing the proposed hybrid algorithm in

order to reduce the time complexity of the pre-processing

phase and as result speedup the overall processes of this

hybrid algorithm.

REFERENCES

[1] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings:

Practical On-line Search Algorithms for Texts and Biological

Sequences. 2002 Cambridge University Press.

[2] C. Charras and T. Lecroq, Handbook of Exact String Matching

Algorithms. 2004: King's Collge Publications.

[3] Y. Weinsberg, S. Tzur-David, D. Dolev, and T. Anker, one Algorithm

to Match Them All: On a Generic NIPS Pattern Matching Algorithm.

Workshop on High Performance Switching and Routing (HPSR2007)

pp. 1-6, 2007.

[4] T. Lecroq, Experimental Results on String Matching Algorithms.

Software Practice and Experience, 1995, vol. 25: pp. 727-765.

[5] A. F. Klaib, Z. Zainol, N. H. Ahamed, R. Ahmad, and W. Hussin,

“Application of Exact String Matching Algorithms towards SMILES

Representation of Chemical Structure.” International Journal of

Computer and Information Science and Engineering, pp. 235-239.

2007.

[6] C. Charras, T. Lecroq, and J. D. Pehoushek, “A Very Fast String

Matching Algorithm for Small Alphabets and Long Patterns.

Proceedings of the Ninth Annual Symposium on Combinatorial Pattern

Matching,” Lecture notes in computer science, 1998, vol. 1448, pp.

55-64.

[7] P. D. Michailidis and M. K. G., “on-line String Matching Algorithms:

Survey and Experimental Results,” International Journal of Computer

and Mathematic, vol. 76, pp. 411-434. 2000.

[8] N. Nadia, Minimal deterministic left-to-right pattern-matching

automata. SIGPLAN Not, 1998, vol. 33, no. 1, pp. 40-47.

[9] R. Baeza-Yates and G. G. H., “A New Approach To Text Searching,”

Communications of the Association for Computing Machinery (ACM

1994), 1992, vol. 35, pp. 74-82.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

264

[10] Boyer, R. S. M., and J. S., “A Fast String Searching Algorithm,”

Communications of the Association for Computing Machinery (ACM

1994), 1977, vol. 20, pp. 762-772.

[11] C. Maxime, et al., Speeding Up Two String-Matching Algorithms, in

Proceedings of the 9th Annual Symposium on Theoretical Aspects of

Computer Science. 1992, Springer-Verlag.

[12] G. Navarro and M. Raffinot, A bit-parallel approach to suffix automata:

Fast extended string matching Springer, 1998, vol. 1448/1998: pp.

14-33.

[13] Karp, R. M. R., and M. O., “Efficient randomized pattern-matching

algorithms,” IBM Journal of Research and Development, vol. 31, pp.

249-260. 1987.

[14] S. S. Sheik, S. K. Aggarwal, A. Poddar, N. Balakrishnan, and K. Sekar,

“a Fast Pattern Matching Algorithm,” Journal of Chemical Information

and Computer Sciences, vol. 44: pp. 1251-1256. 2004.

[15] R. Tathoo, A. Virmani, S. S. Lakshmi, N. Balakrishnan, and K. Sekar,

“TVSBS: A Fast Exact Pattern Matching Algorithm for Biological

Sequences,” Journal of Indian Academy of Sciences, vol. 91, pp. 47-53.

2006.

[16] H. Yong, et al. “A Fast Exact Pattern Matching Algorithm for

Biological Sequences,” in International Conference on BioMedical

Engineering and Informatics, 2008. BMEI 2008. . 2008.

Mustafa Abdul Sahib Naser Is a lecturer in Al-Mansour University College

Baghdad, Iraq. He received his B.Sc. in Computer Sciences from

Al-Mansour University College in 2007 and a M.Sc. in computer sciences in

2010 from University Sains Malaysia Penang, Malaysia. His research

interest is focuses mainly on pattern matching with a special interest in

parallel computing.

Nur'Aini Abdul Rashid is currently the Deputy Dean of Academic and

Students Development in School of Computer Sciences, Universiti Sains

Malaysia. She received her BSc. from Missisippi State, U.S.A. and MSc and

a PhD. from Universiti Sains Malaysia. Her Specialization in Parallel and

Distributed Processing, Genomic Information Processing and String and

Pattern Matching while her research interest in Genomic Information

Retrieval and Analysis and Parallel Algorithms. Dr Nuraini's current interest

is applying the parallel techniques to genomic information retrieval and

analysis. The method that she is investigating is on shared memory platforms.

The concentration is on parallel sequence comparison and parallel

graph-based clustering algorithms.

Mohammed Faiz Aboalmaaly, a PhD candidate from Iraq. He received his

bachelor degree in software engineering from Al-Mansour University

College (Iraq) and a master's degree in computer science from Univeriti

Sains Malaysia (Malaysia). His PhD. Research is mainly focuses on network

security and artificial intelligence. He is interested in several areas of

research such as multimedia conferencing, mobile ad-hoc network

(MANET), pattern matching and parallel programming.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

265

