



Abstract—Cloud computing enjoys the many attractive

attributes of virtualization technology, such as consolidation,

isolation, migration and suspend/resume support. In this model

of computing, some desirable features such as scalability are

provided by means of a new type of building blocks called

virtual machines (VMs). As with any other construction block,

VMs have their own scheduling challenges and advantages. This

paper presents the major differences between scheduling VMs

and other schedulable blocks such as processes and explains

why traditional scheduling techniques used in operating

systems to schedule processes or threads are not suited to VMs.

New techniques to help co-scheduling virtual resources in a

concurrent environment are proposed and simulated on an

extension of CloudSim simulator. Simulation results of virtual

processor co-scheduling show comparatively higher system

performance than the methods that do not use co-scheduling.

Index Terms—Cloud computing, co-scheduling,

virtualization.

I. INTRODUCTION

Cloud computing is an emerging paradigm that aims to

share various resources and distribute services transparently

among massive users of a computer network. It could be

considered as a pool of virtualized computer resources with

dynamic composition and deployment of software services.

Some researchers [1] consider Clouds as a complement of

Grid system environments that provide more efficient

resource management. In particular, they believe Clouds

allow the dynamic scaling of applications by provisioning of

resources via virtualization. In addition, by monitoring

virtualized resources, it would be possible to support

dynamic load balancing and re-allocations of resources.

 To support the mentioned features, virtual machines

(VMs) have been proposed as the primitive building blocks

of a Cloud environment. Using these blocks, VMs can be

easily distributed to different physical machines or

consolidated to the same machine in order to balance the load

or simply increase the utilization. In addition, by using the

intrinsic properties of a VM, it would be possible to move a

running application and all its dependents to another machine

without stopping its processes.

Scheduling the basic processing units on a computing

environment has always been an important issue. As an

example, the problem of scheduling processes or threads in

operating systems has been studied for decades. On the other

hand, scheduling tasks in a Grid environment has also been

Manuscript received February 19, 2012; revised March 31, 2012.

Authors are with the School of Computer Engineering, Iran University of

Science and Technology, Tehran, Iran. (e-mail:hsalimi@iust.ac.ir,

mahsa_najafzadeh@comp.iust.ac.ir, msharifi@iust.ac.ir).

studied deeply in literature. As with the mentioned

computing environments and the fact that VMs are more

abstract than processes and tasks, the scheduling of VMs on a

distributed Cloud infrastructure requires further studies.

In this paper we present the basic advantages and

challenges of scheduling VMs compared to other scheduling

methods applied to processes or tasks used in traditional

computing environments. As an optimization for VM

scheduling, we introduce virtual CPU (VCPU) co-scheduling

(Gang scheduling) [2]. Analogous to the basic co-scheduling

algorithm that schedules related processes to run on different

processors at the same time, our method tries to map related

VCPUs to real processors simultaneously. Using this

technique, any pair of related processes that run on VMs run

faster leading to an overall higher performance. This

scheduling method avoids unnecessary VM blocks. We have

evaluated this technique by implementing it on an extended

version of CloudSim [3,4] simulator. We changed the

simulator in such a way to be able to model task

dependencies and synchronization points.

The remainder of this paper is organized as follows.

Section 2 presents scheduling concerns of VMs and the major

differences between scheduling VMs and other processing

units. Section 3 presents the benefits of scheduling a set of

VMs on a computer environment. Sections 4 and 5 present

our proposed optimization technique and its evaluation and

finally Section 6 concludes the paper.

II. VM SCHEDULING CHALLEGNGES

At the first glance, scheduling a number of VMs looks

similar to scheduling other processing units such as processes

or threads. However, having a closer look at this problem, it

appears that VM scheduling is more troublesome. In the

remaining three sub-sections, we explain some of these

challenges.

A. Two-Level Scheduling

In contrast to scheduling of processes or threads wherein

executing units are mapped directly to physical resources in

one level, on a virtualized environment resources need to be

scheduled in two levels as it is depicted in Fig. 1. In the first

level, the operating system scheduler maps running execution

units into virtual resources provided by VMM. In the second

level, the VMM scheduler maps virtual resources presented

to guest operating systems into real hardware. Given that

most first-level schedulers are implemented by commodity

operating systems and the second level schedulers are usually

unaware of the scheduling policies used by these operating

systems, this semantic gap can well lead to inefficient

Advantages, Challenges and Optimizations of Virtual

Machine Scheduling in Cloud Computing Environments

Hadi Salimi, Mahsa Najafzadeh, and Mohsen Sharifi

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

189

scheduling of resource.

B. Higher Level Abstraction

In an operating system that maps a set of processes into a

set of resources, details of system processes are known to the

scheduler. For example, the scheduler can identify related

processes that need to be synchronized at specific execution

points at run time by tracing process communication patterns.

This kind of knowledge can help the operating system to use

a time-space shared schedule to execute dependant processes

more efficiently.

On the other hand, regarding this fact that VMs provide a

higher level of abstraction to their management environment,

i.e. VMM, obtaining such detailed knowledge about their

internals is impossible. Hence, the VMM cannot determine

any correlations between tasks that are running on the VMs.

This lack of knowledge that is generally attributed to the high

level of abstraction of VMs, may well lead to improper

resource mapping of virtual resources to real resources.

Fig. 1. Two level CPU scheduling in a virtualized environment.

C. Unpredictable Behavior

The right prediction of the behavior of executing units in a

computer system can be used to schedule resources more

efficiently [5,6]; prediction allows the scheduler to allocate

resources based on the estimated required resources. For

example, if the scheduler can predict that the jobs running on

a remote machine in a distributed system are about to be

completed, it can rightly dispatch the next ready job to that

node. As another example, predicting the execution time of a

job helps to select the best job that backfills the next one.

In contrast to a sequential process or thread that executes a

single stream of instructions and thus has a relatively

predictable behavior, VMs act as a container for processes

and threads. Therefore, predicting the behavior of a VM by

just inspecting the instructions issued on its virtual

processors is very hard, if not impossible.

III. VM SCHEDULING ADVANTAGES

Despite many difficulties that accompany the VM

scheduling problem, using them as the basic building blocks

of a distributed system is very beneficial. In this section, we

discuss the two main benefits, namely, easy reservation and

VM elasticity.

A. Ease of Resource Reservation

Since distributed systems are used in a widespread range

of applications, the need for delivering special resources at

particular times has been essential. As a result, a set of

resource reservation mechanisms have been proposed [7,8].

The need for these techniques arises, when some parts of a

heavy computational task require co-scheduling. For

example, applications whose execution steps can be modeled

as a workflow of independent tasks can be executed more

efficiently by multilevel scheduling techniques.

One of the most important requirements of a resource

reservation technique is task pre-emption. This feature is

required because the scheduler may need to pause a task

because of the start of a reservation contract on the same

machine. Task pre-emption requires special services from

operating system, such as checkpointing the task state

frequently in order to resume it later. It is also possible to do

the checkpointing operation at application level, by changing

the code, which is not desirable.

To avoid changing the program code or using a

special-purpose operating system, VMs come in handy. VMs

can be easily checkpointed without requiring any changes to

applications or operating systems. In addition, it is prudent to

use them to provide a primitive for transparently vacating

workloads to provide support for their migration.

B. VM Elasticity

Many scheduling challenges arise from the nature of

processing units available in today’s computer systems. As

an example, due to the lack of flexibility of current

processing blocks such as processes, many primitive

requirements of a distributed scheduling such as migration

hardly can be fulfilled. On the other hand, some inherent

elasticity-related VM features such as live migration or

consolidation can be regarded very beneficial to these

schedulers.

Many scheduling systems try to balance the load on

different nodes of a distributed system efficiently. Recent

scheduling systems that are mostly based on load balancing

[9], try to dispatch the jobs in a way to keep all system nodes

busy. A major drawback of such a job scheduling is the lack

of job pre-emption facilities. Due to the inherent properties of

a job they cannot be easily suspended and resumed elsewhere.

On the other hand, if jobs were able to be executed on an

isolated environment like a VM, which could easily migrate

between nodes, load balancing through job scheduling would

be easier.

Other well-known scheduling algorithms could be

augmented with elastic features of VMs too. As an example,

many software solutions provided for distributed processing

try to reduce the communication overhead of pairs of

communicating entities. This is done either by statically

determining the coupling degree of processing entities [10]

and running them on the same machine, or by dynamically

moving highly communicating ones to a single workstation.

By means of virtualization technology, augmented

scheduling mechanisms can be implemented easier. Given

the fact that the mentioned methods are based on dynamic

VMM

Hardware

First-Level

Scheduler
First-Level

Scheduler

Processes or Threads Processes or Threads

Guest Operating System Guest Operating System

Second-Level

Scheduler

Real CPU Virtual CPU

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

190

migration of executing modules, and that VMs play this role

better than any other known alternative, a class of distributed

schedulers could be promoted by these methods. VMs can be

useful to other types of schedulers too that use different

scheduling criteria such as power management [11].

IV. VM SCHEDULING OPTIMIZATION

One of the main scheduling methods commonly used in

concurrent systems is co-scheduling. This method tries to

schedule related processing modules to be executed at the

same time. If a concurrent application contains a set of

processes that work closely together and if one of the

executive ones tries to receive a message from those that are

waiting for a processor share, this causes the running one to

be blocked. On the other hand, ultimately other processes

will be ready for execution but this time the situation is

reversed and these processes should wait to interact with

others. As a result, the application progresses more slowly

compared to the case wherein all processes are independent.

The same mentioned case is valid for processes executed

on one or two VMs. As a first example, consider the case in

which four groups of concurrent processes are running on a

VM as it is depicted in Fig. 2. Using the co-scheduling

method embedded in the guest operating system’s scheduler,

each group of co-working processes are scheduled at the

same time into two virtual processors in order to avoid extra

process blocks. Suppose that at a given time, the first group

comprising processes A and B is scheduled on two virtual

processors and another group of processes comprising

processes G and H are scheduled on the two remaining

virtual processors. Since the VMM’s scheduler that maps

virtual processors to real ones is unaware of the load

dependencies, it cannot properly decide on an efficient

processor mapping. Hence, although the guest operating

system is aware of the co-working processes, this knowledge

cannot be used for the good of scheduling.

It should be noted that some VMs, like the ones defined on

VMWare workstation [12], are not allowed to have more

virtual processors than the number of real processors. But it

should be taken into consideration that in a dynamic Cloud

environment with many VMs migrating from one node to

another, and given that the heterogeneity of underlying

hardware, the case depicted in Fig. 2 is unavoidable.

As a second example, suppose that two co-working

processes are executing on two different VMs. If the VMM

knows about the dependency between these two processes, it

can schedule the related VCPUs at the same time. Such a case

may seem a bit strange, but with the use of advanced features

of VMs such as cloning [13], there may well exist cases in

which a child and a parent process execute on two different

VMs. In this case, the co-scheduling of VCPUs onto which

these two processes are mapped is beneficial.

It should be also noted that making the VMM aware of the

policies used by the guest operating system’s scheduler is

possible in many ways. The first method could be defining a

set of standard hypercalls in which the para-virtualized guest

operating system can introduce its co-working processors to

the VMM. This mechanism is straightforward, but it needs

the hypercall interface to be changed. A simpler but less

flexible method could be defining this information as a

metadata to be used by the VMM to load VM images. Having

provided such knowledge, the VMM can schedule VCPUs

according to the mentioned default settings.

Fig. 2. Co-scheduling of concurrent processes on a VM.

We have extended the CloudSim simulator and run all the

above discussed cases; the results and our detailed analysis of

the results are reported in the next section. Let us however

suffice to state here that the performance of highly concurrent

jobs were increased under the proposed methods.

V. PERFORMANCE EVALUATION

In this section, we present the results of simulating two

cases described in the previous section. In these two case

studies, a job comprising four concurrent tasks and each task

containing 800 million instructions was executed in a virtual

environment. The hardware configuration in these

experiments included two processors, each capable of

executing 1000 million instructions per second (MIPS).

All simulations were performed on an extended version of

CloudSim simulator. To measure the effect of task

dependency on overall system performance, we changed

parts of this simulator to be able to define co-working tasks

and their dependency degree.

In the first experiment, we simulated a situation in which

four tasks of a concurrent job were run on a single VM. Two

of these tasks were co-working; hence needed to be

synchronized on some points. For this case, the selected VM

was equipped with four virtual processors and the underlying

hardware had two real processors. The results of this

experiment are depicted in Fig. 3.

As the results of this experiment show, the number of

synchronization points changed from zero (no task

dependency) to 200 points. When all tasks of the job were

totally independent, co-scheduling did not affect system

performance. On the other hand, when the number of

synchronization points increased, the places in the code that

must have waited for another task were increased. As a result,

co-scheduling lead to better performance.

VMM

Hardware

Operating System Scheduler

System Concurrent Processes

Guest Operating System

Real CPU Virtual CPU

A B C D E F G H

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

191

Fig. 3. Completion times of a job comprising of four tasks with two tasks

co-working and running on a single virtual machine.

In the second experiment, we simulated the case in which

the same job with the same task length and dependency was

executed on two VMs. In this case, the two correlated tasks

were located on two different VMs. Therefore, having known

about this relation between the two dependant tasks and using

co-scheduling to map the relevant virtual processors at the

same time, unnecessary process blocks were avoided.

In the second experiment, each VM included two virtual

processors. The hardware configuration was like the previous

experiment, i.e. two processors, each capable of running one

million instructions per second.

The results of simulating the second case are illustrated in

Fig. 4. As in the first experiment, co-scheduling led to higher

system performance as the number of synchronization points

in correlated tasks increased.

Fig. 4. Completion times of a job comprising of four tasks with two tasks

co-working and running on two co-located virtual machines.

The results of simulation of both aforementioned cases in a

concurrent virtual environment using co-scheduling

technique showed a notable reduction in total execution time.

It should be however noted that we have ignored the cost of

finding co-scheduled processes in our simulations; this will

indeed entail extra overhead in a real executing environment.

VI. RELATED WORK

There are many techniques to schedule parallel

applications on multi-processor architectures. As an example,

backfilling [14] technique schedules parallel jobs that are at

the end of ready queue to unutilized resources, instead of

keeping resources idle. As another example, co-scheduling

schedules concurrent and dependant processes or threads on

different processors simultaneously.

The current modern hypervisors such as Xen [15] do not

attempt to co-schedule virtual CPUs. The default scheduler

on Xen, which is called credit scheduler, is a proportional

share scheduler that tries to maximize system throughput

while guaranteeing fairness.

There are also a handful of methods that try to optimize the

efficiency of VMM scheduler. As an example, task-aware

VM scheduling [16] infers the I/O bound nature of tasks and

correlated incoming events with I/O-bound tasks. Other

researches [17] have tried to exploit users’ input in

scheduling interactive VMs. Another relevant research [18]

divides VM into two categories, batch and concurrent and

then uses a proper scheduler for each one.

In contrast to the mentioned related researches that have

sufficed to study a special case of VM scheduling, in this

paper we have tried to highlight the main benefits and

concerns of scheduling VMs. In addition, as an optimization,

we proposed processor co-scheduling on VMs.

VII. CONCLUSION

In this paper, we studied VM scheduling in a Cloud

environment from three different viewpoints: main

challenges, scheduling advantages and a special optimization.

In the first part, we discussed about the challenges arise when

trying to schedule a set of VMs. In the next part, we

mentioned some scheduling advantages of using VMs in

Cloud distributed environments, like better reservation. We

also proposed an optimization technique, namely, virtual

processor co-scheduling method. This technique was

described and also its effect on system performance was

evaluated through simulation. It was shown that a higher

system performance is attainable when concurrent and

dependant jobs are mapped to executing processors at the

same time; i.e., are co-scheduled. We are furthering our

research by implementing our co-scheduling technique in

Xen in such a way to find correlated tasks in a full virtualized

case too.

REFERENCES

[1] G. Boss, P. Malladi, D. Quan, L. Legregni, and H. Hall, “Cloud

computing,” Technical Report, IBM High Performance on Demand

Solutions, 2007.

[2] A. Batat and D. Feitelson, “Gang scheduling with memory

considerations,” In Proceedings of the 14th International Parallel and

Distributed Processing Symposium, Cancun, Mexico, 2000, pp.

109-114.

[3] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of

scalable Cloud computing environments and the CloudSim toolkit:

challenges and opportunities,” In Proceedings of the 7th IEEE High

Performance Computing and Simulation Conference, Germany, 2009,

pp. 1-11.

[4] R. N. Calheiros, R. Ranjan, C. De Rose, and R. Buyya, “CloudSim: A

Novel Framework for Modeling and Simulation of Cloud Computing

Infrastructures and Services,” Technical Report, GRIDS-TR-2009-1,

Grid Computing and Distributed Systems Laboratory, The University

of Melbourne, Australia, 2009.

[5] P. Hellinckx , S. Verboven , F. Arickx, and J. Broeckhove, “Predicting

parameter sweep jobs: from simulation to Grid implementation,” In

Proceedings of the International Conference on Complex, Intelligent

and Software Intensive Systems, Japan, 2009, pp. 402-408.

[6] V. S. Adve and M. K. Vernon, “Parallel program performance

prediction using deterministic task graph analysis,” ACM Transactions

on Computer Systems, vol. 22, no. 1, pp. 94-136, Feb. 2004.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

192

http://www.gridbus.org/papers/CloudSim-HPCS2009.pdf
http://www.gridbus.org/papers/CloudSim-HPCS2009.pdf
http://www.gridbus.org/papers/CloudSim-HPCS2009.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(hellinckx%20%20p.%3cin%3eau)&valnm=Hellinckx%2C+P.&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20verboven%20%20s.%3cin%3eau)&valnm=Verboven%2C+S.&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20arickx%20%20f.%3cin%3eau)&valnm=Arickx%2C+F.&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20broeckhove%20%20j.%3cin%3eau)&valnm=Broeckhove%2C+J.&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5066710
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5066710

[7] B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execution

and leasing using virtual machines,” In Proceedings of the 17th

International Symposium on High Performance Distributed

Computing, Boston, MA, USA, 2008, pp. 87-96.

[8] M. Zhao and R. J. Figueiredo, “Experimental study of virtual machine

migration in support of reservation of cluster resources,” In

Proceedings of the 3rd International Workshop on Virtualization

Technology in Distributed Computing, Reno, Nevada, 2007.

[9] A. Moallem and S. A. Ludwig, “Using artificial life techniques for

distributed Grid job scheduling,” In Proceedings of the ACM

Symposium on Applied Computing, Hawaii, 2009, pp. 1091-1097.

[10] D. Deb, M. M. Fuad, and M. J. Oudshoorn., “Toward autonomic

distribution of existing object-oriented programs,” In Proceedings of

the International Conference on Autonomic and Autonomous Systems,

Santa Clara, 2006.

[11] J. Luo and N. K. Jha, “Battery-aware static scheduling for distributed

real-time embedded systems,” In Proceedings of the 38th Annual

Design Automation Conference, Las Vegas, Nevada, United States,

2001, pp. 444 - 449.

[12] VMware Workstation Product. http://www.vmware.com/products/ws/

[13] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.

Rumble, E. Lara, M. Brudno, and M. Satyanarayanan, “SnowFlock:

rapid virtual machine cloning for Cloud computing,” In Proceedings of

the 4th ACM European Conference on Computer systems, Nuremberg,

Germany, 2009, pp. 1-12.

[14] E. Shmueli and D. Feitelson, “Backfilling with lookahead to optimize

the performance of parallel job scheduling,” In Proceeding of the 9the

Workshop on Job Scheduling Strategies for Parallel Processing,

Washington, USA, 2003, pp. 228-251.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of

virtualization,” In Proceedings of the ACM Symposium on Operating

Systems Principles, New York, NY, USA, 2003, pp. 164-177.

[16] H. Kim, H. Lim, J. Jeong, H. Jo, and J. Lee, “Task-aware virtual

machine scheduling for I/O performance,” In Proceedings of the ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution

Environment, Washington, DC, USA, 2009, pp. 101-110.

[17] B. Lin, P. A. Dinda, and D. Lu, “User-driven scheduling of interactive

virtual machines,” In Proceedings of the 5th IEEE/ACM International

Workshop on Grid, Washington, DC, USA, 2004, pp. 380-387.

International Journal of Computer Theory and Engineering Vol. 4, No. 2, April 2012

193

http://www.vmware.com/products/ws/

