

Abstract—The objectives of this paper are representing a

simulator for the logic gates using P systems with priorities

rules, and making use of the P system parallel computing in

order to reduce the time used to test or evaluate a logic circuit

(set of logic gates), which may change the vision of the current

logic gates systems. Also, introducing the basic logic gates and

how they work together, the development of the appropriate P

system models for these gates are represented, and putting all

together in order to get logic circuits which are P system based,

finally a simulation and a test for them using a P Lingua

language simulator, and an example is introduced to illustrate

and making test of the model.

Index Terms—Logic gates, membrane computing, p-lingua, p

system, simulator.

I. INTRODUCTION

The current systems are mostly digital, that may be

software or hardware systems (based on the binary numbers 0,

1), which are implemented using a set of logic gates or logic

circuits. These logic gates operate with each other to generate

the desired output of the circuits, which is the output of the

system. This is the traditional digital system. Membrane

computing, as introduced by G. Păun [1], appeared with a

different way of computation which is imported from the

living cells. A model for simulating Boolean circuits with

DNA algorithms is proposed [2], and also this issue is

discussed using a P systems [3]. We propose a simpler and

different model for simulating logic circuits with P systems.

So, we propose an idea that can be performed using the same

logic gate operations, but with P system computation. This is

discussed before [3] using P system with catalysts, but, we

use P system with rule priorities that make it different and

reduce the number of used membranes. In this case, the

system will be different, as well as the way of computation

using the parallel computation feature of the P-System which

reduces the operations time which will be shown within

computation. Also, we introduce a definition of membrane

computing, and some notes on Logic gates and circuits. The

main topic, the simulation of Logic circuits with P systems,

the simulated gates are AND, OR, NAND, and XOR. We

simulate and test a set of connected logic gates. Then the

same set of gates is implemented and tested using a software

simulator called P-Lingua. Finally, we conclude the work and

introduce the proposed future work.

Manuscript received December 26, 2011; revised January 10, 2012.

The authors are with the Computer Science Department, Faculty of

Computers Science, MTI University, Cairo, Egypt (e-mail:

amged_fathey@hotmail.com).

II. MEMBRANE COMPUTING

Membrane computing is a branch of natural computing

with an initial goal of abstracting computing models from the

structure and functioning of living cells [1]. The initial goal

was learning something possibly useful for computer science

from cell biology, and giving the area developed in this

direction [1], [4].

Membrane structure (which is the basic idea of building a

membrane system) is a structure composed of several

cell-membranes, hierarchically embedded in a main

membrane called the skin membrane [5]. A plane

representation of a membrane structure (Fig. 1), can be given

by means of a Venn diagram, without intersected sets and

with a unique superset. The membranes delimit regions and

associate with each region a set of objects, described by some

symbols over an alphabet, and a set of evolution rules [1, 6].

[1 [2]2 [3]3 [4 [5]5 [6 [8]8 [9]9]6 [7]7]4]1

Fig. 1. Membrane structures

A. Membrane Computing Computation

The computation mainly starts with an initial configuration

of the system, where the input data of a problem is encoded

[7].

A computation for a P system can be described as follows:

C0 =>C1=>…=>Cn, n>=0,

where C0 is the initial configuration.

The transition from one configuration to another is

performed by applying rules to the objects placed inside the

regions. A computation of the system is a tree of

configurations, the rules is applied in a non-deterministic

maximal parallel manner (all objects which can evolve by

such rules have to evolve), in each step, in each region; each

object that can be evolved according to some rules must do it

by transitions until reaching a halting configuration, where

no more rules may be applied. The result of a halting

computation is usually defined through the multi-set

associated with a specific output membrane, or the

environment, which is the space out of the skin.

(Fig. 2) give an example of a P system that computes the

squares of natural non-null numbers (the output is read in

membrane 1, which have to be appeared elementary at the

end of a computation) [1].

A P System Simulator for Logic Gates

Amged Fathey, Amr Badr, and Ibrahim Farag

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

98

mailto:amged_fathey@hotmail.com

Fig. 2. A P system computes squares of natural non-null numbers

Based on [1], we made use of the formal definition of a P

system and also the priorities rules.

A P system with priorities rules is a construct

Π= (O, µ, w1, . . . , wm, (R1,P1), . . . ,(Rm,Pm), io)

Where:

 O is the finite and non empty alphabet of objects,

 µ is a membrane structure, consisting of m membranes,

labeled 1; 2,…m

 w1, . . . , wm are strings over O representing the multi-sets

of objects Presented in regions 1,2,…,m of the

membrane structure,

 R1, . . . , Rm are finite sets of evolution rules associated

with regions 1,2,..,m of the membrane structure,

 p1,…, pm are finite sets of priorities of the rules

 io is either one of the labels 1,2,..,m , and the respective

region is the output region of the system, or it is 0, and

the result of a computation is collected in the

environment of the system.

For more details about rule priorities relation we can

describe it as follows: A rule r1:u1→v1 from a set Ri is used in

a transition step with respect to II only if there is no rule

r2:u2→v2 in Ri which can be applied at the same step and r2 >

r1.that is, at each step, only rules which are maximal among

the rules applicable in that region are allowed to be applied [1,

6].

III. LOGIC GATES

Logic gates are electronic circuits that operate on one or

more input signals to produce an output signal [8] .Digital

systems are constructed by using logic gates as software or

hardware machines. These gates are the AND, OR, NOT,

NAND, NOR, XOR and XNOR gates. As an example, (Fig. 3)

shows the AND, OR, NAND and XOR gates. The logic gates

behavior can be described by truth tables.

Most of the gates have at least 2 inputs (may be more);

except the inverter (known as NOT) have one input; but it has

also one output.

Fig. 3. AND /OR/NAND/XOR gates symbols and truth tables

For example, if we have a set of gates like in Fig. 4, which

contains 3 gates AND with inputs (a, b), OR gate with inputs

(a, c), and XOR gate with inputs (e, f), the output of these

gates is appeared as in the truth table (Fig. 4).

A.

B.

INPUT OUTPUT

A B C O

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Fig. 4. Logic Gates example with output

IV. LOGIC GATES SIMULATION

This section introduces the proposed P system model for

the logic gates separately. The following paragraph describes

the initial configuration of the membranes that implement the

AND, OR, NAND, and XOR gates, as shown in (Figs. 5, 6, 7,

and 8).

As mentioned before this simulation was introduced in

[2,3] but this reduces the number of membranes and number

of rules and use a P system with priorities among the

evolution rules in which its model is discussed in section 2 in

the membrane computation model part [6].

When using this model, the inner rules can work in a

parallel way according to the computation way of the P

system. The Example will show the computation which work

parallel and the other works sequentially.

In this simulation we will consider the input of the gates

exist in the lowest level (inner membrane). The result of the

computation will be sent out (in most cases skin or the

container gate if exist).

A. Membrane AND Gate

Boolean AND gate can be simulated by P systems with

rewriting priorities rules using only one membrane including

its rules in exactly two steps. The formal model definition of

the membrane AND gate of degree 1 is a tuple II, and also we

assume that the final result will be at the skin.

Π = (O, µ, w1, (R1, P1), 0)

where

O= {0, 1},

µ = {[1]1},

w1= ג ,

R1= {r1: 11→ (out, 1), r2: 1→ (out, 0), r3: 0→ (out,

0)},

P1= {r1 > r2}.

a

b

c

o

a

e

f

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

99

The initial configuration of the membrane AND gate

appeared in Fig. 5.

Fig. 5. AND gate membrane

According to the model and tracing the inputs, the

available scenarios that might happen are as follows when the

pairs enter the membrane 1 are showed in TABLE I.

TABLE I: AND GATE OUTPUT

Pair Output

(0,0) 0

(0,1) 0

(1,1) 1

B. Membrane OR Gate

Boolean OR gate as AND gate also can be simulated by P

systems with rewriting priorities rules using only one

membrane including its rules in exactly two steps. The formal

model definition of the membrane OR gate of degree 1 is a

tuple II, and also we assume that the final result will be at the

skin.

Π = (O, µ, w1, (R1, P1), 0)

where

O= {0, 1},

µ = {[1]1},

w1= ג ,

R1= {r1: 1→ (out, 1), r2: 00→ (out, 0)},

P1= {r1 > r2}.

The initial configuration of the membrane OR gate

appeared in (Fig. 6).

Fig. 6. OR gate membrane

TABLE II shows the tracing of the inputs to the membrane,

and the all available scenarios that might happen when the

pairs enter the membrane.

TABLE II: OR GATE OUTPUT

Pair Output

(0,0) 0

(0,1) 1

(1,1) 1

C. Membrane NAND Gate

Boolean NAND gate as in the case of previous gates can be

simulated by P systems with rewriting priorities rules using

only one membrane including its rules in only two steps. The

formal model definition of the membrane NAND gate

consisting of degree 1 is a tuple II, and also we assume that

the final result will be at the skin.

The formal model definition of the membrane NAND gate

of degree 1 is a tuple II

Π = (O, µ, w1, (R1, P1), 1)

where

O= {0,1},

µ = { [1]1},

w1 = ג ,

R1 = {r1: 11→ (out, 0), r2: 1→ (out, 1), r3: 00→ (out,

1)},

P1= {r1 > r2}.

The initial configuration of the membrane NAND gate

appeared in (Fig. 7). Like the previous membrane gates, the

inputs came to the membrane from the outsider membrane.

Fig. 7. NAND gate membrane

According to the model and tracing to the inputs, the all

available scenarios that might happen are showed, when the

pairs enter the membrane 1 are expressed in (TABLE III).

TABLE III: NAND GATE OUTPUT

Pair Output

(0,0) 1

(0,1) 1

(1,1) 0

D. Membrane XOR Gate

At last, Boolean XOR as in the other gate also can be

simulated by P systems with rewriting priorities rules using

only one membrane including its rules in only two steps. The

formal model definition of the membrane XOR gate that has

degree 1 is a tuple II, and also we assume that the final result

will be at the skin.

The formal model definition of the membrane XOR gate

has the degree 1 is a tuple II

Π = (O, µ, w1, (R1, p1), 1)

where

O = {0, 1},

µ = {[1]1},

w1= ג ,

R1= {r1: 11→ (out, 0), r2: 10→ (out, 1), r3:00 → (out,

0)},

P1= {r1 > r2 >, r3 >r2}.

The initial configuration of the membrane XOR gate

appeared in (Fig. 8).

A. 11→ (out, 1)>1→ (out, 0)

0→ (out, 0)

1

B.
C. 1→ (out,

1)>00→ (out,

0)

D.

1

E. 11→ (out, 0)>1→ (out,

1)

F. 00→ (out, 1)

1

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

100

Fig. 8. XOR gate membrane

TABLE VI shows the tracing of the inputs to the

membrane, and the all available scenarios that might happen

when the pairs enter the membrane.

TABLE VI: XOR GATE OUTPUT

Pair Output

(0,0) 0

(0,1) 1

(1,1) 0

V. LOGIC CIRCUITS SIMULATION

After approaching all the logic models of membrane

computing, the computational processes in the nested levels

are highly independent, and as a general mapping:

Membrane System : Gates

Skin Membrane : Gate Tester

Membrane : Gate

Rules : Instructions (Gate Operation)

Objects : I/O

Structure of Membranes: Structure of Gates (more than

one gate)

The required design of any constructed circuit using the

simulated gates is a nested set of gates;

In the next example; the last operation is the main

container, and the first operation is subset of the upper level

so that the result of each circuit step out to the higher level or

gate to get the final result.

Logic Circuit Example

Using this mapping, we give an example of how

constructing a P system which simulates a logic circuit, using

the basic P systems constructed in the section 4 (AND, OR,

NAND, and XOR). The following example contains three

gates connected together to check the output of the final P

system, which is the output of the logic gates, for example, if

we have gates connected together as in Fig. 4 will produce a P

system with tree representation of the membrane structure as

shown in Fig. 9 and membrane structure as shown in Fig. 10.

Fig. 9. The tree representation of the membrane structure of the example

The corresponding P system Definition will be as follows

Π = (O, µ, w1, …, w3, (R1, P1), …, (R1, P3),0)

O= {0, 1},

µ = {[1 [2]2] [3]3]1},

w1= ג ,

w2= ג ,

w3= ג ,

R1= {r1: 11→ (out, 0), r2: 10→ (out, 1), r3:00 → (out,

0)},

P1= {r1>r2>, r3>r2}.

R2= {r1: 11→ (out, 1), r2: 1→ (out, 0), r3: 0→ (out,

0)},

P2= {r1>r2}.

R3= {r1: 1→ (out, 1), r2: 00→ (out, 0)},

P3= {r1>r2}.

Fig. 10. P system initial configuration for the logic gates example

Fig. 11. Steps of P system computation for the logic gates example

When the objects “110” used as inputs a = 1,b = 1and c = 0

(according to Fig. 4) region 2 will receive “11” and region 3

will receive “10” according to the circuit design; the output is

“1” from region 2 and “1” from region 3 which will be the

input objects to the region 1 which works and generates the

final output “0” as shown in the previous computation steps

(step 1, and step 2), the right answer according to the truth

table appeared in Fig. 4.

The computation of membranes will start with parallel and

G. 11→ (out, 0) >10→ (out,

1)

H. 00→ (out,0) >10→

(out,1)

2

I.

J. 11→ (out, 1)> 1→ (out,

0)

0→ (out, 0)

3

E.
N.

O. 11→ (out, 0) >10→ (out,

1)

P 00→ (out, 0) >10→ (out,

1)

1

2

K.

L. 1→ (out, 1)>00→ (out, 0)

M.

1

2 3

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

101

sequence arrangement in the same time which means that:

when regions 2 and 3 receive their inputs they will start to

work and generate their outputs to region 1 which wait to

work because some rules may start working with the

generated objects unless it waits for another one, this reduces

the time needed to finish the computation. So, the

computation calculated in a non-deterministic parallel way

[6], this means that it take less time compared with sequential

way because the two gates will be worked in the same time to

get their output to push it to the last one as in the example. On

the other hand, this indicates that the system got the desired

output.

VI. SIMULATION IMPLEMENTATION USING P-LINGUA

P-Lingua is a programming language for membrane

computing developed by the Research Group on Natural

Computing members, University of Seville [9, 10].

 The designs of the gates mentioned in Fig. 4 are

implemented and simulated using P-lingua. TABLE V list all

simulated gates, for each gate there is the P-Lingua code to

implement it and its output when it works like the one in

section 3 and Fig. 3.

Note that we replaced the “1” with “a” and “0” with “b” for

implementation.

TABLE V: GATES CODE AND RUN STEPS USING P-LINGUA

For more addition to the correctness of the proposed gates,

we will implement the same example appeared in Fig. 4

(simulated in last section) with P-lingua as a kind of test. As

shown in Fig. 12 we can see the code and the output of the

circuit. The simulation takes 0.014 s, which means less than

the total times of the three used gates (this proves the parallel

computations). Also we can observe that the output is as

desired, actually all the combinations were tested; all of them

gave the correct answer.

Fig. 12. The code and the output of the circuit

VII. CONCLUSION AND FUTURE WORK

We introduce in this paper the original design and the

simulated version of AND, OR, NAND, and XOR logic gates

using P system. An example is also given for logic gates and

the simulated logic gates for the same example (logic circuit)

which produce the same outputs like logic gates.

We notice that the logic gates used in most systems and its

computation is sequential in most cases; in this paper; we

consider reducing time and computations as much as we can

through using the non-deterministic parallel computation of

the P system by implementing the gates as membranes and

rules with priorities, The models may need some extra

developments to reach the full parallelism in both sides inside

the gate and within gates when connecting a group together.

As shown in Fig. 12 we can see the code and the output of

the circuit. The simulation takes 0.014 s which means less

than the total times of the three used gates (this proves the

parallel computations)

Comparing to the other simulated logic gates appeared in

[2, 3] there is a fewer number of membranes and less number

of rules that leads to fewer computations.

 Other directions are in possible reduction of computation

that we may use the rough P system [11, 12] based on the

rough set theory [13] to minimize the gates computation and

logic gate simplification as done in logic gates with P systems

in the near future.

REFERENCES

[1] Gh. Păun, “Computing with Membranes,” Journal of Computer and

System Sciences, vol. 61, Issue 1, pp. 108-143, 2000.

[2] O. Ogihara and M. Ray A.,”Simulating Boolean Circuits on a DNA

Computer,” Technical Report 631, Department of Computer Science,

Rutgers University, 1996.

[3] R. Ceterchi and D. Sburlan,” Simulating Boolean Circuits with P

Systems,” in Membrane Computing, Proceedings of the International

Workshop WMC 2003, Tarragona, Spain, pp. 104–122, July 2003.

[4] G. Ciobanu, M. J. Perez-Jimenez, and G. Paun, Applications of

Membrane Computing, Natural Computing Series, Springer, 2006.

[5] B. Nadia and Za. Claudio.” Computing with Genetic Gates, Proteins

and membranes,” 7th International Workshop, WMC pp. 250–265,

2006.

[6] Gh. Paun, Membrane Computing, An Introduction, Springer-Verlag,

Berlin, 2002.
[7] Gh. Păun, “Membrane Computing and Brane Calculi,” Electronic

Notes in Theoretical Computer Science vol. 171, Issue 2, pp. 3-10,

2007.

[8] M. Mano. Logic and Computer Design Fundamentals, vol. 1,

Pearson/Prentice Hall, 2004.

[9] D. Diaz-Pernil, I.Perez-Hurtado, M. J Perez-Jimenez, and A.

Riscos-Nunez, “A P-Lingua programming environment for membrane

computing,” In Corne et al., Revised Selected and Invited Papers,

Lecture Notes in Computer Science vol.5391, pp. 187-203, 2009,

Springer.

[10] M. Garcia-Quismondo and R. Gutierrez-Escudero, et al.,” P-Lingua 2.0:

New Features and First Applications,” Seventh Brainstorming Week on

Membrane Computing, Sevilla, pp. 141-167, 2009.

[11] A. D. Nolal, Gh. Păun, M. J. P érez-Jim énez, and F. Rossell,

“Handling Imprecision in P Systems,” Brainstorming Workshop on

Uncertainty in Membrane Computing, Palma, p 1, 2004.

[12] G. Păun, “Rough P Systems,” Brainstorming Week on Membrane

Computing, Tarragona, p 9, 2003.

[13] J. Bazan, H. S. Nguyen, and M. Szczuka, “A View on Rough Set

Concept Approximations,” Fundamenta Informaticae, vol. 59, pp.

107–118, 2004.

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

102

