



Abstract—Self Management is a process by which computer

systems shall manage their own operation with out human

intervention. Self Management technologies are expected to

pervade the next generation of computing or communication

systems. Currently, the most vital industrial initiative towards

realizing self management is the autonomic computing (AC). Its

ultimate aim is to innovate the incredible self management

systems capable of high level functioning in handling

tremendous complexities of the management while hiding the

system’s complexity from the user. Self Healing, an emerging

research discipline is considered as one of the key autonomic

computing attribute. This paper emphasizes on developing a

self healing tool operating in client server mode. The health

monitor (HM) embedded in each client is the focal element of

the Self Healing and plays a dominant role in healing the

processes by maintaining the status of the processes periodically.

If the HM fails, then the main monitor (MM) projects the task

on healing the HM. And finally the external monitor (EM) adds

a promising value for database consistency. In this paper, we

implemented a prototype of Health Monitor as a self healing

tool component. Thus all these three modules have to

concurrently cooperate with each other as part of self

managing.

Index Terms—Self healing; autonomic computing; self

management; health monitor

I. INTRODUCTION

Systems managing themselves as per administrator’s goals

and integration of new components into a network seamlessly

are the visions of self-managing computing systems. The

main obstacle for further progress of IT industry is a looming

software complexity crisis [1]. The applications and

environments that weigh in at tens of millions of lines of code

and require skilled IT professionals to install, configure, tune,

and maintain. The need to integrate several heterogeneous

environments into corporate-wide computing systems, and to

extend that beyond company boundaries into the Internet,

introduces new levels of complexity. Computing systems

complexity appears to be approaching the levels of human

capability, yet the march toward increased inter-connectivity

and integration rushes ahead undebated. Relying alone on

Programming solutions will not help us from getting out of

this crisis. The complexity crisis can be tackled by designing

the self managing machine embedded with automated

functions. Autonomic computing is an evolution to cope with

rapidly growing complexity of integrating, managing and

operating computing based systems. The realization of

Manuscript received September 10, 2011; revised December 16, 2011.

N.Rukma Rekha is with Department of CIS, University of Hyderabad,

Hyderabad, India (e-mail: rrcs@uohyd.ernet.in).

M.Surendra Prasad Babu is with Department of CSSE, Andhra University,

Visakhapatnam, India (e-mail: drmsprasadbabu@yahoo.co.in).

autonomic computing will result in a significant

improvement in system management efficiency. An

autonomic computing system is context aware and responds

correspondingly in its environment. The disparate

technologies that manage the environment work together to

deliver best performance results.

A. Motivation:

 Computer systems are becoming more demanding,

complex, challenging and difficult to manage. The data to be

processed is moving from more to huge. The world of

Internet has given a programmer to do more complex and

demanding software solutions. As networks and distributed

systems grow and change, system deployment failures,

hardware and software issues, and human error can

increasingly hamper effective system administration. As

systems become more interconnected and diverse, architects

are less able to anticipate and design interactions among

components, leaving such issues to be dealt with at run time.

The number of systems will become too massive and

complex for even the most skilled system integrators to

install, configure, optimize, maintain, and merge and there

will be no way to make timely, decisive responses to the rapid

stream of changing and conflicting demands. The solution to

overcome for handling such difficult complexities is the

Autonomic computing [2]. Autonomic computing (AC)

helps to address the complexity issues by using technology to

manage technology. Self healing, an autonomic attribute is

dealt in this paper.

B. Objective:

The pivotal objective of the work focuses on developing

an innovative self healing tool operating in a client server

mode. Its main objective is to add sophisticated functions to

the Health Monitor that results in a powerful self healing tool.

The research also targets for a system to accomplish the vital

self healing attribute of the autonomic computing.

II. BACK GROUND

A. Autonomic Computing (AC):

Automating the management of computing resources is not

a new problem for computer scientists. For decades they have

been evolving to deal with the increased complexity of

system control, resource sharing, and operational

management. Autonomic computing is just the next logical

evolution of these past trends to address the increasingly

complex and distributed computing environments of today.

The radical changes in the information technology in the few

short years since the mid-1990s, dramatically led to larger

scale, broader reach, and a more mission-critical fundamental

requirement for e- business. In that time the norm for a large

A Partial Self Healing Tool in Autonomic Computing

N. Rukma Rekha and M. Surendra Prasad Babu

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

26

on-line system has escalated from applications such as

networks consisting of tens of thousands of fixed-function

automated teller machines connected over private networks

to rich suites of financial services applications that can be

accessed via a wide range of devices (personal computer,

notebook, handheld device, smart phone, smart card, etc.) by

millions of people worldwide over the internet. We have

basically five defined [2] evolutionary levels stating - level 1

as the basic level that presents the current situation where the

machines are managed manually. Level 2-4 is a partial

autonomic machine embedded with some automated

management functions. Level 5 represents the ultimate goal

of autonomic computing as the self managing machine. Self

management is a process by which computer systems shall

manage their own operation with out human intervention.

Like the biological namesakes, autonomic systems will

maintain and adjust their operation in the face of changing

components, workloads, demands, and external conditions

and in the face of hardware or software failures, both

innocent and malicious. Self-managing systems and devices

will seem completely natural and unremarkable, as will

automated software and middle ware upgrades. Autonomic

computing systems would control the functioning of

computer applications and systems with out input from the

user. Many of the decisions made by autonomic elements in

the body are involuntary, whereas autonomic elements in

computer systems make decisions based on tasks chosen to

delegate the technology [3]. The fundamental attributes are

self-configuring, self healing, self-optimizing, and

self-protecting [3] [4].

All these attributes are constituted to form a self managing

system or an autonomic machine. Other attributes are self

aware, environment aware, self monitoring, self adjusting etc.

Autonomic computing helps to overcome the rapidly

growing complexity of computing systems management, and

to reduce the barrier that complexity poses to further growth.

An autonomic system makes decisions on its own, depending

on its policies, it will constantly check and optimize its status

and automatically adapt itself to changing conditions [5].

B. Need of Autonomic Computing:

The growing complexity of modern networked computer

systems is currently the biggest limiting factor in the

expansion of corporate world. The increasing heterogeneity

of big corporate computer systems, the inclusion of mobile

computing devices and the combination of different

networking technologies like WLAN, cellular phone

networks, and mobile networks make the conventional,

manual management very difficult, time consuming, and

error-prone. Simply stated from above, managing complex

systems has grown too costly and prone to error. It is now

estimated that one-third to one-half of a company's total IT

budget is spent preventing or recovering from crashes [6].

Aberdeen group studies show that administrative cost can

account for 60 to 75 percent of the overall cost of database

ownership (this includes administrative tools, installation,

upgrade and deployment, training, administration salaries,

and service and support from database suppliers).The

autonomic computing reduces deployment and maintenance

cost and increases stability of IT systems that are able to

adopt and implement directives based on business policy, and

are able to make modifications based on changing

environment.

The goal of the Autonomic computing is to create systems

that run themselves, capable of high-level functioning while

keeping the system's complexity invisible to the user. Its

challenge is to produce practical methodologies and

techniques for development of such self managing systems,

so that they may be leveraged to deal with failure and recover

easily.

C. Challenges of Autonomic Computing:

The Autonomic computing must result in smooth

management of business by minimizing the complexities of

the users. The other challenge is to convince customers that

Autonomic computing actually simplifies systems

management and can cut costs to a large extent. The

transition of new self-healing systems must cause minimal or

no disruption. The vision of Autonomic computing [7] is to

improve performance of IT systems by introducing self

management systems for configuration, protection,

optimization and healing purposes.

III. LITERATURE SURVEY

Goal of self managing systems is to introduce autonomic

computing into personal computing platforms, given that

users will continue to manage their own platforms, and need

to know what state they are in and how they got that way.

A. Personal Autonomic Computing (PAC):

Personal autonomic computing [8] is autonomic

computing in a personal computing environment. Personal

computing is still too demanding of its users, especially when

it comes to setting up, managing and fixing the software and

data that are so vital to its value. Although improvements

have been made, the cost of personal computing is still

dominated by the time its end users must spend maintaining

and configuring its software. Autonomic computing with its

emphasis on automation of system management has the

potential to reduce this time, simplifying personal computing

and making it more robust and secure.

Most early efforts in Autonomic computing have been

focused on servers. For some customers, servers have

become almost unmanageable because of sheer complexity

coupled with business-critical and escalating demand. In

some respects, achieving autonomic computing with in

server environments will be an easier task than with in

personal computing. Servers are likely to have received the

level of investment to ensure in-built fault tolerance and

include extensive redundancy. Personal devices are often

machines built on faster, cheaper and smaller philosophy

with limited resources. Other considerations are required for

personal computing such as flexibility of location (e.g.

laptops) and of hardware (e.g. palm devices) and software

configuration that complicate further goal of achieving

autonomic computing [8].

The challenge of autonomic personal computing is to

simplify and enhance the end user experience, delighting the

user by anticipating his or her needs in the face of this

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

27

complex, dynamic and uncertain environment.

B. Self Healing:

Major portions of corporate worlds time is wasted in

identifying, tracing, and determining the root cause of

failures in complex computing systems. Serious customer

problems can take teams of programmers several weeks to

diagnose and fix, and sometimes the problem disappears

mysteriously with out any satisfactory diagnosis [6].

The sharp difference between the current computing and

autonomic computing towards self healing concept is that the

current computing involves problem determination in large,

complex systems can take a team of programmers weeks

where as in the autonomic computing involves system

automatic detection, diagnosis, and repairs for localized

software and hardware problems. Systems will be predicting

the problems in advance and will take actions to prevent the

failure from having an impact on applications. The

Self-healing objective is to reduce all possible disruptions in

order to keep enterprise applications up and available at all

times.

Developers of system components need to focus on

maximizing the reliability of each hardware and software

product toward continuous availability. Systems will

discover faults, diagnose them, and react to disruptions. For a

system to be self healing, it must be able to recover from a

failed component by first detecting and isolating the failed

component, taking it off the network, fixing or isolating the

failed component, and reintroducing the fixed or replacement

component into service without any apparent application

disruption. Systems need to predict problems and take

actions to prevent the failure from having an impact on

applications. The self-healing objective must be to minimize

all outages in order to keep enterprise applications up and

available at all times. Developers of system components need

to focus on maximizing the reliability and availability of each

hardware and software product toward continuous

availability.

C. Past Work:

[9] Develops a proof of concept of self-healing tool for

personal computing environment operating in a peer-to-peer

mode and consists of a pulse monitor and a health monitor.

This provides the feasibility of the pulse and vital signs

concepts and their ability to provide some self-healing

properties within a personal computing environment.

C.1 Peer-To-Peer (P2P):

Peer-to-Peer (P2P) is a paradigm in which each

workstation on a network has equivalent capabilities and

responsibilities [10]. This differs from the Client/Server

architecture, in which a server is a dedicated computer to

serve client requests. Peer to peer computing offers a

company a cost-efficient way of sharing computer resources,

improving network performance, and increasing overall

productivity [11].

In traditional peer to peer networking, computers are

connected together as a workgroup and configured for the

sharing of resources such as files and printers. Peer to peer

architecture enable computers to share services and resources

directly between one another. Peer to peer technologies

benefit distributed computing as it provides efficient

communication and quality of service. Here, the peers form a

'neighbour-hood watch' scheme-- looking out for each others

health [12]. A system has its autonomy to register and

un-register with other systems. Two systems become

neighbours after they register to each other. There is no limit

on how many neighbour(s) that a system can register with.

Systems send pulses to each other only when they are

connected. Therefore, a system does not necessarily always

have to be available, as a registered system it may find

another peer. Peer to peer computing also allows networks to

work together using intelligent agents [11].

C.2 Self Healing Tool Design In Peer to Peer:

 The assumption behind the tool is that dying/hanging

processes on the PC have indicators to the health of that PC.

Pulse monitor and health Monitor are the fundamental

modules of this design. The vital signs may indicate that the

PC is becoming unstable and possibly in immanent danger of

hanging or unreliable for current processes running on that

machine. As well as restarting the detected hung process (es)

the peers are notified of the situation via a change in pulse.

This is particularly useful in situations where the PC is

unattended for example running on a web server, and the user

may be notified via a peer PC that the machine is in difficulty.

Another user situation is when machines in the peer group are

sharing workload, for example via harmony PC grid services;

a peer is notified in advance of immanent danger and can

recover data and re-allocate work to another peer. Such an

approach is more proactive than responding once the

machine has hung, and as such offers fuller potential for

autonomic capabilities. The underlying functionality of the

tool is a heartbeat monitor; if a process hangs it should be

restarted and the pulse monitor takes note. Upon several

processes hanging with in specified time frames, a change

occurs in the monitor's perception of how healthy the

machine is and as such brings about a change in the pulse

being broadcast from that PC. Since this tool operates in a

peer to peer mode, it also takes responsibility to watch out for

its neighbours, as such others PCs (peers) will register with it

and it will monitor their pulse. An Internal Monitor inside

takes care of pulse. Each is able to send its pulse to a peer via

an external monitor.

The internal monitor sends the degree of urgency (nominal,

interesting, important, urgent, no pulse) to the peer's pulse

external monitor instead of just a 'beat'. The urgency level is

transformed on the number of failed processes. The amount

of processes required to cause a change in pulse is adaptable

and need not necessarily remain at the values as is the time

window for qualifying processes. In short, the tool scans the

system periodically to check its health condition; it

transforms the health condition to a pulse value and will send

it to connecting neighbours. If a process is found to have

failed, the tool will try to re-start that process.

Pulse monitoring self healing tool contains four

components: Main monitor (MM), internal monitor (IM),

external monitor (EM), and health monitor(HM)[9]. IM and

HM monitor processes on a machine. HM can re-start or

terminate a failed process. EM communicates with the

external environment, it sends/receives Pulses to/from other

systems (neighbours /peers); monitoring neighbours by

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

28

sending a message to check if the neighbour is 'alive' or not

when it detects that the neighbour hasn't sent it pulse and

reboot a neighbour when necessary. Conversely, the system

is being monitored by its neighbours in the same way. MM is

responsible for monitoring IM and EM. MM would re-start

them if they are dead.

D. Origin of the Current Research:

The concept of the current research in built is based on the

above paper [9]. For user-friendliness, same names were

given to the modules in the current research also. How ever,

the functionalities of the some modules vary in the current

research. In addition to this, there are some bottom-line

differences between these two researches. The current

research focus on designing a self-healing tool in client

server mode where as the past research is designed in

peer-to-peer mode. The current research considers only three

modules namely health monitor (HM), main monitor (MM)

and external monitor (EM).

IV. ARCHITECTURAL DESIGN

Client-server computing or networking is a distributed

application architecture that partitions tasks or work loads

between service providers (servers) and service requesters,

called clients. Often clients and servers operate over a

computer network on separate hardware.

A server is a high-performance registering unit and shares

its resources with clients. A client does not share any of its

resources, but requests a server's content or service function.

Clients therefore initiate communication sessions with

servers which await incoming requests [13].

Client-server describes the relationship between two

computer programs in which one program, the client program,

makes a service request to another, the server program. Each

instance of the client software can send data requests to one

or more connected servers. In turn, the servers can accept

these requests, process them, and return the requested

information to the client. The two tier architecture means that

the client acts as one tier and application in combination with

server acts as another tier.

The three modules of this design perform specific tasks as

1) Health monitor (HM)

2) Main monitor (MM)

3) External monitor (EM)

The following figure depicts the design architecture

briefly.

Fig: Overview of the architecture

A. Strategy:

Consider three systems represented as client c1, client c2,

and client c3 as shown in figure. The health monitor is

embedded in each client. Every HM is confined to its own

client. The HM of one client is not related to any other client

although the function of the HM is same in all clients.

Initially the users can perform their own tasks on these

systems. Let there exists some user processes running on

these systems. These user processes after some period of time,

by chance may stop working when a unknown problem arises

at some point. This may lead to the processes failure or

termination that completely kills the precious time and waste

the resources. Thus the HM of these clients takes the

responsibility in handling such faulty process and possibly

does a necessary healing action based on the problem

encountered by the process. That's the reason for the HM to

be the pivotal module in healing the processes.

There may be some circumstances that may result in the

failure of the HM. At this point of time the main monitor

(MM) which is introduced in the server takes the

responsibility of tackling the HM. A question may arise at

this moment regarding how the MM knows which HM is in

failure state. As this research is based on client server

technology, the HM will send a pulse to the server

periodically. Here the pulse is “I am alive” message. This

message is sent to the MM at regular intervals. If this

message is not received by the MM, then the MM simply

recognizes that a specific HM is in failure state and

immediately takes a action in restarting the HM.

Thus if there is any fault in the process the HM will handle

it. And if this HM fails then the MM in the server will tackle

that. And when the serves crashes the backup server will look

after that. Thus when ever the server crashes the backup

server comes into picture and ensures the adaptability to the

clients to continue their tasks with out interruption. And this

backup server acts as the original server right now.

Finally the external monitor (EM) which is embedded in

both the servers performs a peculiar task. Its job is to

maintain thedatabase consistency in both the servers so that

the clients can access the updated information at any point of

time even though one of the servers is crashed.

B. Functionalities of the Modules:

B.1 HEALTH MONITOR (HM):

The self healing tool health monitor (HM) performs

fabulous work when compared to the other modules main

monitor (MM) and the external monitor (EM). The health

monitor regularly monitors the health of their concerned

systems. This mainly focuses on healing the effected

processes. In addition to healing, the health monitor opens

new opportunities in the utilization of the resources

effectively and optimistically.

B.2 MAIN MONITOR (MM):

The main monitor sole responsibility is to handle the

health monitor when it fails. The MM receives the pulse in

the form of message from the clients. When this pulse is not

received by the main monitor, it simply restarts the corrupted

health monitor.

B.3 EXTERNAL MONITOR (EM):

The task of the External Monitor is to maintain the

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

29

consistency of the database in both the servers. An immediate

action should be taken at this point of time to make the server

come to the normal mode. The backup server will come into

role when the main or original server crashes. When the

communication is switched on from main server to the

backup server the clients will be able to access the updated

information.

The external monitor provides the flexibility to the clients

to access the updated information at any time. Log files

records updated information. This updated data is

permanently stored in the data files when the check point

occurs. Thus whenever the check point occurs the external

monitor will simultaneously reflect the log files to both the

data files of the two servers and hence results in successfully

maintaining database consistency.

C. Description of the HM:

Process is a running instance of a program. Every process

is provided with resources to do the task. RLIMIT_CPU is the

maximum CPU time in seconds. When the process reaches

the soft limit, it is sent a SIGXCPU signal. The default action

for this signal is to terminate the process. However, the signal

can be caught, and the handler can return control to the main

program. If the process continues to consume CPU time, it

will be sent SIGXCPU once per second until the hard limit is

reached, at which time it is sent SIGKILL. Portable

applications that need to catch this signal should perform an

orderly termination upon first receipt of SIGXCPU.

RLIMIT_AS denotes maximum size of memory a process can

take. In short it is the maximum size of the process virtual

memory (address space) in bytes. This limit affects calls to

brk(2), mmap(2) and mremap(2), which fail with the error

ENOMEM upon exceeding this limit. Also automatic stack

expansion will fail (and generate a SIGSEGV that kills the

process if no alternate stack has been made available

viasigaltstack(2)). RLIMIT_FSIZE shows maximum size of

files that the process may create. Attempts to extend a file

beyond this limit result in delivery of a SIGXFSZ signal. By

default, this signal terminates a process, but a process can

catch this signal instead, in which case the relevant system

call fails with the error EFBIG. RLIMIT_CORE is the

maximum size of core file. When RLIMIT CORE is zero no

core dump files are created. When greater than zero, larger

dumps are truncated to this size. RLIMIT_STACK shows the

maximum size of the process stack, in bytes. Upon reaching

this limit, a SIGSEGV signal is generated. To handle this

signal, a process must employ an alternate signal stack

(sigaltstack(2)). RLIMIT_DATA is the maximum size of the

process's data segment (initialized data, uninitialized data,

and heap). This limit affects calls to brk(2) and sbrk(2),

which fail with the error ENOMEM upon encountering the

soft limit of this resource.

RLIMIT_RSS: It is the maximum resident set size. It

specifies the limit (in pages) of the process's resident set (the

number of virtual pages resident in RAM).

RLIMIT_NOFILE: It is the maximum number of open files.

Simply it specifies a value one greater than the maximum file

descriptor number that can be opened by this process.

Attempts (open(2), pipe(2), dup(2), etc.) to exceed this limit

yield the error EMFILE.

RLIMIT_NPROC: The maximum number of processes

that can be created for the real user ID of the calling process.

Upon encountering this limit, fork(2) fails with the error

EAGAIN.

RLIMIT_MEMLOCK: The maximum number of bytes of

memory that may be locked into RAM. In effect this limit is

rounded down to the nearest multiple of the system page size.

This limit affects mlock(2) and mlockall(2) and the mmap(2)

MAP_LOCKED operation.

The shmctl(2) SHM_LOCK locks are accounted

separately from the per-process memory locks established by

mlock(2), mlockall(2), and mmap(2) MAP_LOCKED; a

process can lock bytes up to this limit in each of these two

categories. The starting step is to collect all the user running

processes and is sorted with respect to any process resource.

Here the resource CPU time is taken into consideration. This

phase will run until rest of the processes are executed or

suspended. Let us assume there are some processes in the

suspend queue. As their limits are closer to the resource

limits, it clearly indicates that the processes in this queue

require higher utilization of resources in order to complete

their tasks. Thus the soft limits are increased closer to the

hard limits. This means these processes will get privilege of

using the resources massively. After increasing the soft limits

the processes resume their execution. After some period of

time some processes may complete their task and rest may

fail or terminate. Some new processes may be created during

this span of time. However they are also suspended in the

new queue. In the initial phase, the reasons for the processes

to fail are traced out so that in next phase the Health Monitor

heals the failure processes based on the analysis done in the

previous phase.

Thus after the completion of the jobs of the processes in

the suspend queue, the soft limits are decreased and again the

first phase will be repeated. The vital difference between the

first phase and other phases is that the healing is done in all

the phases except in the initial phase as analysis is done here

in tracing out the reasons for the failure of the processes.

V. IMPLEMENTATION AND RESULTS

For user-friendly the Health Monitor strategy will be

demonstrated with an example. Two queues namely

suspended queue and new queue are created initially. The

suspended queue contains the partially executed processes

and the new queue contains the processes which are ready to

be executed.

In the first step all the running processes information is

collected. Let us assume that 25 processes are currently

running in the system of a client. The current usage of

process resources limits is periodically checked. Say, that a

process reached the closer limit of the soft limit and got

suspended in the suspended queue. The moment the first

processes got suspended, any new process created after the

suspension of the earlier process will also be suspended. But

this new process will be placed in the new queue as it didn't

start its job. The reason for the suspension of these processes

is to make the earlier suspended processes to be executed

than the later processes that are stored in the new queue. Let

us consider that 5processes are closer to soft limit. As soon as

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

30

they touch the closer limit of the soft limit, they were

suspended in the suspended queue. Thus the suspended

queue contains 5 processes and currently there are 20

processes running on the system.

Before the execution of these remaining processes 20, say

10 new processes were created. Thus the suspended queue

contains 5 processes and the new queue contains 10

processes.

After the completion of execution of these 20 processes,

the soft limits are increased. They were set to very close to

the hard limit. After increasing the soft limits the 5 processes

that are suspended in the suspended queue are made to

resume their execution making them to continue there jobs.

Now these suspended processes have got the ability of higher

utilization of the resources. The important thing is that when

these processes resumed the execution, their status is

maintained so that if any process got terminated then the

process can continue its job from where it stopped as the

process status is stored here time to time. This is what healing

means generally.

Let us assume among the 5 processes in the suspended

queue, 3 processes have done their jobs successfully and the

other processes got terminated. There can be a number of

reasons for the processes to terminate. Such as Total Time

Limit exceeded, Memory unavailable errors, Arithmetic

errors, Protection errors, Invalid instructions, Privileged

instructions, I/O failures, Parent termination before child

termination etc.

The reasons for the termination of the processes are traced

out and a necessary healing functions and methods are

adapted here in order to overcome these problems and

making the processes to complete their jobs successfully.

The healing functions or methods are based on two types

of resources. They are process resources and real resources.

Process resources may be CPU, memory etc. and real

resources may be a page, printer, or an input. Based on these

healing functions, the Health Monitor heals a process by

considering certain issues related to these resources. One

healing functions is described here for the CPU usage limit.

Thus the healing functions must be developed for all kinds of

resources so that the healing can be done with little or no

human intervention.

There is also possibility for the creation of new processes

during the execution of suspended processes. Here also, the

execution of newly created processes begins only after all the

suspended processes in the suspended queue have completed

their jobs. Let us consider that 10 new processes have created

during the execution of suspended process. Thus the new

queue contains totally 20 processes which have not started

their execution. The process described so far can be treated as

phase 1. Again the same process is repeated for the 20

processes which are in the new queue. As soon as phase 1 is

completed the soft limits are decreased to their original

values. Thus the system starts executing the 20processes.

Again the current resource limits are checked periodically.

The processes which touch the closer limit of the soft limit

will be suspended in the suspended queue. Like this, the same

process is repeated for the other processes also.

The processes that have not completed their jobs in the

phase 1 can be completed in phase 2 assuming that the

process gets its required resources in order to finish its job.

Thus this process will be repeated until all the processes

completed their jobs successfully.

A. Implementation Details:

One healing function is implemented which is based on

CPU limit. This healing module provides flexibility to the

users for controlling the processes in terms of CPU utilization.

It is a program that will limit the CPU for any user running

process. The healing function can reduce the % CPU of any

process. When too many processes are running on the system

this can be helpful in making the processes to be executed

slowly which are not so important for the user. By reducing

the % CPU utilization of a process, the CPU will be free and

this can be used for other processes that are treated as

important or having high priority.

B. Results:

Two terminals are used to operate this. One terminal shows

the current usage of % CPU by executing the top command.

And the other terminal executes the CPU limit program that

will reduce the % CPU of any user process. The logic behind

this is that the healing function sends two signals called

SIGCONT and SIGSTOP to a process whose % CPU has to

be altered. These two signals are sent periodically to that

target process. When SIGSTOP is sent to a process, the usual

behavior is to pause that process in its current state. The

process will only resume execution if it is sent the SIGCONT

signal. SIGSTOP and SIGCONT are used for job control in

the Unix shell, among other purposes. SIGSTOP cannot be

caught or ignored. In short, SIGSTOP tells a process to “hold

on” and SIGCONT tells a process to pick up where you left

off”.

A application mplayer is taken for showing the results of

the healing function CPU limit. The % CPU can be at any

time on first terminal and it changes for every two seconds.

On the other hand for reducing the % CPU the CPU limit is

executed on the second terminal and thes results can be seen

again in the first terminal. The terminals are made as the

screen shots for showing the results of the CPU limit.

[Hostr@local ~]$ top

top - 05:05:42 up 31 min, 4 users, load average: 0.36, 0.29,

0.22

Tasks: 151 total, 2 running, 148 sleeping, 0 stopped, 1

zombie

Cpu(s): 8.1%us, 1.3%sy, 0.0%ni, 90.7%id, 0.0%wa, 0.0%hi,

0.0%si, 0.0%st

Mem: 2064808k total, 868060k used, 1196748k free, 89916k

buffers

Swap: 0k total, 0k used, 0k free, 511236k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM

TIME+ COMMAND

3707 Host 20 0 28168 9084 4840 S 8.6 0.4 0:22.93 mplayer

2536 root 20 0 306m 27m 9.8m S 3.6 1.4 1:02.98 Xorg

3293 Host 20 0 120m 23m 13m S 3.0 1.2 0:10.30

gnome-terminal

3742 Host 20 0 2428 1084 840 R 0.7 0.1 0:01.44 top

3755 Host 20 0 220m 68m 45m S 0.7 3.4 0:03.82 swriter.bin

7 root 15 -5 0 0 0 S 0.3 0.0 0:00.06 ksoftirqd/1

1853 root 15 -5 0 0 0 R 0.3 0.0 0:02.21 kondemand/0

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

31

2949 Host 20 0 52060 10m 8632 S 0.3 0.5 0:05.77

gnome-settings-

2951 Host 20 0 59004 18m 11m S 0.3 0.9 0:09.47

gnome-panel

2952 Host 20 0 104m 31m 18m S 0.3 1.6 0:20.70 nautilus

TABLE 1:

[Hostr@local ~]$ top

top - 05:10:56 up 36 min, 4 users, load average: 0.49, 0.35,

0.25

Tasks: 151 total, 2 running, 148 sleeping, 0 stopped, 1

zombie

Cpu(s): 8.7%us, 1.8%sy, 0.0%ni, 89.5%id, 0.0%wa, 0.0%hi,

0.0%si, 0.0%st

Mem: 2064808k total, 879468k used, 1185340k free, 90436k

buffers

Swap: 0k total, 0k used, 0k free, 518468k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM

TIME+ COMMAND

3707 Host 20 0 28168 9136 4876 S 9.3 0.4 0:50.21 mplayer

2536 root 20 0 309m 28m 9.9m S 3.6 1.4 1:14.53 Xorg

3293 Host 20 0 121m 25m 13m S 3.0 1.2 0:11.74

gnome-terminal

3755 Host 20 0 224m 74m 49m S 1.0 3.7 0:25.64 swriter.bin

2952 Host 20 0 104m 31m 18m S 0.7 1.6 0:22.41 nautilus

3742 Host 20 0 2428 1084 840 R 0.7 0.1 0:03.11 top

3 root RT -5 0 0 0 S 0.3 0.0 0:00. 53 migration/0

2053 haldaemo 20 0 7268 5008 4136 S 0.3 0.2 0:01.42 hald

2949 Host 20 0 52060 10m 8632 S 0.3 0.5 0:07.13

gnome-settings

TABLE 2:

[root@local project]# ./cpulimit -p 3707 -l 3

Process 3707 detected

TABLE 3:

[Hostr@local ~]$ top

top - 05:15:18 up 40 min, 4 users, load average: 0.17, 0.22,

0.22

Tasks: 154 total, 1 running, 149 sleeping, 3 stopped, 1

zombie

Cpu(s): 3.4%us, 3.0%sy, 0.0%ni, 93.6%id, 0.0%wa, 0.0%hi,

0.0%si, 0.0%st

Mem: 2064808k total, 887348k used, 1177460k free, 90844k

buffers

Swap: 0k total, 0k used, 0k free, 518768k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM

TIME+ COMMAND

2536 root 20 0 309m 33m 10m S 3.0 1.7 1:20.46 Xorg

3707 Host 20 0 29924 10m 4892 T 3.0 0.5 1:08.52 mplayer

3293 Host 20 0 121m 25m 13m S 2.7 1.3 0:13.19

gnome-terminal

2987 Host 20 0 28848 3136 1880 S 0.7 0.2 0:15.95

gnome-screensav

3742 Host 20 0 2428 1084 840 R 0.7 0.1 0:04.47 top

2950 Host 20 0 26328 13m 8984 S 0.3 0.7 0:10.13 metacity

3030 Host 20 0 54120 13m 9520 S 0.3 0.6 0:06.31

gdm-user-switch

3755 Host 20 0 224m 74m 49m S 0.3 3.7 0:29.64 swriter.bin

TABLE 4:

[Hostr@local ~]$ top

top - 05:28:16 up 53 min, 4 users, load average: 0.35, 0.26,

0.20

Tasks: 162 total, 2 running, 148 sleeping, 11 stopped, 1

zombie

Cpu(s): 6.6%us, 1.4%sy, 0.0% ni, 91.7%id, 0.3%wa, 0.0%hi,

0.0%si, 0.0%st

Mem: 2064808k total, 891436k used, 1173372k free, 92116k

buffers

Swap: 0k total, 0k used, 0k free, 519536k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM

TIME+ COMMAND

3707 Host 20 0 28804 9732 4896 T 2.7 0.5 1:52.47 mplayer

3293 Host 20 0 121m 25m 13m S 2.3 1.3 0:17.88

gnome-terminal

2536 root 20 0 309m 34m 10m S 2.0 1.7 1:47.47 Xorg

3755 Host 20 0 225m 75m 49m S 1.0 3.8 0:54.87 swriter.bin

2987 Host 20 0 28848 3136 1880 S 0.7 0.2 0:21.59

gnome-screensav

3742 Host 20 0 2428 1088 840 R 0.7 0.1 0:08.72 top

528 root 15 -5 0 0 0 S 0.3 0.0 0:01.07 scsi_eh_3

2021 dbus 20 0 13468 1460 864 S 0.3 0.1 0:02.39

dbus-daemon

TABLE 5:

[Hostr@local ~]$ top

top - 05:18:37 up 43 min, 4 users, load average: 0.05, 0.16,

0.19

Tasks: 154 total, 1 running, 149 sleeping, 3 stopped, 1

zombie

Cpu(s): 3.3%us, 1.6%sy, 0.0%ni, 95.1%id, 0.0%wa, 0.0%hi,

0.0%si, 0.0%st

Mem: 2064808k total, 888024k used, 1176784k free, 91168k

buffers

Swap: 0k total, 0k used, 0k free, 518828k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM

TIME+ COMMAND

3707 Host 20 0 29884 10m 4892 T 3.3 0.5 1:14.95 mplayer

2536 root 20 0 309m 33m 10m S 1.0 1.7 1:26.93 Xorg

3293 Host 20 0 121m 25m 13m S 1.0 1.3 0:15.18

gnome-terminal

2987 Host 20 0 28848 3136 1880 S 0.7 0.2 0:17.32

gnome-screensav

3742 Host 20 0 2428 1084 840 R 0.7 0.1 0:05.55 top

1853 root 15 -5 0 0 0 S 0.3 0.0 0:03.25 kondemand/0

2282 root 20 0 62352 28m 6288 S 0.3 1.4 0:02.29

setroubleshootd

2408 root 20 0 9980 1128 776 S 0.3 0.1 0:00.63 kerneloops

TABLE 6:

[root@local project]# ./cpulimit -p 3707 -l 8

Process 3707 detected

TABLE 7:

Hostr@local ~]$ top

top - 05:22:35 up 47 min, 4 users, load average: 0.37, 0.20,

0.19

Tasks: 158 total, 2 running, 149 sleeping, 6 stopped, 1

zombie

Cpu(s): 8.2%us, 2.4%sy, 0.0%ni, 89.4%id, 0.0%wa, 0.0%hi,

0.0%si, 0.0%st

Mem: 2064808k total, 888916k used, 1175892k free, 91556k

buffers

Swap: 0k total, 0k used, 0k free, 519036k cached

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

32

PID USER PR NI VIRT RES SHR S %CPU %MEM

TIME+ COMMAND

3707 Host 20 0 28672 9712 4896 S 8.0 0.5 1:27.08 mplayer

2536 root 20 0 310m 33m 10m S 3.3 1.7 1:33.59 Xorg

3293 Host 20 0 121m 25m 13m S 2.7 1.3 0:16.21

gnome-terminal

2987 Host 20 0 28848 3136 1880 S 1.3 0.2 0:18.83

gnome-screensav

3742 Host 20 0 2428 1088 840 R 0.7 0.1 0:06.83 top

3755 Host 20 0 224m 75m 49m S 0.7 3.7 0:40.02 swriter.bin

1853 root 15 -5 0 0 0 R 0.3 0.0 0:03.52 kondemand/0

2246 root 20 0 5624 1712 1464 S 0.3 0.1 0:00.06

wpa_supplicant

2949 Host 20 0 52060 10m 8632 S 0.3 0.5 0:08.96

gnome-settings-

2951 Host 20 0 59004 18m 11m S 0.3 0.9 0:13.60

gnome-panel

2952 Host 20 0 104m 31m 18m S 0.3 1.6 0:25.27 nautilus

3030 Host 20 0 54120 13m 9520 S 0.3 0.6 0:06.97

gdm-user-switch

TABLE 8:

[Hostr@local ~]$ top

top - 05:24:51 up 50 min, 4 users, load average: 0.31, 0.22,

0.19

Tasks: 161 total, 2 running, 149 sleeping, 9 stopped, 1

zombie

Cpu(s): 8.9%us, 2.9%sy, 0.0%ni, 88.2%id, 0.0%wa, 0.0%hi,

0.0%si, 0.0%st

Mem: 2064808k total, 890140k used, 1174668k free, 91796k

buffers

Swap: 0k total, 0k used, 0k free, 519244k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM

TIME+ COMMAND

3707 Host 20 0 28672 9712 4896 S 8.9 0.5 1:36.89 mplayer

2536 root 20 0 309m 33m 10m S 4.3 1.7 1:38.42 Xorg

3293 Host 20 0 121m 25m 13m S 3.0 1.3 0:17.02

gnome-terminal

3755 Host 20 0 225m 75m 49m S 1.7 3.8 0:44.65 swriter.bin

2952 Host 20 0 104m 31m 18m S 0.7 1.6 0:25.86 nautilus

2987 Host 20 0 28848 3136 1880 S 0.7 0.2 0:19.79

gnome-screensav

3030 Host 20 0 54120 13m 9520 S 0.7 0.6 0:07.39

gdm-user-switch

3742 Host 20 0 2428 1088 840 R 0.7 0.1 0:07.58 top

TABLE 9:

To kill the process

[root@local project]# kill 4016

TABLE 10:

[root@local project]# ./cpulimit -p 3707 -l 3

Process 3707 detected

Process 3707 dead!

Warning: no target process found. Waiting for it...

TABLE 11:

A. SUMMARY:

An small application 'mplayer' is taken into consideration

for showing the working of the cpulimit. A song is played by

using mplayer. The current usage of % CPU of this process

can be seen in the first terminal by simply executing the top

command. Table 1.shows that this process is currently using

8.6 % CPU. As this change for every two seconds, the other

value of % CPU for the mplayer process is 9.3. And it is

shown in Table 2. Thus the mplayer process uses % CPU in

between 8and 10 approximately. If any user feels that this is

not important or he would like to reduce the % CPU of this

processes, then he can run the CPU limit program on the

second terminal as shown in the Table 3. This is the input of

the program which would like to reduce the % CPU to 3.

Thus in the first terminal we can then see the output that

the % CPU from 9.3 is dropped to 3. And this is shown in

Table 4. Asthis changes for every two seconds the value of %

CPU after two seconds is 2.7 as shown in Table 5. After two

seconds the % CPU is again changed to 3.3 as shown in Table

6. This means when the SIGSTOP signal is sent to the

process, the % CPU is dropped to 2.7 and when SIGCONT

signal is sent to the process the % CPU is again increased to

3.3. This is how the % CPU can be controlled by an user.

Again if we want to increase it then with the input as shown

in Table 7, the % CPU will be raised to 8. After two seconds

this % CPU have the value 8.9. This is how the % CPU can be

controlled for any user process. If the application is killed

with the input as shown in Table 10, the output is shown in

Table 11 showing the process is dead. Like this, we can limit

the percentage from 0% to 100%, which means that if you set

for example 40%, your process cannot use more than 400 ms

of cpu time for each second. This program can be executed

with the root privilege only.

VI. CONCLUSION AND FUTURE WORK

The growing complexity of modern networked computer

systems is currently the biggest limiting factor in their

expansion. Computer systems are becoming more demanding,

complex, challenging and difficult to manage to cope with

the new technologies. Autonomic computing helps to address

the complexity issues by using technology to manage

technology. Autonomic computing systems would control

the functioning of computer applications and systems with

out input from the user. A computer system is self-managing

if it has the autonomic attributes or capabilities like

self-configuration, self-healing, self-optimization,

self-protection, self-aware, self-monitoring, and

self-adjusting. Self-healing also called as holistic computing

is concerned with ensuring effective recovery when a fault

occurs with out human interaction. In a biological system, the

human body reacts with the external environment

involuntary; while in the computer-based systems, autonomic

elements make decisions based on the available technologies.

The objective of the research work was to develop a proof of

concept self-healing tool for the autonomic computing

environment in a client server mode consisting of health

monitor, main monitor and external monitor. The health

monitor is responsible for the monitoring of processes

running on the machine. In short, it monitors the health of

their respective clients.

As a tool the self-healing prototype could be expanded in

many ways. The health monitor could be extended to detect

which operating system it is running on and to call the

corresponding function to obtain process information. The

strength of the self healing tool depends on the efficient

healing functions embedded in the health monitor.

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

33

Further autonomic options could evolve from the

environment knowledge gained by the tool; for example, the

ability to spot a process running intermittently or unstably. It

may have a history of failing after running for a certain period

of time on some executions. In such a case, the process (or

the application) may need re-configuration or re-installation

in order to run smoothly, in effect providing options for

self-optimizing and in so doing preventing the system

degrading further which indirectly provides self-protection

also. The self-healing tool provides various facilities to the

programmers to make their programs autonomic and which

could recover from the failure. This also helps to move some

particular stage of program after restart saving the time and

cost.

The research work presents a novel approach for the

concept of self healing tool in client server mode. The future

work is to add more sophisticated healing functions and

methods to the health monitor and making it as the powerful

self healing tool. The work also has also to be resumed in the

further implementation of the external monitor and main

monitor. This self healing tool can play a crucial role in the

applications of large scale as this is based on client server

technology. The advantage of client server technology

fetches a lot to this self healing tool. This can be very much

useful in the applications of autonomic computing that will

be emerging in future. Database systems, server, web are

some of few examples where this technology can be

applicable and ultimately it seems a great thought to make

systems take their own care.

REFERENCES

[1] IBM, “ Autonomic computing: IBM's perspective on the state of

informationtechnology;”http://www-1.ibm.com/industries/government

/doc/ content/resource/thought/2786061.html

[2] A. G. Ganek and T. A. Corbi, “The dawning of the autonomic

computing era,” IBM Systems Journal, Vol 42, No 1, 2003

[3] IBM, “ An architectural blueprint for autonomic computing,” April

2003

[4] R. Sterritt and D. Bustard, “ Autonomic computing means of achieving

dependability?”, Proceedings IEEE International Conference On the

Engineering of Computer BasedSystems (ECB,03), Huntsville,

Alabama, USA, April 7-11 2003

[5] D. Garlan, J. Kramer, and A. Wolf , An architectural support for

self-adaptive software for treating faults proceedings workshop on

self-healing systems (WOSS'02), ACM Press, Charleston, South

Carolina, Nov. '02

[6] Horn, Paul , “ Autonomic computing IBM's perspective on the state of

informationtechnology,” available from the IBM corporation at http://

www.research.ib.com /autonomic/ manifesto/autonomic

computing.pdf

[7] Jeffrey O. Kephart and David M. Chess , “ The vision of autonomic

computing ,” IEEE Computer Society, pp. 41-50, Jan 2003

[8] D. F. Bantz, C. Bisdikian, D. Challener, J. P. Karidis, S. Mastrianni A.

Mohindra , D. G.Shea, and M. Vanover, “ Autonomic personal

computing”, IBM Systems Journal , Vol 42,No 1, 2003

[9] Roy Sterritt and Saulai Chung, “Personal autonomic computing self-

healing tool,” Proceedings of the 11th IEEE International Conference

and workshop on the Enggineering of Computer Based Systems

(ECBS'04) 2004

[10] WhatisP2P,http://compnetworking.about.com/library/products/weekly

/a093000a.html

[11] Peer-to-PeerComputingisGoodBusiness,http://

www.intel.com/eBusiness/products/peertopeer/ar010102.html

[12] Peer-to-Peer to Architecture, http:// 80211-planet.webopedia.com

/peer_to_peer_architecture.html

[13] ClientServerArchitecture, http://en.wikipedia.org/wiki/Client-server

[14] http://www.webopedia.com/TERM/C/client_server_architecture.html

[15] Client Server vs Peer to Peer,

[16] http://www.dewassoc.com/support/networking/serverpeer.htm

Ms. N. RukmaRekha was born on 01-05-1982 in

AndhraPradesh, India. She obtained her B.Tech, M.Tech

degrees from Andhra University in 2003 and 2005

respectively. Currently, she is pursuing her Ph.d as

part-time from the same university. She has around 6

years of teaching experience. She has the experience of

guiding around 16

Post graduate students for their M.Tech/M.C.A Project Thesis. Ms. Rukma

Rekha is now Assistant professor from Dept.of Computer and Information

Sciences in University of Hyderabad.

Prof. Maddali Surendra Prasad Babu was born on

12-08-1956 in Prakasam district of Andhra Pradesh. He

obtained his B. Sc, M.Sc and M. Phil and Ph.D. degrees

from Andhra University in 1976, 1978, 1981and 1986

respectively. During his 27 years of experience in teaching

and research, he attended about 28 National and

International Conferences/ Seminars in India and

contributed about 33 papers either in journals or in National and International

conferences/ seminars. Prof. M.S. Prasad Babu has guided 98 student

dissertations of B.E., B. Tech. M.Tech. & Ph.Ds. Prof Babu is now Professor

in the Department of Computer Science & Systems Engineering of Andra

University College of Engineering, Andhra University, Visakhapatnam.

 Prof. M.Surendra Prasad Babu received the ISCA Young Scientist Award

at the 73rd Indian Science Congress in 1986 from the hands of late Prime

Minister Shri Rajiv Gandhi.

 Prof. Babu conducted the proceedings of the Section of Information and

Communication & Sciences and Technology including computer Science of

the 94th Indian Science Congress as a president of that section in January

2007. Prof. Babu was also the sectional committee member of the Indian

Science Congress in the sections of Mathematics and ICT in 1988 and 2005

respectively. He is also sectional secretary for the section of Information and

Communication & Sciences and Technology of Indian Science Congress.

International Journal of Computer Theory and Engineering, Vol. 4, No. 1, February 2012

34

http://www.dewassoc.com/support/networking/serverpeer.htm

