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Abstract—There are several problems in applied science in 

which experimental observations can be accurately represented 

by a sum of exponential decay functions in which the 

amplitudes, decay rates and number of components have 

different physical interpretations and need to be estimated. A 

parameter estimation technique of multicomponent exponential 

functions that has undergone many modifications is the 

Gardner transform in which a nonlinear transformation is used 

to convert the data signal into a convolution model containing 

the parameters of interest. Modifications of this early technique 

include modification of the original transform or deconvolution 

procedure and additional processing of the deconvolved data to 

obtain better estimates of the desired parameters. This paper 

presents an appraisal of Gardner transform and its variants. It 

discusses major modifications and their implications to the 

overall results of analysis.  

 
Index Terms—Gardner transform, deconvolution, modeling, 

multiexponential.  

 

I. INTRODUCTION 

There are many problems in science and engineering in 

which the data approximates to a linear combination of 

exponentials of the form:  
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Such problems are common in semiconductor physics 

(deep level transient spectroscopy), biophysics (fluorescence 

decay analysis), nuclear physics and chemistry (radioactive 

decays, nuclear magnetic resonance), chemistry and 

electrochemistry (reaction kinetics) and medical imaging. In 

these and other problems, the parameters M, iA  and i  

have different physical meanings. It is therefore not sufficient 

that the function approximates the data accurately; it is also 

important that these parameters are accurately estimated. 

This problem is a classical one and many approaches to its 

solution have been proposed. The problem is difficult and 

there has been no perfect magic way to its solution. All 

proposed approaches suffer from shortcomings. The 

difficulty in the analysis of this class of signals lies in the fact 

that we are dealing with a series of nonlinear equations, that 

the data are only approximating the function over a finite 

range in   and the strong nonorthogonality of the 

exponential functions with real decay rates. 
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One of the classical approaches to the solution of the 

problem was proposed by Gardner et al [1] in which 

approach a nonlinear change of variables was used to convert 

the original signal into a convolution integral which could be 

deconvolved by Fourier transform technique. Gardner 

transform belongs to the more general class of spectroscopic 

methods [2] in which the decay is described by a continuous 

distribution of decay rates which may be considered as a 

spectral representation of the transient signal 
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Analysis in this case involves the determination of the 

spectral function )(g  Eq. (2) reduces to (1) if the spectral 

function )(g  can be represented as a sum of M delta 

functions 
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At the time it was introduced, Gardner transform did not 

attract the attention of many researchers basically because of 

the nonavailability of effective algorithms for the 

computation of Fourier integrals. This problem was later 

solved by Schlesinger [3] using the fast Fourier transform 

(FFT). Although successful in simplifying the numerical 

computation of the Fourier integrals, Schlesinger's method 

did not have a good filtering technique to eliminate the side 

ripples caused by FFT and noise.  Several other research 

findings have since been published on different ways of 

improving the performance of Gardner transform. These 

modifications can generally be grouped into three: 

1) Modifications in the nonlinear transformation. 

2) Modifications in the deconvolution procedure. 

3) Modifications involving additional processing of the 

deconvolved data. 

In this paper, we critically examine these important 

modifications of the Gardner transform with special 

emphasis on our previous and current research in this area. 

Performance of the various approaches including their merits 

and shortcomings are examined. 

In section II of this paper, an overview of Gardner 

transform is given along with its merits and the inherent 

problems in its implementation. Subsequent sections discuss 

the variants of the Gardner transform. Section III discusses 

the modification of the original nonlinear change of variables 

and its effect on sampling and noise reduction. Section IV 

presents methods that involve modification in the 

deconvolution procedure. In section V parametric techniques 

used in modeling the deconvolution results are reviewed. 
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II. GARDNER TRANSFORM  

Starting with the multiexponential function 
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We can rewrite it as 
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 and )( is the Diract 

delta function. 

If )(S  represents experimental data, )(g  will be a 

continuous spectrum whose maxima will give the values of 

i  and their heights will be proportional to iA . Thus, 

determination of M, iA  and i  will be reduced to the 

determination of )(g . 

Gardner transform is based on the inversion of the integral 

in (5) into a convolution integral. To achieve this, Gardner 

and co-researchers used the substitution 
te  and 

re  . Thus equation (5) becomes 
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Both sides of equation (6) are multiplied by 
te  to give the 

convolution integral 
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This can be expressed as 
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)exp()exp()( tetth   and )()exp()( tenttv  .                                                                                        

Gardner et al [1] deconvolved this integral using the 

Fourier transform 
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where   denotes the Fourier transform operation and 
1  

its inverse. A plot of )( teg 
 against   shows maxima 

when i   with the amplitude being proportional to 

iiA / . Hence, iA can be computed once i  is accurately 

located. 

At the time of introduction of the Gardner transform, there 

was difficulty in performing fast numerical integration of the 

Fourier transform integral with enough precision. 

Furthermore, it is impossible to integrate from   to  . 

The integration interval was thus truncated on both sides by 

means of the cut-off points 0t for the integral in the direct 

Fourier transform and 0  in the inverse Fourier transform. 

This truncation led to the emergence of spurious 

high-frequency components in the spectrum of the direct 

Fourier transform and in error ripples in the inverse Fourier 

transform. The effect of error ripples can be alleviated by an 

appropriate choice of 0 . A very small value of 0  would 

however lead to loss of resolution in the resulting plot of 

)( teg  against t . 

The accuracy of Gardner transform largely depends on the 

available data. Data with lower noise level usually give better 

accuracy than data with higher noise level.  For example, a 

high level of resolution in the final results is possible when 

analyzing a mixture of radioactive isotopes. In contrast, 

certain types of chemical kinetic data or some measurements 

involving the rates at which injected materials disseminate in 

a living organism are usually obtained with poor accuracy.   

Accurate results are possible if the measurements are 

repeated as often as possible to get the average results. 

Gardner transform has a number of advantages and 

disadvantages. Some of its advantages include: 

 No a priori knowledge of the unknown parameters is 

required. 

 All the parameters are identified simultaneously. 

 Broadened peaks indicate the presence of exponential 

components with similar (unresolved) decay rates 

without interfering with the determination of other 

components. 

Among its disadvantages are: 

 The nonlinear transformation of the experimental 

data )(S  into the signal )(ty  so as to derive the 

convolution integral equation. 

 The necessity of approximating the infinite 

continuous Fourier transform by a finite DFT. 

 Enhancement of high frequency noise by the 

deconvolution procedure. 

 The nonlinear change of variables complicates the 

analysis especially for noisy signals. Even if the 

noise is derived from a stationary white noise 

process, there is no guarantee that the transformed 

noise would be stationary. 

 

III. MODIFICATION IN THE NONLINEAR TRANSFORMATION 

A. Swingler's Differentiation Technique  

Swingler [4] proposed a different approach to the Gardner 

transform. He proposed the formation of a t-derivative 

)(' teS  as a starting point instead of )( tt eSe of in the 

original Gardner transform and its earlier modifications. In 

this differential technique, the t-derivative is given by 
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Eq. (10) is approximated with a simple first-order 

difference equation. The remaining part of the procedure is 

similar to Schlesinger's FFT technique. Next )(G  is 
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multiplied by a windowing function so as to reduce the 

sidelobes and error ripples in the final output. 

The merits of Swingler's differential technique can be 

outlined as follows: 

 It yields processed outputs whose peaks are 

proportional to iA  for better resolution display so 

that the problem of lost components in the spectrum 

is minimized. 

 It has the ability to analyze function with direct 

current (DC) bias level or DC offset because 

derivative of a constant is zero. 

 It requires only the first-order difference equation for 

approximating the t-derivative. 

However, the performance of this technique is marred by 

sensitivity to noise due to the deconvolution process. An 

additional noise in the original signal even worsens the 

performance. A signal of up to four components ( 4M ) 

has been analyzed using this method. 

B. Modification by Weighting Factor Introduction 

Nichols et al [5] modified the nonlinear transformation by 

introducing a weighting factor,   into it. To begin with, the 

original signal in Eq. (1) is assumed to be embedded in 

additive white Gaussian noise )(n  leading to the following 

equations in place of equations (1) and (2) respectively. 
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Eq. (12) was now multiplied by 
 , 0  instead of 

 and the transformation becomes 
te   and

re . 

This now leads to 
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which simplifies to 
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where 
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and  t . 

Salami [6] obtained an expression for the input distribution 

from the following analysis. 

Multiplying each side of equation (11) by
 , 0  

gives 
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which when substituted into equation (17) gives 

)()ln()(
1

tt

i

M

i i

itt enet
A

eSe 



 





    (19)                                                                      

where         

)]lnexp()ln(exp[)ln( iii ttt   .                                                                 

Equations (15b) and (15c) can be used to simplify 

expression (19) to give 
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Allowing )ln()(' ii ttp   , then equation (20) can 

be written as 

)()(')(
1

tvtp
A

ty
M

i

i

i

i 





         (21)                                                                                          

where  tp i'  is the derivative of   )exp( ttp ii    

with respect to t . 

Comparing equations (14) and (21), it can be concluded 

that the unknown input distribution function is given by: 
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where 
  )( iii AB . 

The immediate effect of the weighting factor,  , was in 

noise reduction [6]. Recently, Jibia et al [7] related it to the 

bandwidth of the conceptual system response )(th  by using 

the concept of noise equivalent bandwidth. If the NEB is 

given by 
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By integrating and taking the limits to be 0 and some 

arbitrary mint  sufficiently large, they showed that the 

bandwidth is given by 

2


B                   (24) 

For unaliased sampling, therefore, the sampling frequency, 

sf , must satisfy 

 Bf s 2                (25) 

A very important result of introducing   is the spectral 

fading which takes place for components with small 

amplitudes ( iA ).  This means that certain components are 

consumed by the effect of noise and the division by 
  in Eq. 

(22) when the value of    is raised high. Therefore, much as 
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  contributes to noise reduction, it is not advisable to raise 

its value very high because of the deleterious effect this may 

have on the detectability of certain components. A maximum 

value of 1  would normally suffice. 

 

IV. MODIFICATIONS IN THE DECONVOLUTION PROCEDURE 

A. Schlesinger’s FFT Technique 

When the Gardner transform was proposed, it was not 

widely accepted due to the difficulty in evaluating Fourier 

integrals.  Realizing this shortcoming, Schlesinger proposed 

a means of alleviating it. His proposal published in [3] 

consists of the replacement of the numerical integration of 

the Fourier transform and its inverse with the discrete Fourier 

transform and its fast Fourier transform algorithm of Cooley 

and Tukey [8]. 

Schlesinger used the FFT algorithm to separately evaluate 

the Fourier transform of y(t) and x(t) in equation (8) and the 

inverse discrete Fourier transform of 
)(

)(





X

Y  gives an 

expression similar to (9). 

In most cases deconvolution takes the form of a lowpass 

filter, reducing the amplitudes of high frequency components 

in the signal.  However, if the amplitudes of these 

components fall below the inherent noise of the system, the 

information in these frequencies is lost.  Other sources of 

noise include sampling errors and noise in signal acquisition, 

leakage and aliasing errors in the Fourier transform and 

computational errors due to the computing machine. 

Although successful in simplifying the numerical 

computation of the integrals, Schlesinger's method did not 

have a good filtering technique to eliminate the side ripples 

caused by FFT and noise. This limited its detection power to 

only three components ( 3M ). 

B. Digital Technique with Gaussian Filtering 

In their paper, Cohn Sfetcu et al [9] observed that the 

inherent deconvolution accompanying Gardner transform 

enhances noise in the data by favouring high-frequency 

components, especially for low frequency signals.  Further, 

they observed, even if the original data were noise-free, 

digital processing with the FFT was bound to produce some 

noise due to inherent computational inaccuracies. This noise 

is also enhanced by deconvolution.  To alleviate the problem 

of noise enhancement, Cohn Sfetcu and co-authors proposed 

Gaussian filtering.  In the Gaussian filtering, the impulse 

response function of the filter is expressed as follows: 

   22exp dgH             (26) 

The dispersion parameter d   must be tuned to particular 

experimental conditions. The smaller the value of d   the 

better the SNR of the spectrum. 

This filter was proposed as a compromise between noise 

reduction and loss of resolution when dealing with separate 

pulses and white noise.  Unfortunately, for this approach to 

work properly a collection of interpolation of data points are 

required at increasingly large intervals for better results.  

However, it is a difficult problem to obtain a correct 

interpolation itself.  Furthermore, a correct usage of the FFT 

techniques requires the evaluation of the required signals 

over a much larger range of data points.  A larger number of 

points in the DFT would normally increase the resolution but 

at a cost of longer computational times and more 

computational noise from the FFT and interpolation. 

C. Provencher’s Modification of the FFT 

Provencher [10] modified the Schlesinger's FFT technique 

by introducing two additional parameters c  and   into Eq. 

(5), making the solution more practicable despite a severely 

restricted range of data points. Parameter c is the 

convergence parameter and   is the amplitude equalization 

parameter. 

To begin with, the variables,  and   of Eq. (5) are 

replaced by c

ze   
 and 

tet  .  Then, both sides of 

equation (5) are multiplied by   t

cet  1exp with 

1 .  Eq. (5) is rewritten as 
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The Fourier transform of equation (27) is 

)()()(  msy GGG  .  The formal solution is obtained 

by taking the inverse Fourier transform of )(sG . 

The problem of error ripples in the Gardner transform is 

solved by adjusting the convergence parameter, c so that 

the last few data points to )0(yg  is between 0.02 to 0.04 % 

of the total )0(yg .  The value of c  should not be too large 

because large values of c  will reduce the distance between 

the peaks in the frequency spectrum and hence limit the 

resolving power of this technique. Some of the problems of 

the Gardner transform technique are the loss of components 

in the spectrum with large k  and the divergence of solution 

for a baseline component with 0i .  These problems are 

caused by the proportionality of the amplitude of the spectral 

peaks to the height of the peak, iiA /  instead of iA .  The 

parameters 0c  and 01    are chosen to 

minimize these problems as much as possible.  

In his paper, Provencher [10] concluded that his technique 

performs better than the previous modifications of the 

Gardner transform technique. However, the resolving power 
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of this technique decreases when the peaks are masked as the 

number of closely spaced components increases. 

D. Optimal Compensation Deconvolution 

The idea of optimal compensation deconvolution was 

originally proposed by Riad and Stafford [11] and introduced 

into multiexponential signal analysis by Salami and Sidek 

[12]. To start with, y(t) in equation (14) is sampled at the rate 

of t/1  Hz, resulting in the following discrete convolution 

model 
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 
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       (31) 

where 1minmax  nnN  and it represents the total 

number of samples for both ][ny  and ][nh . maxn  and 

minn  represent, respectively, the upper and lower data 

cut-off points. 

Taking the discrete Fourier transform (DFT) of (31) yields 

)()()()( kVkXkHkY           (32) 

from which the deconvolved data can be generated according 

to 
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for 10  Nk .  

where Y(k), X(k), H(k) and V(k) represent respectively the 

DFT of y(n), x(n), h(n) and v(n). 

Optimal compensation deconvolution essentially aims at 

modifying the system function H(k) for use in Eq. (33) so that 

)(ˆ kX  is as close to )(kX  as possible for reasonably large 

values of k .  If the compensated system model is denoted 

as )(0 kH , then )()()( 0 kHkYkX  so that the error 

energy 
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is minimized for ;0 NN   0N  represents the maximum 

data point of interest.  This minimization conditions yields 

  1

0 )(


 khH  which results in an unbounded value for 

large values of k .  To limit the high-frequency components, 

both )(0 kH  and )(kX  are constrained to be bounded.  

The second design requirement is thus bE  should be a finite 

energy, where  





0

0

2
)()(

N

k

b kHkXE            (35) 

Thus, the problem of obtaining good estimate of )(kX  is 

equivalent to that of minimizing xE  while keeping bE  

finite. Combining these two requirements lead to  

bx EEE  ,                µ > 0         (36)      

where   is the optimization parameter.  If E  is minimized 

then 
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where the symbol   denotes complex conjugate.  This 

equation represents a compensated system function for 

performing inverse filtering. Combining it and Eq. (33) leads 

to 
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For high SNR,   should be small and of the same order 

of magnitude as the attenuation )(kH  at the cut-off 

frequency. However, as the SNR of the data decreases the 

choice of the optimum value of  , for use in (38) is best 

determined by experimental testing. 

The estimated input distribution in equation (22) is 

computed by Fourier transformation which gives 
2
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for Nk ,....,2,1 ; )(k  is the new additive nonstationary 

noise. 

As the spectral estimates resulting from the application of 

this deconvolution procedure is not satisfactory, Salami and 

Sidek used autoregressive moving average (ARMA) 

parametric model as described later. 

E. Homomorphic  Deconvolution 

This modification recently proposed by Jibia et al [7] 

consists of a six-step procedure to extract the input signal 

from the discrete deconvolution model resulting from 

Gardner transform. The procedure as outlined in that paper is 

as follows: 

 Convert the input signal y[n] to minimum phase by 

exponential weighting. 

 Compute the cepstrum. 

 Convert the real cepstrum to complex cepstrum. 

 Apply the appropriate cepstral lifter. 

 Compute the inverse complex cepstrum. 

 Perform exponential unweighting. 

To start with,  the discrete convolution model of Eq. (31) is 

converted to a minimum phase expression. This is achieved 

by application of the concept of exponential weighting which 

involves the multiplication of the discrete convolution model 

by a real number
n : 

10][][,   nyny n
        (40)    

Relationship between the cepstrum and complex cepstrum 

is then obtained by noting that, if y[n] is real, then 

)(log jeY  is real and even function of  . This implies 

that

          (41) 

2

][ˆ][ˆ
][

,,
, nyny

ncy


            (41) 
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In other words, the cepstrum is the even part of the 

complex cepstrum. 

The complex cepstrum can thus be expressed as: 

][][][ˆ , nuncny y 
             (42)

 

where    














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0,0

0,2

0,1

)(

n

n

n

nu             (43) 

When DFT is used instead of DTFT, the cepstrum is 

time-aliased and given by 







k

yp kNncnc )()( ,,
           (44) 

To compute the complex cepstrum, we can then write

  ( 




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
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0
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      (45) 

0N  is the cepstrum cut-off point which must be carefully 

selected to get good results. The choice of 0N  is critical to 

the performance of this method. 

Next, homomorphic filtering is achieved by forming a 

modified complex cepstrum 

  ]['ˆˆ , nynlyl                 (46) 

where ][nl  is a window (or lifter) which selects a portion of 

the complex cepstrum for inverse processing. This is 

achieved as follows: 

For 1n  

)1()1()('ˆ)(

)1(ˆ)1( ,





nqnynq

yq


         (47) 

and for 0Nn   

)1()1()('ˆ)(

)(ˆ)( 0

,

0





nwnynw

NyNw


         (48)        

so that the output variable would be 

))()((5.0][, nwnqnyl            (49)          

  is the variable filter coefficient such that 10   . 

Taking the forward DFT of ][ˆ nyl  followed by 

exponentiation, inverse DFT and exponential unweighting 

yields ][nx  with dominant peaks at iln , 

Mi ,,.........2,1 . 

The main advantage of this technique is computational 

simplicity and elimination of data length constraint 

encountered in [12]. This method also successfully detects 

the number of components, M. However, its accuracy in 

determining the decay rates is very poor. 

V. MODIFICATION BY ADDITIONAL PROCESSING OF THE 

DECONVOLVED DATA  

A. Stationarity of the Deconvolved Data  

Application of Gardner transform complicates the analysis 

and interpretation of )(k .  Even if )(n  is derived from a 

stationary white noise process, there is no guarantee that the 

noise )(k  will be equally stationary.  The division of 

)(kV  by )(kH  make )(ˆ kX  contain a nonstationary 

noise component that may complicate analysis. To make the 

result of any mathematical operation on )(ˆ kX  meaningful, 

)(ˆ kX must be stationary.  It is noteworthy that while )(ˆ kX  

may be nonstationary, the desired information data )(kX  is 

stationary and deterministic.  Consequently, simple 

procedures for preprocessing nonstationary sequences can be 

used to convert )(ˆ kX  into a locally stationary sequence.  

Some of the techniques are windowing, prefiltering and 

differencing [13]. 

For the stationarization of )(ˆ kX  a rectangular window is 

used here as it weighs the data uniformly and has a very good 

spectral resolution at the expense of high variance.  Consider 

a symmetric window, kW , of length 12 0  NNd , so that  



 


otherwise

Nk
Wk

,0

,1 0
           (50)                 

then )(ˆ kx is computed from )(ˆ kX according to the relation 

)(ˆ)(ˆ kXWkx k               (51)       

It is well-known from the properties of the DFT that a shift 

of )(ˆ kX  does not destroy its spectral characteristics.  

Therefore )(ˆ kX  is shifted through the length 0N  so as to 

derive the complex sequence )(ˆ kx , where 

121),(ˆ)(ˆ
00  NkNkXkx     (52)   

Eq. (39) thus becomes

          (53)                        

 





M

i

N

k
j

i keeBkX
i

d

1

ln
2

)()(ˆ




         (53) 

with Nk ,....,2,1 . )(ke is the new stationary white 

noise. 

The spectral estimates of )(ˆ kx  would therefore provide 

the values M , iA  and i  that characterize the transient 

multiexponential signals. 

B. ARMA Modeling Technique  

This method was used by Salami and Sidek [12] to model 

the output of the optimal compensation deconvolution filter. 

The deconvolved data is first windowed using an appropriate 

length 0N  essentially determined by trial and adjustment 

depending on the signal resolution, the number of 

components and the SNR. The truncated data is then 

modelled as the output of an ARMA model whose input is a 
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complex white noise )(ke so that

  (54)

 

 

1,)()( 0

00

 
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ankebnkxa
q

n

n

p

n

n    (54) 

where na  and nb  represent respectively the AR and moving 

average (MA) model coefficients and p and q are AR and 

MA model orders respectively. The above equation is then 

multiplied by )( mkx 
 , the expectation of the resulting 

expression is  










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q

n

p

n

dddd

mkhnb

nkRnakR

0

1
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           (55) 

 

where )(kRdd  is the autocorrelation function of )(kx  and 

)(kh is the impulse response function of the ARMA model. 

Next, the AR portion of equation (55) leads to the modified 

Yule-Walker equation  

1;0)()()(
1




qknkRnakR
p

n

dddd   (56)     

Note that (56) may not hold exactly in practice because 

both p  and q  are unknown prior to analysis and )(kRdd  

has to be estimated from noisy data. This problem is solved 

using an SVD algorithm. This algorithm provides consistent 

and accurate estimates of the AR parameters with minimal 

numerical problem. Furthermore, the SVD algorithm is a 

powerful computational procedure for matrix analysis 

especially for solving overdetermined system of equations. 

Equation (56) can be expressed in matrix form as  

eRa                     (57)                             

with R  having elements )1(),( liqRlir edd  , 

where 11;1  eplti . Note that both ep  and 

eq  are the guess values of the AR and MA model order 

respectively, and e is an 1t  error vector with ept  . 

The singular value decomposition of R yields 
HVUR                  (58) 

where U  is an )1(  epr  unitary matrix, V  is a 

)1()1(  ee pp unitary matrix and 

),,,( 121 
epdiag    is a diagonal matrix whose 

elements are ordered as 0121  ep  .  H  is 

a complex conjugate and transpose operator.  For high SNR 

signals only the largest M  singular values will be nonzero 

so that 0... 121   epMM  .  However, for 

noisy signals, 0... 121   epMM  .  The 

problem is solved by constructing a lower rank matrix LR  

from R using the first singular values.  That is, 





M

n

H

nnn

H

MMML vuVUR
1

        (59) 

where MU , M  and MV  are the truncated versions of U , 

  and V  respectively.  The AR parameters are then 

estimated by the relation rRa L

 , where r corresponds to 

the first column of LR  and 


LR  is the Moore-Penrose 

generalized inverse given as

           (60)
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Next, the estimated AR parameters are used to generate the 

residual error sequences 

 







e ep

l

dd

p

m

lmkRmalak
0 0

)(][)(     (61)    

from which the actual MA parameters are obtained.  An 

exponential window is applied to )(k  to ensure that the 

MA spectra derived from the error sequences are positive 

definite.  Next, the ARMA spectrum is computed from  

2
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)(

)(
zA

zk

zS

e

e

p

pk

k

f










           (62) 

and the desired power distribution of )(tx , denoted as 

)(tPx  is obtained by evaluating )(zS f
 on the unit circle 













tN

tj
z

2
exp ; that is
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Eventually, M  and iln  are obtained from )(tPx . 

The problem with this method is that the procedure for 

computing the MA coefficient is very complicated and it 

requires a too high model order before desirable results are 

obtained. 

C. Transient Error Method  

The transient error method [15] is based on the premise 

that each data point can be expressed as a linear combination 

of M previous ones according to: 





M

i

ikik xax
1

ˆˆ ,    02NkM          (64)      

where ia  are the AR coefficients. 

Denoting the output of the AR filter as ke  and knowing 

that kx̂  is equal to zero for 0k , then the output of 

transient values 110 ....,........., Meee  will be nonzero.  

These error coefficients }{ ke  correspond to the MA 

coefficients and are used to enhance resolvability of the 

exponents.  From the preceding statement and equation (64), 

it follows that  
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



M

i

ikik xae
0

ˆ                (65)      

Taking the z-transform of (65) and solving for )(ˆ zX  

gives the ARMA model 

)(

)(
)(ˆ

zA

zE
zX       

The distribution, )(ˆ tx  is then computed from 









 

)(

)(
)(ˆ 1

zA

zE
Ztx                                                               (66) 

The remaining part of the procedure is similar to the 

ARMA modeling. 

The major problem with the transient error method is that it 

requires M  to be specified and does not give good estimates 

of i  for relatively large values of the variance of the error 

sequence.  It also has a very high detection SNR threshold. 

D. Data Extension Method 

The M complex sinusoids resulting from the application of 

Gardner transform and the accompanying deconvolution (see 

Chapter three) can be represented by the 
thM  order 

difference equation  




 
M

i

ikik xax
0

0 10 a           (67)                                                

where the parameters },....,2,1,{ Miai   are complex 

coefficients.  

Equation (67) forms the basis of the data extension method 

that was developed by Arunachalam [14] and further 

developed by Smith and Nichols [16].  In this method, the 

value of kx  is extended beyond the 02N  point by a 

recursive application of the unit step prediction operator 

determined by the Burg algorithm.  This technique is justified 

because )(tx  is made up of a train of impulses of different 

amplitudes.  The Fourier transform of an impulse has an 

infinite bandwidth so that if a good value of kx  can be 

established, then extrapolation can be applied to extend its 

range from 12 0 N  to 1N , where 1N  is the length of the 

extrapolated deconvolved data.  Smith and Nichols [16] 

extended this procedure by applying appropriate weighting 

function to the extrapolated data.  Both methods work well 

only if the data is noiseless and their algorithms do not give a 

criterion for selecting the good portion which is to be 

extrapolated.  Also their algorithms may give an incorrect 

value of M since its determination is based on the minimum 

residual error energy. 

E. Eigenvector Methods 

MUSIC (multiple signal classification) and minimum 

norm algorithms were separately proposed by Schmidt [17] 

and Kumerasan and Tufts [18]  respectively for the analysis 

of complex exponentials. These methods were used by Jibia 

and Salami [19] to model the output of optimal compensation 

deconvolution filter, essentially a sum of complex 

exponentials as in equation (39). These methods belong to 

and form the core of what is known as eigenvector 

algorithms. 

The signal in Eq. (53) can be expressed in compact form as 

follows 

eSbx                   (68) 

where 

 TMBBBb 21             (69) 

 MsssS 21               (70) 
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12 0  NNd  is the number of samples after truncation 

of the deconvolved data, i  is the decay rate of the 
thi  

component, iB is the amplitude of the 
thi component and e  

is the noise after stationarization. 

The autocorrelation matrix of the noisy signal can be 

written as 

  ISBSRRxxER H

nnss

H

xx

2    (72) 

where E  denotes the expectation, H denotes the Hemittian 

transpose and  HbbB   is the diagonal matrix. Further, 

H

ss SBSR  and IRnn

2  are correlation matrices of 

the signal and noise processes respectively. This can be 

expressed as 
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               (73) 


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2              (74) 

where k and kv  are the eigenvalues and eigenvectors of the 

matrix ssR . 

Thus, the autocorrelation of the noisy signal is 
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where 
2  kk  are the eigenvalues of the matrix xxR  

and are real. 

All eigenvectors satisfy 

2
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The MUSIC pseudospectrum is expressed as 

 
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ln
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


        (77) 

where  lns  is the complex sinusoidal vector and 

 
dNM vvV 1  is the matrix of eigenvalues of the noise 

space. 
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This is the MUSIC pseudospectrum. The term 

pseudospectrum is actually a misnomer since the domain is 

not frequency but ln . 

Strictly, Eq. (77) is valid if and only if the noise is white or 

assumed to be so. But due to Gardner transform, the signal 

has gone through many stages to arrive at )(k  for the noise. 

Although truncation is supposed to stationarize the 

deconvolved data and noise, the eigenvalues of the noise in 

Eq. (53) may still not be equal. Thus, a modification is 

necessary to account for the variation in eigenvalues. This is 

achieved by normalizing the pseudospectrum of each 

eigenvector by its corresponding eigenvalue. 
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1
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       (78) 

where k  is the eigenvalue associated with the eigenvector 

kv . 

The minimum norm is essentially a variant of MUSIC. The 

pseudospectrum (Eq.(77)) tests the orthogonality of the 

signal vector with respect to all the eigenvectors in the noise 

subspace. The minimum norm method uses only one 

arbitrary vector 

 )()2()1( dNdddd         (79) 

constrained to lie in the noise subspace. 

The minimum norm seeks to minimize the norm of d  in 

order to avoid spurious peaks in the pseudospectrum. The 

norm of the vector contained in the noise subspace is 

dPdddd n

HH 
2

           (80) 

where  nP  is the matrix that projects an arbitrary vector on 

the noise subspace [22]. 

Since an unconstrained minimization of this norm will 

produce the zero vector, the first element of d  is constrained 

to be unity, i.e. 

11 dH                  (81) 

The solution to this can be found by using Lagrange 

multipliers [23] as 
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d                 (82) 

The ln  are then obtained from the peaks in the 

pseudospectrum of the minimum norm vector 
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H
mn
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P


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Research on improving the results of MUSIC and 

minimum norm is still underway and it is hoped that they will 

provide an excellent solution to the problem of 

multiexponential analysis. Some of the options being 

considered include alternative deconvolution procedures, 

integrating them with the homomorphic deconvolution 

method and the use of ESPRIT algorithm [24]. 

VI. CONCLUSION 

In this paper, an appraisal of the Garner transform method 

along with its modifications have been given. The 

modifications have been grouped into three. Some 

modifications are in the nonlinear transformation, others are 

in the accompanying deconvolution procedure and the rest 

involve parametric modeling of the deconvolved data. The 

use of parametric models improves the result of Gardner 

transform but introduces data length truncation which makes 

them difficult to use for real time analysis. 

Research is quite active in improving the performance of 

Gardner transform-based methods. Current research is aimed 

at providing improved estimation accuracy over very low 

SNRs for signals with large number of components and high 

resolution. Specifically, these researchers are currently 

looking at the possibility of an automated procedure for the 

selection of data truncation point. 

Another effort is on the way to design a better cepstral 

lifter for the homomorphic deconvolution method. It is hoped 

that a better windowing lifter will give the desired solution  

for the real-time analysis of multiexponential signals using 

Gardner transform-based techniques. Finally, as it has been 

pointed out, research is also active on improving the 

performance of eigenvector algorithms in the analysis of 

transient multiexponential data. 
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