
  

   
Abstract—Localization in sensor networks deals with the 

estimation of the position of the sensor node in a network for a 
given incomplete and inaccurate pair-wise distance 
measurements. Such distance data may be acquired by a sensor 
node by communicating with neighboring nodes called anchor 
nodes whose positions are known apriori. This paper proposes a 
Kalman filtering based distance estimation algorithm for 
indoor wireless sensor networks. In this paper, the distance of 
the unknown node is computed based on the Received Signal 
Strength (RSS) measurements. The effect of path loss and 
attenuation in the wireless medium are also considered in this 
proposed algorithm. The distance error is minimized using 
one-dimensional Kalman filter. The number of iterations in 
Kalman filter is limited using Cramer Rao Bound (CRB) value. 
A real-time experimentation is carried out to get Received 
Signal Strength value in indoor environment using zigbee series 
1 RF module along with the associated X-CTU software of 
Maxstream. The proposed algorithm is simulated in MATLAB 
version 7.  From the simulation results it is found that the 
proposed distance estimation algorithm gives accurate results. 
 

Index Terms—Received signal strength, log normal 
shadowing model, ITU model, one-dimension Kalman estimator, 
cramer rao bound. 
 

I. INTRODUCTION 
Wireless sensor networks are fundamentally intended to 

provide information about the spatio-temporal characteristics 
of the observed physical world. Hence, it is necessary to 
associate sensed data with locations, making data 
geographically meaningful [1]. Hence, localization, a 
mechanism for autonomously discovering and establishing 
spatial relationships among sensor nodes, is of great 
importance in the development of wireless sensor networks. 
In most applications, the data reported by the sensors is 
relevant only if tagged with the accurate location of the 
sensor nodes. Thus knowledge of position of the node 
becomes inevitable. 

The determination of location information requires the 
estimation of distance between the beacon nodes and 
unknown nodes. The beacon node is a node that is aware of 
its location while unknown node is the one whose locations is 
to be determined. The distance measurement between the 
beacon nodes and unknown nodes can be done by three 
techniques like Received Signal Strength (RSS), Time of 
Arrival (ToA) and Time Difference of Arrival (TDoA) [2], 
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[3]. However, distributed RSS-based distance measurement 
technique is more suitable considering the power constraints 
in the design of wireless sensor network. 

In practice, due to resource constraints on the sensor nodes, 
additional hardware to perform distance measurements 
becomes infeasible. The commercially available zigbee RF 
modules provide the Received Signal Strength information 
through RSS Indicator (RSSI). In this paper, an efficient 
distance estimation algorithm based on RSS measurement is 
developed, which provides an accurate and cost-effective 
solution. Estimation of accurate distance is done by 
one-dimension Kalman filter estimator [4]. The number of 
iteration of the Kalman filter estimator is limited by 
Cramer-Rao Bound (CRB) [5]. 

The rest of the paper is organized as follows. Section II 
provides an overview of existing approaches. Section III 
presents the proposed algorithm with relevant mathematical 
formulations. Section IV presents the simulation results and 
performance analysis of the proposed algorithm. Finally, 
section V concludes the paper with future work. 

 

II. RELATED WORK 
The estimator determines the unknown node’s locations 

with reference to the anchor node’s positions. Reichenbach 
and Timmermann [6] proposes Received Signal Strength 
based localization algorithm with weighted centroid method 
for indoor wireless sensor network which offers low 
communication overhead and low computational complexity. 
But the reduction in RSS measurement errors is achieved by 
antenna diversity technique. This requires two antennas thus 
results in increase of hardware complexity. Prasan    Kumar   
sahoo et al. [7] suggested a method of node localization from 
distance and angle measurements which requires more 
number of anchor nodes for achieving accuracy.  

Zhao et al., [8] proposes a hop-distance algorithm for 
self-localization in WSN which is based on RSS and uses 
maximum likelihood estimator to achieve accuracy. Masashi 
Sugano et al., [9] propose a localization system based on 
zigbee standard which estimates the distance between sensor 
nodes by Received Signal Strength measurements. The 
computational cost is high due to maximum likelihood 
estimator and MMSE estimator. Shi Qin-Qin et al., [10] 
proposes a localization algorithm based on linear intersection 
which reduces the computational complexity but does not 
provide better accuracy. Thus, existing distance estimation 
methods provide better accuracy but with high computational 
cost. However the proposed algorithm aims to achieve good 
level of accuracy with reduced computational cost by 
employing one-dimensional Kalman filter estimator to 
estimate the distance. 
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III. PROPOSED DISTANCE ESTIMATION ALGORITHM  
Consider a sensor network comprising of Sn nodes located 

at the coordinates (xn, yn), where n represents the total number 
of nodes in the network. Assume that there are Sk anchor 
nodes whose positions are known (eg. obtained via GPS or 
some other “absolute” reference) and that the remaining Su 
nodes are located at unknown positions. Without loss of 
generality, assume that position of nodes Sk+1 … Sn are 
unknown, whereas the locations of the nodes S1… Sk are 
known. Let θ1, θ2 be the coordinates of the nodes whose 
positions are known and unknown respectively. 

             θ1 = {(xk,yk)}  , k = S1,S2,….,Sk 

 θ2 ={(xu,yu)} , u = Sk+1,…., Sn                         (1) The coordinates θ2 can be estimated with the knowledge of 
θ1 and samples of pair-wise range measurement { γku

(t)} taken 
over N different instances. In this paper, the pair-wise range 
measurement is computed through RSS-based range 
measurement method. The proposed distance estimation 
algorithm consists of four stages as shown in Fig. 1.  

 
Fig. 1. Block diagram of distance estimation algorithm 

Initially the RSS values between the anchor node and 
unknown node are measured. Secondly the statistical 
modeling is performed to determine the quality of the channel. 
The distance between anchor node and unknown node is 
computed through log normal shadowing path loss model 
and ITU indoor attenuation model. Finally the accurate 
distance estimation is done using one-dimension Kalman 
filter estimator whose iterations are limited by Cramer Rao 
Bound (CRB) value.  

A. Range Measurement and Statistical Modeling 
The Received Signal Strength values between anchor node 

and unknown node are measured in indoor environment. RSS 
measured values consist of more error components due to 
multi-path propagation, fading effects and attenuation. To 
enhance accuracy in the range measurement, more samples 
are taken at different time instances for different distances. 
The commercially available Zigbee series 1 RF module 
supports 16 numbers of channels in the 2.4 GHz ISM band. 

The channels considered for the range measurement are B, C, 
D, E and F [11]. Statistical modeling is done to evaluate the 
quality of channel. The various statistical parameters that are 
evaluated are maximum, minimum, mean, median, standard 
deviation, lower quantile and upper quantile [12]. The 
channel that results with low standard deviation compared to 
other channels is chosen as the best channel. 

B. Distance Calculation 
The distance of the unknown node with respect to anchor 

node can be computed from the ensemble mean RSS value of 
the best channel. The indoor environment considered is 
destructive, as it consists of thick and thin walls, wooden and 
steel furniture, floorings, roofings etc. Further the effect of 
interference from WLAN and Bluetooth devices present in 
the environmental set up makes the medium more destructive. 
So, the effect of path loss, attenuation and interference are 
also included in calculating the distance parameter [13]. The 
distance of unknown node is computed using two models 
namely path loss log normal shadowing and ITU indoor 
attenuation models. Then the distance error which is the 
difference between the actual distance and the calculated 
distance is computed.  
1) Log normal shadowing path loss model: 

The path loss between node k and node u is random and 
distributed log normally which can be modeled as      [13]    

PL(dku’)[dB] = PL (dref)+10nplog(dku’/dref)+Xσ                  (2) 

where P L (dref) is the ensemble path loss at a short reference 
distance dref. Xσ is the zero mean Gaussian random variable 
with standard deviation σ and np is path-loss exponent, 
typically lies between 2 and 4. 

The ensemble mean received power is the difference of the 
transmitted power and the path loss component at the specific 
distance dku’ which is modeled as, 
 
Pr (dku’)[dBm] = Pt (dBm) - PL(dku’)[dB]                        (3)                
 
Substituting eqn (2) in (3),  
 
Pr (dku’)[dBm] = [Pt(dBm)- P L (dref)-10nplog(dku’/dref) -      Xσ]

                
(4) 

where Pr (dku’) is the average RSS value in dBm or received 
power and Pt(dBm) is the power transmitted.  
 

             P L (dref) = -10log(GtGr λ 2 / (4π)2  dref 2 )                           (5)  
 
              where  Gt, Gr = Gain of the transmitter and receiver antennas 

respectively 
λ = wavelength of the signal by c /f 
c   = velocity of light in m/s 
f     = frequency of the signal in Hz. 
The distance dku’ computed from log-normal shadowing 

model can be expressed as 
 

dku’= dref *(10[(Pt (dBm) - P L (dref) -X
σ
-  Pr(dku’)[dBm] ) /        

    (10 n
p

])    (6)                    
2) ITU Indoor Attenuation Model 

The amount of attenuation is predominant in an indoor 
environment. The range calibration can also be computed by 
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an attenuation model. The ITU indoor attenuation model [14] 
is formally expressed as 

P L (dref)[dB] = 20 log f + L log dref + Pf  (frku ) – 28         (7)  

where P L (dref )[dB] =  ensemble mean path loss at the      
reference distance in dB 

L    =   distance power loss coefficient 
frku  =   Number of floors between the node k                  

and    node u 
Pf ( frku )  =   floor loss penetration factor.  
The distance dku’’ computed from ITU indoor attenuation 

model can be obtained by substituting eqn. (7) in eqn. (6)  

dku = [dref  *(10[(Pt (dBm) – 20 log f - L log dref – Pf  (f rku )  +   

     28   - X
σ
 -  Pr (dku’)[dBm]  ) / (10 n

p
)])]               (8) 

C. Distance Estimation 
The accuracy of the distance calculated by the two models 

can be improved by minimizing the distance error between 
the actual distance and the calculated distance. The accurate 
distance can be estimated through one-dimensional Kalman 
estimator. The one-dimensional Kalman estimator is 
modeled as an average filter that combines, the distance 
values calculated by model 1 and 2. The distance values for 
the two models are obtained after statistical modeling by 
which the best channel selection is done.  

Let dku’ be the range obtained by log-normal shadowing 
model (Model 1) and dku

” be the range obtained by ITU 
indoor attenuation model (Model 2). Let σ1 and σ2 be the 
standard deviations obtained from model1 and model 2 
respectively. Both errors can be combined to get an 
estimation using Kalman algorithm.   
σ1 = standard deviation for dku’ about the mean which is 

given by 

σ1 = (((dku
’–m)2 + (dku–m)2) /(nd -1))1/2              (9)    

where   m = (dku
’ + dku)/2 

                 nd = number of samples  
σ2 = standard deviation for dku” about the mean which is 

given by  

σ2 = (((dku
’’ –m1)2 +(dku –m1)2)/ (nd -1))1/2                 (10)                                                                                                          

where    m1 = (dku
’’ + dku ) / 2 

If both models have same standard deviation, then  σ1 = σ2. 

If path loss is predominant, then σ1 > σ2. Similarly, if 
attenuation is high, then σ1 < σ2. The complexity of the 
proposed algorithm increases if the error in the calculated 
distance increases. The iterations can be limited by the 
amount of errors. If σ1 = σ2, the estimated distance will be the 
average of dku’ and dku”. If σ1 >> σ2, then dku” can be taken as 
the estimated distance. If  σ1 << σ2, then dku’ can be taken as 
the estimated distance [14].  

In any other case, the weighted average of the distances 
calculated from both the models are used to estimate dku, 

which may be called as 
^

k ud  

^

k ud  =   
2 2 2 2

1 2 1 2

' '' 1 1( ) ( )ku kud d
σ σ σ σ

+ +                  

                                              or

^

kud  = 2 2 2 2
2 1 1 2( ' '' ) ( )ku kud dσ σ σ σ+ +

 
                  (12) 

 The above estimate can also be rewritten as 

^

k ud = dku’ + K (dku ’’ –  dku’)                                 (13)  

where K =    
2

1
2 2

1 2( )
σ

σ σ+
is defined as the Kalman gain. 

The accuracy of the estimator 
^

kud can be determined 
based on Cramer Rao bound value [3, 5].  

The CRB value is given below, 

              CRB bound = 
2

dn
σ

                                             (14)  

where σ = (σ 1+σ 2)/2      
The iterations of the estimator is repeated till following 

condition is satisfied, 

Var (
^

k ud ) ≥ CRB bound                                    (15) 

The estimated distance for every iteration is compared 
with the actual distance. The iterations are repeated till the 
variance reaches the CRB bound. The value obtained in each 
iteration of the proposed algorithm is given in TABLE I.  

TABLE I. ITERATION ALGORITHM OF KALMAN FILTER 

Actual Distance CRB 
Bound Iteration 1 Iterat

ion 2
Final  
distance(m)

2 
4 
6 
8 
10 

 
0.0553 
0.2607 
0.7601 
1.0751 
1.3050 
 

0.0603 
0.1524 
0.5529 
0.3507 
0.0298 

 
 
 
0.05 
- 
- 
- 
- 
 
 
 

 
 

2.0502 
3.8476 
5.4471 
7.6493 
10.029 

 
 

     

 

IV. SIMULATION RESULTS  
The experimentation is done in indoor environment using 

zigbee series 1 RF module and the associated X-CTU 
software of MAXSTREAM. 20 samples of RSS (Received 
Signal Strength) values are measured at 20 different time 
instances for a specific distance. The experiment has been 
repeated for five different channels (B, C, D, E and F) with 
five different frequencies.  
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Fig. 2 illustrate the relationship between distance and RSS 
measurement for channels B. It is seen that the Received 
Signal Strength of the unknown node decreases as distance 
between the anchor and unknown node increases. Similar 
relationship can be obtained for the remaining channels.  

Fig. 3 shows the statistical modeling of channel B in which 
the various statistical parameters like minimum, maximum, 
mean, standard deviation, lower quantile and upper quantile 
are computed with the measured RSS values. 

RSS vs Distance for channel B
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Fig. 2. RSS vs Distance in Channel B 

Statistical Modeling-Channel B
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Fig. 3. Statistical modeling of channel B 
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Fig. 4. Calculated distance vs actual distance 

Kalman Filter - Estimated distance vs Actual distance
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Fig. 5. Comparison of distance estimation 

TABLE II. STANDARD DEVIATION VALUES OF RSS MEASUREMENTS FOR 
DIFFERENT CHANNELS 

Dist 
(m) 

 

B 
(2.404-2.
406) 
GHZ 

C 
(2.409-2.
411) 
GHz 

D 
(2.414-2.
416) 
GHz 

E 
(2.419-2
.421) 
 GHz 

               
F  
    
(2.424-
2.426)     
             
GHz 
 

 
2 

 
2.39 

 
2.13 

 
2.62 

 
0.92 

 
1.69 

 
 

4 
 

1.87 
 

1.65 
 

1.53 
 

1.23 
 

1.38 
 

 
6 

 
2.13 

 
1.67 

 
1.26 

 
1.37 

 
2.05 

 
 

8 
 

1.98 
 

1.29 
 

1.04 
 

1.31 
 

1.92 
 

  
   10 

 
1.11 

 
1.44 

 
0.96 

 
0.61 

 
1.18 

 
 

TABLE III. ONE-DIMENSION KALMAN ESTIMATOR 

Act 
dist. 
(m) 

Err 
(without 
KF) 

% of 
error  
with-out 
KF 
 

Err 
(With 
KF) 

% of 
error  
with KF 

% of
 imp. 
Acc.

 
2 

 
0.4705 

 
23.5 

 
0.0502 

 
2.51 

 
89 

 
4 

 
1.0213 

 
25.53 

 
0.1524 

 
3.81 

 
85 

 
6 

 
1.7437 

 
29.06 

 
0.5529 

 
9.21 

 
68 

 
8 

 
2.0737 

 
25.92 

 
0.3507 

 
4.38 

 
83 

 
10 

 
2.2848 

 
22.85 

 
0.0298 

 
0.29 

 
98 

TABLE IV. COMPUTATIONAL COMPLEXITY 

Equation 
No. 

Operations 

Divisions Additions Loop 
6 1 3 --- 
8 1 6 --- 
11 5 2 I* 
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Similar analysis can be performed for the other channels as 

shown in Table 2.  
Here the standard deviation is considered as the deciding 

factor to quantify the quality of the channel. It is found that 
the channel E can be selected as the best channel as it 
possesses low standard deviation. The distance of the 
unknown node is calculated by both log normal shadowing 
path loss model with path loss exponent np = 4 and ITU 
indoor attenuation model.  

Fig. 4 illustrates the calculated distance obtained by both 
the models. The distance error is computed by both the 
models. It is found that the distance error computed by log 
normal shadowing model is less compared to ITU indoor 
attenuation model. It is due to the value chosen for path loss 
exponent that reflects the nature of the multipath propagation 
medium. Figure 5 shows distance estimation with and with 
out one-dimensional Kalman filter. Table 3 presents the 
results of Kalman estimated distance and the associated error 
percentage. It can be seen that the error has been drastically 
reduced using Kalman estimator. 

The computational complexity of the proposed algorithm 
is estimated as given in Table 4. So, the total computation is 
(9A+2D) + (2A+5D) I. The division operations involved in 
equation 6, 8 and 11 can be converted into multiplications by 
performing the division once and saving the quotient in 
temporary memory location to reduce the computational 
complexity. As division takes more time than addition and 
multiplication, computation of the proposed algorithm will 
be O ((2A+I(5D)) where I is the number of iteration which is 
limited by the CRB value.  

The computational complexities involved in related works 
are less when compared to the proposed algorithm. However 
the accuracy of distance value is improved in the proposed 
algorithm when compared to the existing schemes through 
one-dimensional Kalman estimator. The complexity of the 
existing schemes is increased in the coordinate estimation 
phase as the amount of distance errors is more which is 
reduced in the proposed algorithm. In the proposed algorithm, 
no special hardware is used to measure RSS value, which 
results in reduction of hardware complexity compared to that 
of [4].  

The time complexity involved in the proposed scheme is 
also reduced as only three anchor nodes are needed at the 
maximum to estimate the location of the unknown node [13].  
 

V. CONCLUSION 
In this paper, a novel cost-effective accurate distance 

estimation algorithm is proposed. It uses path loss and 
attenuation models to compute the distance of the nodes 
accurately. The error is minimized with one-dimensional 
Kalman algorithm in which two models are integrated to get 
better results. Further the one-dimensional Kalman is not 
computationally heavy. The algorithm will be extended in 
future to determine the coordinates of the unknown nodes by 
employing lateration techniques. 
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