
 

Abstract—In this paper we propose a direct adaptive neural 
network control strategy for a class of unknown nonlinear 
systems. The adaptive controller is based on Radial Basis 
Function neural network. Training the RBF network as a 
neural model of the system using Gradient descent method 
initialized with unsupervised K-means clustering algorithm, 
control signals are directly obtained by minimizing the instant 
difference between a set point and the output of the Radial 
Basis function neural network model using the well established 
gradient descent rule. Since the training algorithm guarantees 
that the output of the RBF neural network model approaches 
that of the actual system, it is shown that the control signals 
obtained can also make the real system output close to a set 
point. Simulation results for both SISO and MIMO type 
nonlinear systems have been presented toward the end of the 
paper to show the validity and performance of the proposed 
method1. 
 

Index Terms—Direct adaptive control, discrete-time systems, 
k-means clustering algorithm, MIMO systems, Radial Basis 
Function (RBF), SISO systems. 

  

I. INTRODUCTION 
Dynamic and complex system control has been an 

important research area mainly due to the difficulties in 
modeling and estimating system nonlinearities. Controllers 
developed for such systems should be able to track the 
dynamic nonlinear plant output precisely because often the 
linear controllers fail to perform effectively. Thus a 
changing dynamic controller is necessary to control such a 
plant.  

In recent years Artificial Neural Network (ANN) has 
been effectively utilized as a tool to generate dynamic 
control schemes. Lot of research has been done using these 
computational intensive algorithms in parallel with a 
mathematical formulation or by itself in developing such 
controllers. Some of the relevant research work involving 
ANN as part of the control scheme is illustrated next. 

Identification and control of dynamic systems using a 
backpropagation neural network is shown in [1]-[6]. A 
robust adaptive control of uncertain nonlinear systems using 
neural network is proposed in [7]. It was shown that the 
explicit identification of the nonlinear system is possible if 
the persistency of excitation condition is fulfilled. 

Utilization of RBF neural network as an intelligent 
controller is often been emphasized in many of these and 
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other researches. RBF neural networks differ from multi 
layered neural networks in that it has simple structure and 
fast learning algorithms and they perform local 
representations. Moreover, the basis function in the RBF 
neural network structure ensures that only the weights 
located in the vicinity of the input need adjustment during 
training [8]. This feature makes RBF neural networks 
attractive as an on-line controller where there is often no 
control of the order of presentation of the data samples used 
during training.     

In this paper, we propose a direct adaptive control 
scheme to achieve output tracking of a class of nonlinear 
systems using RBF neural network. The main advantage of 
direct adaptive control scheme over an indirect adaptive 
control scheme is that in a direct adaptive control scheme 
there is no need for explicit system identification. In indirect 
adaptive control scheme, the system is generally identified 
off-line from its input-output data and the controller is 
designed based on the identified system model. The 
identified model should be accurate enough for better 
performance of the controller. Moreover stability is a critical 
issue in indirect adaptive control. But in direct adaptive 
control, the controller is designed in such a way that the 
closed loop stability is maintained while the tracking error 
converges to 0 with time. 

In this paper, RBF neural network is used on line to 
estimate the system using gradient descent technique [9] 
initialized with unsupervised k-means clustering method [10] 
to improve the success of RBF network in identification of 
the unknown nonlinear system. Taking the resulting RBF 
neural network estimation as a known nonlinear dynamic 
model for the system, control signals can be directly 
obtained using the well-established gradient descent rule. As 
we will see, satisfactory solutions to the tracking problem 
are obtained by applying radial basis function (RBF) neural 
network. 

This paper is organized as follows: In section II the 
unknown nonlinear system and the problem under 
consideration are stated. Section III gives details of the RBF 
neural network and algorithms used to adjust its parameters 
for identification purpose. The structures for direct control 
in case of SISO and MIMO systems are given in Section IV. 
In section V the algorithm used for direct control in case of 
SISO and MIMO systems are given. Section VI presents the 
simulation results for both SISO and MIMO type nonlinear 
systems. A comparison study of the direct control scheme in 
two cases is shown in Section VII. Finally, some 
conclusions are remarked in Section VIII.  
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II. STATEMENT OF THE PROBLEM 
This section covers the details regarding the SISO and 

MIMO systems under study. 

A. Single Input Single Output Systems 
Consider a single input, single output system: 
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where )(ky p is the plant output, )(ku is the plant input, 

1-L10  , , , bbb …  are system parameters where 00 ≠b , and 
[.]f  is a nonlinear function.   
The control problem is to determine the bounded input 

)(ku so that the plant output )(ky p  follows the model 

output )(kym  asymptotically, that is, 

0)()(lim =−→∞ kyky mpk . 

We shall consider the case when the function [.]f  and 
the parameters 1-L10  , , , bbb …  are unknown. In this case one 
RBF neural network is used to approximate the SISO 
system. 

B. Multi Input Multi Output Systems 
Consider a discrete time nonlinear multivariable system  

described by the difference equations: 
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(2) 
where, ijb  for )1:( ni … , )10:( −Lj … , 0≠0ib  are the 

system parameters, T
21 ])( ,),( ),([ )( kukukuku n…=  and 

T
pnppp kykykyky )]( , ),( ),([)( 2 1 …= are the input and 

output vectors respectively, n21  , , , fff …  are nonlinear 
functions, and nL ≤ .  

The control problem is to determine the bounded input 
vector T

21 ])( ,),( ),([ )( kukukuku n…=  so that the plant 

output vector T
npppp kykykyky )]( , ),( ),([)(  2 1 …=  

follows the model output vector 
T

mmmm yyyky ] , , ,[)( n 2 1 …=  asymptotically, that is, 

0)(-)(lim i i =∞→ kyky mpk  for )1:( ni … .  

We shall consider the case when the functions 
n21  , , , fff …  and the parameters 

1)-n(Ln101)-1(L1110  , , , ,, , , , bbbbbb n ………  are unknown. In 

this case n  RBF neural networks are used to approximate 
the multivariable system. 

 

III. RBF NEURAL NETWORK 
In this section the structure of the RBF neural network 

and the algorithms used to adjust its parameters for 
identification purpose are introduced.  

A. Structure of RBF Neural Network 
A RBF network is a three-layer feed-forward neural 

network. The mapping from input to output is nonlinear, but 
from hidden layer to output layer is linear. Learning rate is 
quickened greatly and the problem of local minimum is 
avoided. A typical RBF network configuration is shown in 
Fig. 1. 
 

 
Fig. 1. RBF neural network configuration. 

In the structure of RBF neural network, the first layer 
TxxxX ] , , ,[ n21 …=  is the input vector of the network. 

Neurons of the second layer (hidden layer) are activated by 
radial-basis function. Suppose the radial vector of RBF 
network is 1 2 m[ ,  ,  , ]TH h h h= … , where jh  is 

multivariate Gaussian function. 
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The center vector of the thj  network node is 
T

jjijjj ccccC ] , , , , ,[ n21 ……= ; n , 2, ,1 …=j  and the 

radial width vector is T] , , , , ,[ mj21 σσσσ=σ …… , where 

jσ  is the radial parameter and 0>σ j . 

The weight vector of the network is W , and 
TwwwwW ] , , , , ,[ mj21 ……= . 

The network output ŷ  is found by a linearly weighted 
sum of the number of basis functions in the hidden layer. 
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B. Training Radial Basis Function Network 
The objective of the training process is to adjust 

parameters of the RBF network to minimize the error 
between the RBF network output )1(ˆ +ky and that of the 
real plant )1( +ky p . The learning phase in the radial basis 

function neural network can be divided into three steps and 
two phases. The three steps are 1) find the centers, 2) find 
the widths, and 3) weight training on the outer layer. The 
two phases proposed in this paper are:  
1) Unsupervised learning to give initial values for the 

location of centers and widths (using K-means 
clustering algorithm and P-nearest neighbor method 
respectively).  

2) Supervised learning, initialized with unsupervised 
learning given by (1), to improve the location of centers 
and widths, and estimating output layer weights (using 
gradient descent method). 

The following subsections give a detailed discussion for 
the two phases mentioned above.  

B.1. Phase (1): Initializing Parameters for Radial Basis 
Functions using unsupervised methods  
Radial-basis functions, as in (3), each have two 

parameters, jC  and jσ  for the thj  basis function jh . There 

are numerous algorithms that can be used to find the centers 
and widths of the hidden layer. In this paper, we propose an 
adaptive K-means clustering algorithm and P-nearest 
neighbor method to give initial values for the radial-basis 
functions parameters. The K-means clustering algorithm and 
P-nearest neighbor method are shown as follows.  

K-means clustering algorithm: 
Given a set of observations (k), , ,(2) ),1(( XXX …  

)(z) , X… , where each observation is an n-dimensional real 
vector, K-means clustering aims to partition the z  
observations into mK =  sets )( zK <  { }K21  , , , SSSS …=  
so as to minimize mean squared distance from each 
observation to its closest center [11]. The recursive K-
means algorithm is given as follows: 

 
1) Choose a set of centers { mCCCC  ,,  , , , j21 …… } 

arbitrarily and give the initial learning rate 1)0( =γ . 
2) Compute the minimum Euclidean distance 
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3) Adjust the position of this centers as follows: 
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4) 1+= kk , )1(998.0)( −γ=γ kk  and go to 2. 

P-nearest neighbor algorithm: 
After the RBF centers have been found, the width is 

calculated. The width represents a measure of the spread of 

data associated with each node. Calculation of the width is 
usually done using the P-nearest neighbor algorithm. A 
number P is chosen and for each center, the P nearest 
centers is found. The root-mean squared distance between 
the current cluster and its P nearest neighbors is calculated, 
and this is the value chosen for σ . So, if the current cluster 
center is jC , the value of width is given by: 
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A typical value of P is 2, in which case σ  is set to be the 

average distance from the two nearest neighboring cluster 
centers.   

B.2. Phase (2): Optimize the location of centers and 
widths obtained from phase (1) of Radial Basis Functions 
and Estimating Output layer weights using supervised 
gradient descent method  
Drawback of purely unsupervised method, such as K-

means clustering, is that clustering may not be relevant for 
the target function. Then improving parameters using 
gradient descent is imported for the control process.  Train 
the network like in backpropagation using gradient descent 
method; one can then determine improved values of the 
basis function centers and widths together with the output 
unit weights. 

Our error function is defined as 
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in order to minimize the error between the identification 
model output )1(ˆ +ky  and that of the real plant )1( +ky p , 

gradient descent method is adopted here to modify weights 
of the output layer, node center and node width parameters. 
The corresponding modifier formulas are as follows: 
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Differentiating (4) with respect to the corresponding 
parameter using equation (3) we may write equations (9)-
(11) as: 
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where η  is learning rate. 

 

IV. STRUCTURE FOR DIRECT CONTROL 
In this section the closed loop control structures for both 

SISO and MIMO systems are given 

A. Structure of The Closed Loop Control for Siso Systems 
The control process in case of SISO system, given in 

Section II.A., is to find the control signal )(ku  such that the 
output of the system )(ky p  is made as close as possible to 

model output signal )(kym . Fig. 2 shows the structure of the 
closed loop control system used for this purpose which 
consists of 1) the system (1); 2) a RBF neural network to 
give estimate )1(ˆ +ky  of the unknown system output )(ky p ; 

3) a controller obtained using gradient descent method. 

   
Fig. 2. RBF neural network Controller for SISO system.  

B. Structure of  the Closed Loop Control for Mimo 
Systems  
The control process in case of MIMO system, given in 

Section II.B., is to find the bounded control vector 
T

21 ])( ,),( ),([ u(k) kukuku n…=  such that the output of the 

system T
pppp kkkyky )](y , ),(y ),([)( n 2 1 …=  is made as 

close as possible to model output signal 
T

mmmm yyyky ] , , ,[)( n 2 1 …= . Fig. 3 shows the structure of 
the closed loop control system used for this purpose, with 

2=n , which consists of 1) the system (2); 2) two RBF 
neural networks to give estimate 

)1(ŷ , ),1(ŷ ),1(ˆ n21 +++ kkky …  of the unknown system 

outputs T
pppp kkkyky )](y ,),(y ),([)( n 2 1 …= ; 3) two 

controllers obtained using gradient descent method. 

 
Fig. 3. RBF neural network Controller for MIMO system of order 2.  

V. ALGORITHM DESCRIPTION FOR DIRECT CONTROL 
This section covers the details of the algorithms used for 

direct control of unknown SISO and MIMO systems given 
by (1) and (2). The approach used for direct control is as 
follows: RBF neural network is used on-line to estimate the 
system. K-means clustering algorithm and P-nearest 
neighbor method are used to give initial values for the 
location of centers and widths. Gradient method is applied 
to improve the centers and widths of the radial basis 
functions and to find weights of the output layer. Taking the 
resulting RBF neural network estimation as a known 
nonlinear dynamic model for the system, control signals can 
be directly obtained using well-established gradient descent 
rule. The following subsections give a detailed discussion 
for the two algorithms mentioned above.   

A. Direct Controller Algorithm for SISO Systems 
The structure of Fig. 2 is used for direct controller of the 

unknown nonlinear SISO system given by (1). The 
following steps describe the control process: 
1) The unknown nonlinear system (1) is expressed by the 

following model equation  
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using only one RBF neural network, where )1k(ŷ +  is the 

output of the RBF neural network given by (4) and f̂  is the 

estimate of ∑
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Training the RBF network must guarantees that  
 

.min)]1(ˆ)1([ 2 =+−+ kyky p                     (16) 
 

Training the radial basis function neural network can be 
done with two separate phases: First, the initial values for 
the location of centers and widths are obtained using 
unsupervised K-means clustering and P-nearest neighbor 
methods given in Subsection III.B.1. Second, gradient 
descent method, given in Subsection III.B.2, is used to 
improve values of the basis function centers, widths and to 
find output layer weights. 
2)  As a result obtained during the training RBF network 

for identification using gradient descent method, the 
control signal can be selected such that )1(ˆ +ky  is 
made as close as possible to the model output )1( +kym . 
For this purpose, we define an objective function cJ  as 
follows: 

)1(
2
1 2 += keJ cc                                   (17) 

where  
)1(ˆ)1()1( +−+=+ kykyke mc                       (18) 

 
The control signal )(ku  should therefore be selected to 

minimize cJ . Using the RBF neural network structure, (15) 
can be rewritten to give 
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of dimension L2 .   

To minimize cJ , the )(ku  is calculated using gradient 
descent rule 
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where 0>ηc  is a learning rate. It can be seen that the 
controller relies on the approximation made by the RBF 
neural network. Therefore it is necessary that )1(ˆ +ky  
approaches the real system output )1( +ky p  asymptotically. 
This can be achieved by keeping the RBF neural network 
training online. Differentiating (17) with respect to )(ku , it 
can be obtained that 
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The gradient can then be analytically evaluated by using 
the known RBF neural network structure (19) as follows: 
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The summary of the SISO algorithm is as follows: 

1) Find the initial values of the centers and widths of the 
radial basis functions using K-means clustering 
algorithm and P-nearest neighbor method given in 
Section III.B.1. 

2) Give an initial value for the control input )k(u  equal to 
zero.    

3) Produce )1(ˆ +ky  using (19); 
4) Find  )1( +kec  using (18); 
5) Update the values of centers and widths of the hidden 

layer basis functions and output layer weights from (12), 
(13) and (14); 

6) Compute new control signal from (24); 
7) Feed )1( +tu  to the system; 
8) Go to step 3). 
  

B. Direct Controller Algorithm for MIMO System 
The structure given by Fig. 3, is used for direct controller 

of the unknown nonlinear MIMO system given by (2) in 
case of 2=n . The following steps describe the control 
process: 
1) The unknown nonlinear system (2) can be expressed by 

the following model equation  
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using n  RBF neural networks, where 
)1(ˆ , ),1(ˆ ),1(ˆ n21 +++ kykyky …  are the outputs of the n 

RBF neural networks given by 
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Training each of the n  RBF neural networks can be done 

with two separate phases: First, the initial values for the 
location of centers and widths are obtained using 
unsupervised K-means clustering and P-nearest neighbor 
methods given in Subsection III.B.1. Second, gradient 
descent method, given in Subsection III.B.2, is used to 
improve values of the basis function centers, widths and to 
find the output layer weights. 
2)  As a result obtained during the training n RBF 

networks, the control signals can be selected such that 
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The control signals )( , ),( ),( n21 kukuku …  should 
therefore be selected to minimize cn21  , ,, JJJ cc … . Using n  
RBF neural networks structure, (25) can be rewritten to give  
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each of dimension Ln )1( + .   

To minimize cn21  , ,, JJJ cc … , the )( , ),( ),( n21 kukuku …  
are calculated using gradient descent rule 
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where 0 , , , 21 >ηηη n…  are the learning rates. It can be 
seen that the controllers depends on the approximation made 
by the n  RBF neural networks. Therefore it is necessary 
that )1(ˆ , ),1(ˆ ),1(ˆ n21 +++ kykyky …  approach the real 
system outputs )1( , ),1( ),1( n 2 1 +++ kykyky ppp …  
asymptotically. This can be achieved by keeping the n  RBF 
neural networks training online. Differentiating 

cn21  , ,, JJJ cc …  in (28) with respect to 
)( , ),( ),( n21 kukuku …  respectively, it can be obtained that 
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The gradients can then be analytically evaluated by using 
the known n  RBF neural networks structure (30) as follows: 
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Finally, (33) becomes 
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                      (35) 
The summary of the MIMO algorithm is as follows: 

1) Find the initial values of the centers and widths of the 
radial basis functions of the n RBF networks using K-
means clustering algorithm and P-nearest neighbor 
method given in Section III.B.1. 

2) Give initial values for the control inputs 
)( , ),( ),( 21 kukuku n…  equal to zero. 

3) Generate  )1(ˆ , ),1(ˆ ),1(ˆ n21 +++ kykyky …  using (25); 
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4) Find  )1( , ),1( ),1( 21 +++ kekeke cncc …  using (29); 
5) Update the values of centers and widths of the hidden 

layer basis functions and output layer weights from (12), 
(13) and (14); 

6) Compute new control signal from (35); 
7) Feed )1( , ),1( ),1( n21 +++ kukuku …  to the system; 
8) Go to step 3). 
 

VI. SIMULATION RESULTS 
The performance of the proposed controller is 

demonstrated through simulation results. Two nonlinear 
systems have been taken for this purpose. The first example 
considered here is a SISO system while the second example 
is a MIMO one. 

A. Example 1 
The first example taken for the simulation is same as that 

of [4]. The dynamics of the unknown nonlinear SISO 
system to be considered is given by the following equation: 
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−
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kykyky
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ky

ppp
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(36) 
and the control problem is to find a direct control signal, 

)(ku , such that the output of the system (36), )1( +ky p , is 

made as close as possible to the stable reference model, 
)1( +kym , described by 

 

)()2(5.0)1(64.0)(32.0)1( krkykykyky mmmm +−−−+=+ (37) 
 

where )k(r  is the uniform bounded reference input given by 
 

⎟
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25
2sin)( kkr                                (38) 

 

To solve direct control problem we follow the steps given 
in subsection V.A., using the architecture given in fig. 2, 
where the unknown nonlinear system (36) is expressed by 
the model equation   
 

1))-( ),( 2),-( 1),-( ),((ˆ)1(ˆ pp kukukykykyfky p=+      (39) 
 

using only one RBF neural network with input vector 
1))-( ),( 2),-( 1),-( ),(( kukukykyky , 25 hidden neurons 

and one output neuron. Training the RBF network can be 
obtained in two phases for control purpose:  

First, the initial values for the location of centers and 
widths are obtained using unsupervised K-means clustering 
and P-nearest neighbor, given in Subsection III.B.1., using 
an input  which is random and distributed uniformly over 
the interval ]2 ,2[− . Second, gradient descent method, given 
in Subsection III.B.2, is used to find output layer weights 
initialized to very small values and to improve values of the 
centers and widths of the basis functions. The corresponding 
modifier formulas for output layer weights, centers and 
widths in our example are that given by (12), (13) and (14) 
with a learning rate value 005.0=η . During the training 
RBF network using gradient descent method to make 

)1(ˆ +ky  approaches the real system output )1( +ky p of (36), 

the control signal can be selected such that )1(ˆ +ky  is made 
as close as possible to the model output )1( +kym  of (37). 
The corresponding modifier formulas for the control signal 
is that given by (24) with a learning rate value 002.0=ηc . 

The performance of the direct controller algorithm at the 
first eleven steps is shown in Fig. 4(a) which is 
unsatisfactory because the system tries to adjust its 
parameters for direct control. Fig. 4(b) shows the 
performance from step twelve to ninety-nine which gives 
satisfactory output tracking. Fig. 5 (a) and (b) give the 
identification error and control error respectively which 
show that a large error at the first eleven steps and from step 
eleven to ninety-nine tends to zero. Taking the results from 
step eleven to ninety-nine, RMS error for the controller is 
0.005 and that for identification is 6102.2 −× . Fig. 6 gives 
the required control signal from step eleven to ninety-nine. 

To demonstrate the effectiveness of the direct controller 
algorithm we take another case with the system (36). We 
will change the reference input given in (38) to be  
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Tracking results in this case are given in fig. 7. 
Identification and control errors are shown in fig. 8. Taking 
the calculations from step eleven to ninety-nine, the RMS 
error for the controller is 0.02 and that for identification is 

5105.2 −× .  The control input in this case is given in fig. 9.   
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Fig. 4. Performance of the RBFN Direct controller algorithm for the SISO 
system given in example 1 using the structure of Fig. 2 with 

( )252sin)( kkr π= . (a) gives the performance at the first eleven steps. 
(b) gives the performance from twelve to ninety-nine.  
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Fig. 5. (a) gives the identification error between system output, and RBFN 
output. (b) gives the control error between output of the RBFN and that of 
the model, )1( +ky m . 
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Fig. 6. Control signal for the system (36) in case of reference model (37) 
with ( )252sin)( kkr π= .   
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Fig. 7. Performance of the RBFN Direct controller algorithm for the SISO 
system (36) using the structure of Fig. 2 with 

( ) ( )102sin252sin)( kkkr π+π= . (a) gives the performance at the first 
eleven steps. (b) gives the performance from twelve to ninety-nine. 
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Fig. 8. (a) gives the identification error between system output, and RBFN 
output. (b) gives the control error between output of the RBFN and that of 
the model, )1( +kym . 
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Fig. 9. Control signal for the system (36) in case of reference model (37) 
with ( ) ( )102sin252sin)( kkkr π+π= .   

B. Example 2 
The second example taken for the simulation is same as 

that of [4]. The dynamics of the unknown nonlinear MIMO 
system to be considered is given by the following equation: 
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and the control problem is to find a direct control signals, 

)( ),( 21 kuku , such that the outputs of the system (41), 
)1( ),1( 21 ++ kyky pp , are made as close as possible to the 

stable reference models, )1(y ),1( m21 ++ kkym , described 
by 
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where )( ),( 21 krkr  are the uniform bounded reference inputs 
given by 
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To solve direct control problem we follow the steps given 

in subsection V.B., using the architecture given in fig.3, 
where the unknown nonlinear system (41) is expressed by 
the model equation   
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using two RBF neural networks with input vectors 

(k)) (k), ),(( 1p21 uyky p  for the first RBF network and 

(k)) (k), ),(( 2p21 uyky p  for the second RBF network, 35 

hidden neurons for each one and one output neuron for each 
one. Training the two RBF networks can be obtained in two 
phases for control purpose:  

First, the initial values for the location of centers and 
widths for the two RBF networks are obtained using 
unsupervised K-means clustering and P-nearest neighbor, 
given in Subsection III.B.1., with random inputs )(1 ku  and 

)(2 ku  uniformly distributed over the interval ]1 ,1[− . 
Second, gradient descent method, given in subsection 
III.B.2, is used to find values of output layer weights and to 
improve values of centers and widths of the basis functions 
of the two RBF networks. The corresponding modifier 
formulas for output layer weights, centers and widths in our 
example are that given by (12), (13) and (14) with a 
learning rate value 005.0=η  for both RBF networks. 
During the training RBF networks using gradient descent 
method to make )1(ˆ1 +ky  and )1(ˆ2 +ky  approaches the real 
system outputs )1(1 +ky p  and )1(2 +ky p of (41), the 

International Journal of Computer Theory and Engineering, Vol. 3, No. 6, December 2011

782



 

control signals )(1 ku  and )(2 ku can be selected such that 
)1(ˆ1 +ky  and )1(ˆ2 +ky  are made as close as possible to the 

model outputs )1(1 +kym  and )1(1 +kym  of (41). The 
corresponding modifier formulas for the control signals are 
that given by (35) with a learning rate values 05.0 , 21 =ηη . 

The performance of the direct controller algorithm at the 
first 30 steps is shown in Fig. 10(a) and (c) which is 
unsatisfactory because the system tries to adjust its 
parameters for control. Fig. 10(b) and (d) shows the 
performance from step 30 to 150 which gives satisfactory 
output tracking. Fig. 11 (a) and (b) give the identification 
error and Fig. 11 (c) and (d) give the control error. Taking 
the results from step 30 to 150, RMS error for 1ec is 0.021 
and 0.024 for 2ec . The identification error is 15102.2 −×  for 

1ei  and 15101.5 −×  for 2ei . Fig. 12 gives the required 
control signals from step 30 to 150. 

 

VII. COMPARISON STUDY 
In this section, we will compare the direct control 

algorithm for two cases:  
1) when the RBFN training is initialized by unsupervised 

clustering methods (K-means clustering algorithm and 
P-nearest neighbor method) and improved with gradient 
descent method. 

2) when the RBFN is trained using gradient descent 
method without using unsupervised clustering methods 
(K-means clustering algorithm and P-nearest neighbor 
method). 

When RBFN is trained using gradient descent method 
without using unsupervised clustering methods we get the 
following results:  
3) In case of example 1 with ( )252sin)( kkr π= , the RMS 

error for the controller is 0.114 and that for 
identification is 0.0003. 

4) In case of example 1 with ( )+π=  252sin)( kkr  
( )102sin kπ , the RMS error for the controller is 0.8 and 

that for identification is 0.009. 
5) In case of example 2 with RMS error for 1ec is 0.6 and 

0.05 for 2ec . The identification error is 0.005 for 1ei  
and 0.0004 for 2ei . Fig. 12 gives the required control 
signals from step 30 to 150. 

In comparison of the two cases mentioned above, it was 
found that direct control algorithm with RBFN trained using 
gradient descent method with unsupervised clustering 
methods improves the learning process than when 
unsupervised clustering methods are not used. 

 

VIII. CONCLUSION 
The RBF networks can be used as a base to implement 

nonlinear model-based direct controllers. The approach 
given in this paper can identify and control nonlinear plants 
in real time.  

Two nonlinear systems have been taken for simulation 
study. The first one is a SISO system which is same as that 
of [4]. The second example represents a MIMO system 

which is the same as that of [4] also. Simulation results have 
shown that the direct controller method can drive the system 
outputs to the desired reference with a satisfactory 
performance. 

The comparison of the direct control algorithm in two 
cases, first when the RBFN is trained initialized by 
unsupervised clustering methods (K-means clustering 
algorithm and P-nearest neighbor method) and improved 
with gradient descent method second when the RBFN is 
trained using gradient descent method without using 
unsupervised clustering methods (K-means clustering 
algorithm and P-nearest neighbor method), have showed 
that  direct control algorithm with RBFN trained using 
gradient descent method with unsupervised clustering 
methods improve the learning process than that when 
unsupervised clustering methods are not used. 

Finally, RBF neural network can provide a good solution 
for a wide range of adaptive real-time control problems. 
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(d) 

Fig. 10. Performance of the RBFN Direct controller algorithm for the 
MIMO system given in example 2 using the structure of Fig. 3 with 

( )252sin)(1 kkr π=  and ( )252cos)(2 kkr π= . (a) gives the 
performance at the first 30 steps. (b) gives the performance from 30 to 150. 
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Fig. 11. (a) and (b) give the identification errors between real system 
outputs )1(1 +ky p  and )1(2 +ky p  and that of the two RBFN outputs 

)1k(ŷ1 +  and )1(ˆ 2 +ky . (c) and (d) give the control errors between two 
RBFNs outputs and that of the model outputs )1(1 +ky m  and )1(1 +ky m . 
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Fig. 12. (a) and (b) give control signals for the system (41) in case of 
reference model (42) with ( )252sin)(1 kkr π=  and 

( )252cos)(2 kkr π= .   
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