
  

  
Abstract—Feature selection (FS) is a key step in the data 

mining process. In FS, the objective is to select the smallest 
subset of features that reduces complexity and ensures 
generalization. In this paper, we present a combined 
filter-wrapper feature selection approach using misclassified 
data. The learning process starts with only one feature, which 
gives a large number of misclassified patterns.  Only these 
patterns are used to select the next best feature which is added 
to the first one. By focusing on the misclassified patterns, the 
learner is undistracted and hence, it can select the relevant 
features more effectively and faster. The process continues until 
the classification results are within the required accuracy. The 
approach is applied to three datasets with high dimensional 
features using a variety of selection models and search 
strategies. Experimental results demonstrate the efficiency of 
the proposed approach in the two-class classification tasks.  
 

Index Terms—Feature selection, misclassified patterns, 
pattern classification.  

 

I. INTRODUCTION 
In classification tasks, the existence of a large number of 

features usually adds complexity and noise to the training 
process. Thus, it is important to choose the most relevant set 
of features to reduce the training time and increase the 
classification accuracy. FS has been an active field of 
research that is widely applied to many areas such as genomic 
analysis [1], text mining [2], image retrieval [3], and 
intrusion detection [4]. As new applications emerge in recent 
years, many new challenges arise.  Thus, novel theories and 
methods addressing high-dimensional and complex features 
are needed. Stable FS [5], optimal redundancy removal [6] 
and the exploitation of auxiliary data and prior knowledge in 
FS [7], [8] are among the most fundamental and challenging 
problems in FS. In addition, FS faces problems that arise 
from linearly non-separable data, the effect of the sampling 
process, and the noise added during data generation [9], [10]. 

 In this paper, an approach for FS using misclassified 
patterns (FSMC) is presented. The classification process 
starts with only one feature describing the data as a result of 
applying a FS criterion to the complete training data set. A 
classification process is applied using the extracted feature. 
The classification accuracy is then calculated. If it is not as 
desired, the set of misclassified patterns is calculated. We 
apply the FS criterion to the set of misclassified patterns only. 
The generated feature is added to the first one and the 
classification process is repeated but using the two features 
generated so far. Again, the accuracy is calculated and if it is 
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not as desired, the new set of misclassified data is calculated 
and the process of FS is repeated until we reach the desired 
classification accuracy. The set of features used in the last 
classification process is the optimal set of features describing 
the data. This set generated by focusing only on the 
misclassified patterns. In this sense, we test the rule “We 
must learn from our mistakes” to see whether it can be 
beneficial in the context of machine learning.  

To evaluate and to demonstrate the proposed method, we 
applied it to three complex datasets that were used in the 
NIPS 2003 FS challenge [11].We implemented FSMC with 
different learning classifiers. We compared the performances 
of these classifiers using FSMC and the popular sequential 
forward feature (SFF) selection method using all available 
training data. Experimental results show that, at the 
beginning of the classification process, the proposed FS 
approach has a higher classification accuracy compared to 
SFF selection method. Thus, the proposed approach can be 
used to generate a quick and efficient features set that can 
roughly describe the given data. This suggests the suitability 
of the proposed method for on-line classification problems.  

The rest of this paper is organized as follows. Section 2 
gives a review of the existing FS techniques. Section 3 
introduces the proposed approach for FS. Section 4 presents 
the experimental setup, while Section 5 presents the 
experimental results and compares the proposed approach to 
the SFF. Finally, Section 6 draws conclusions, limitations, 
and outlines ideas for future work. 

 

II. FEATURE SELECTION 
There has been a great deal of research on FS, e.g., 

[12]-[14]. FS algorithms can be roughly grouped into two 
categories: filter methods and wrapper methods. Filter 
methods rely on general characteristics of the data to evaluate 
and to select the feature subsets without involving the chosen 
learning algorithm. Wrapper methods use the performance of 
the chosen learning algorithm to evaluate each candidate 
feature subset. Wrapper methods can be significantly slower 
than filter methods if the learning algorithm takes a long time 
to run [13]. As shown in the survey done by Hall [14], 
wrapper methods such as forward selection and backward 
elimination [15] have high performance with high 
computational costs. On the other hand, filter methods such 
as Relief [15], [16], Information Gain and FOCUS [17] can 
be executed more quickly with lower performance than that 
of wrapper methods. Some advanced wrapper methods such 
as CFS [18], which executes a substitute evaluator instead of 
a learned evaluator, have lower computational costs than 
wrapper methods. However, these performances are still 
non-practical, compared with wrapper methods. In [19], an 
extensive review of existing work on FS is provided. 
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III. PROPOSED FEATURE SELECTION APPROACH 
Corresponding to the basic ideas behind the approach 

presented above, it consists of the following main steps: 
1) Apply a suitable FS criterion to estimate the best feature 

describing a given data set. This set represents the initial 
set of features (IS). 

2) Using IS, classify the data using a suitable classifier. 
3) Calculate the classifier performance. If the performance 

is not accepted, go to step 4. Otherwise, stop. 
4) Generate the set of misclassified patterns.  
5)  Apply the FS criterion that was used in Step 1 to the set 

of misclassified data and select its best feature. Add this 
feature to the set IS. 

6) Re-classify the original set of data using the set IS. 
7) Go to step 3. 

In the rest of this section, details about the above steps are 
presented. 

A. Applied Feature Selection Criteria: Filters 
Filters are usually used as a pre-processing step since they 

are simple and fast. A widely-used filter method is to apply a 
uni-variate criterion separately on each feature, assuming that 
there is no interaction between features.  

We used as filters three different commonly used filters 
that belong to different categories as reviewed in the 
literature [19]. These filters include the following: 
1) T-test (TTEST): which is a parametric (it assumes that 

the data follows the normal distribution) uni-variate filter. 
Using this test, we calculate the maximum separation 
between classes and ranks the features according to the 
maximum p-value, which means more confidence about 
the differentiating power. 

2) Wilcoxon rank sum test (RANKSUM): which is a model 
free uni-variate filter similar to the t-test except that it is 
a non-parametric test, i.e., it does not assume that the 
data comes from normal distribution. 

3) Information Gain (IG): This is a multi-variate filter. It 
selects the features that make information gain 
maximum. It works as follows: Let S be a set of instances, 
pi is the fraction of instances with classi,  Sv is the subset 
of S with A = v, and Values(A) is the set of all possible 
values of A, then:  Entropy ሺSሻ ൌ െ ∑ p୧log ଶ୧ p୧            (1) 

    IG ൌ EntropyሺSሻ െ ∑ |S౬||S|୴Vୟ୪୳ୣୱሺAሻ . EntropyሺS୴ሻ  (2)

  
 

Using IG as a filter, the entropy and information gain is 
calculated for all features using (1) and (2). Then the one with 
highest IG is chosen. It should be noticed that TTEST and 
RANKSUM methods do not consider interaction between 
features. Thus, features selected based on their individual 
ranking may also contain redundant information. However, 
IG considers interaction between features.  

B. Used Classifiers 
We evaluated our algorithm using four different popular 

learning classifiers belonging to different categories as 
classified in [20]. 

C. A logic-based classifier: Decision Tree 
Decision trees classify instances by sorting them based on 

feature values. Each node in a decision tree represents a 
feature in an instance to be classified, and each branch 
represents a value that the node can assume. Instances are 
classified starting at the root node and sorted based on their 
feature values [20]. 

In order to avoid over-fitting problems we can pre-prune 
the decision tree by not allowing it to grow to its full size [20]. 
Establishing a non-trivial termination criterion such as a 
threshold test for the feature quality metric can be used. 
Well-known pruning methods are presented in [21].  

Many tree-splitting criteria are proposed in the literature 
[22]. These criteria include rules derived from information 
theory (e.g., Shannon entropy) [23], and rules derived from 
distance measures which measure the distance between class 
probability distributions. Gini’s index of diversity is one of 
the most commonly used metrics. It is a measure of the 
inequality of a distribution where a value of zero represents 
total equality and a value of one represents maximal 
inequality [24]. In addition to the splitting criterion, the 
minimum number of observations (MinSplit) an impure node 
must have to be split has to be set. 

D. A perceptron-based classifier: A multi-layered 
Artificial Neural Networks (ANNs) 
Multilayered Perceptrons (Artificial Neural Networks) 

have been created to classify non-linearly separable data [25].  
A multi-layer neural network consists of large number of 
units (neurons) joined together in a pattern of connections. 
Units in a net are usually divided into three classes: input 
units, which receive information to be processed; output units, 
where the results of the processing are found; and units in 
between known as hidden units. Feed-forward ANNs allow 
signals to travel one way only, from input to output. 
Generally, determining the size of the hidden layer is a 
problem, because an underestimate of the number of neurons 
can lead to poor approximation and generalization 
capabilities, while excessive nodes can result in over-fitting 
[26]. The weights of the net to be trained are initially set to 
random values, and then instances of the training set are 
repeatedly exposed to the net. The values for the input are 
placed on the input units and the output of the net is compared 
with the desired output. Then, all the weights in the net are 
adjusted slightly in the direction that would bring the output 
values of the net closer to the values for the desired output. 
There are several algorithms with which a network can be 
trained [27]. However, the most well-known and widely used 
learning algorithm to estimate the values of the weights is the 
Back Propagation (BP) algorithm [20]. A review of the 
existing work in ANNs is provided in [28].  

E. Support Vector machines (SVMs) 
Support Vector Machines (SVMs) [29] have been widely 

applied to pattern classification problems and non-linear 
regressions. The basic idea of the SVM algorithm is to find an 
optimal hyper-plane that can maximize the margin between 
two groups. The vectors that are closest to the optimal 
hyper-plane are called support vectors. Maximizing the 
margin and thereby creating the largest possible distance 
between the separating hyper-plane and the patterns on either 
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side of it has been proven to reduce an upper bound on the 
expected generalization error. SVMs show excellent 
performance in handling large feature space and over-fitting 
problems [30]-[32]. An excellent survey of SVMs can be 
found in [33]. 

If the training data is linearly separable, then a pair (w, b) 
exists such that  wTx୧  b  1 for all xi  class 1           (3) wTx୧  b  െ1 for all xi  class 2       (4) 

with the decision rule given by: f୵,ୠ ൌ sgnሺwT  bሻ            (5) 
   where w is called the weight vector and b the bias (or 
threshold). For linearly separable two classes, an optimum 
separating hyper-plane can be found by minimizing the 
squared norm of the separating hyper-plane. This is a convex 
quadratic programming (QP) problem: 

Minimize Φሺwሻ ൌ ଵଶ ԡwԡଶ          (6) 
Subject to y୧ሺwTx୧  bሻ  1 , i=1,2,…,n    (7) 
In the case of linearly separable data, once the optimum 

separating hyper-plane is found, data points that lie on its 
margin are known as support vector points and the solution is 
represented as a linear combination of only these points. 
Other data points are ignored. Therefore, the model 
complexity of an SVM is unaffected by the number of 
features encountered in the training data.  For this reason, 
SVMs are well suited to deal with learning tasks where the 
number of features is large with respect to the number of 
training instances. Many parameters must be set when using 
an SVM. Firstly, the function used to map the training data 
into kernel space (e.g., linear kernel, quadratic, or radial basis 
function). Secondly, we must determine the method that is 
used for finding the separating hyper-plane. These methods 
include Quadratic Programming (QP), Sequential Minimal 
Optimization (SMO), or Least Squares. Standard QP method 
is time-consuming and is mostly impractical for large 
problems. Meanwhile, SMO is a simple algorithm that can, 
relatively quickly, solve the SVM QP problem [32]. It should 
be mentioned that the training optimization problem of the 
SVM necessarily reaches a global minimum, and avoids 
ending in a local minimum, which may happen in other 
search algorithms such as neural networks [21]. 

1) A statistical learner: k-Nearest Neighbour (KNN) 
K-nearest neighbour (kNN) is used to predict the response 

of an observation using a nonparametric estimate of the 
response distribution of its k nearest (i.e., in predictor space) 
neighbours. KNN classification is based on the assumption 
that the characteristics of members of the same class should 
be similar and thus, observations located close together in 
covariate (statistical) space are members of the same class or 
at least have the same posterior distributions on their 
respective classes [34]. 

Given a set of training samples {p1, p2,…, pn} and an 
unknown sample p , kNN finds k training samples closest to p. 
Let these samples and their corresponding class labels be 
defined by the sets { ,ଵ ,ଶ … ,  } and {y1, y2,…,yk} 
respectively. KNN classifies p to the class which has the 
greatest number of representatives in the latter set. In other 
words, the classification is performed by taking the majority 
vote among k nearest neighbours of p. The choice of k affects 
the performance of the kNN algorithm [21]. Experiments 

showed that the performance of kNN was not sensitive to the 
exact choice of k when k was large. It was found that for 
small values of k, the kNN algorithm was more robust than 
the single nearest neighbour algorithm (1NN) for the 
majority of large datasets tested [21]. The relative distance 
between instances is determined by using a distance metric. 
The distance metric must minimize the distance between two 
similarly classified instances, while maximizing the distance 
between instances of different classes. Some commonly used 
metrics include Euclidean, Manhattan and Chebychev 
distance metrics [21]. In addition to distance metrics, a rule 
for classification is needed. Usually, the majority rule is used. 
That is, a sample point is assigned to the class the majority of 
the k nearest neighbours are from. When classifying to more 
than two groups or when using an even value for k, it might 
be necessary to break a tie in the number of nearest 
neighbours. We can either select a random tiebreaker, or 
nearest neighbour among the tied groups to break the tie. 

 

IV. EXPERIMENTAL SETUP 
The used datasets are presented in Table I together with 

some important metrics. These data sets were used in the 
NIPS 2003 variable selection benchmark [35]. Details about 
how these data sets are processed and prepared can be found 
in [35]. The reason for using these datasets is that they are 
available. In addition, they span a variety of domains. The 
data are split into training set and test set. One dataset 
(MADELON) was artificially constructed to illustrate a 
particular difficulty: selecting a feature set when no feature is 
informative by itself [35].  

TABLE I: USED DATASETS 

Dataset ARCENE GISETTE MADELON 
Domain Mass 

Spectrometry 
Digit 
Recognition 

Artificial 

# of Features 10000 5000 500 
#of Training 
Examples 

100 6000 2000 

#of Test  
Examples 

100 1000 600 

 
Table II presents the set of parameters associated with the 

used classifiers. 
TABLE II: PARAMETERS OF USED CLASSIFIERS 

Classifier Parameters 
Decision Tree Split Criterion: Gini’s index, 

MinSplit=10. 
ANN 20 layers feed-forward back- 

propagation network. Training 
function: gradient-descent. 
Transfer function: hyperbolic 
tangent sigmoid for hidden 
layers and linear for output 
layer. 

kNN K=3, Euclidean distance 
metric, and the majority rule. 

SVMs Linear kernel function with 
QP. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
In order to evaluate the proposed approach, we applied it to 
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three datasets. The obtained results are compared to those 
obtained when a sequential forward FS is applied to the 
complete training dataset. We compared the results obtained 
using these two modes. We call the former method FS using 
misclassified patterns (FSMC). Since the performance 
depends on the used classifiers, we combined the proposed 
method with the classifier’s name. For example, using a 
decision tree classifier with sequential forward FS on the 
complete training data is denoted by DT-SFF. Meanwhile, 
using the same classifier but applying the used FS criterion to 
the misclassified patterns is denoted by DT-MC. 

Fig.’s 1-3 show the testing accuracies on the ARCENE 
using the three used FS criteria TTEST, IG and RANKSUM, 
and the four used classifiers DT, ANN, kNN and SVMs 
respectively. Accuracies are shown for feature dimension 1 to 
100. In each figure, the used classifier is tested against the 
two modes of FS; our method which is denoted by 
classifier-MC and the SFF denoted by classifier-SFF. Results 
obtained when using the other two datasets are shown in 
Fig.’s 4-9 which are presented in the Appendix.   

 Regarding the FS criterion, IG outperforms TTEST and 
RANKSUM. The weakness of TTEST and RANKSUM is 
that selection ignores the redundancy and interaction among 
the features. On the other hand, IG filters detect features 
interactions.  

 In addition to the FS criterion, learning classifier is 
important to the testing performance. It is obvious from the 
shown figures that SVM-MC outperforms other 
combinations, especially at the beginning of the classification 
process where the number of misclassified patterns is still 
large. Testing accuracies are higher in all FSMC methods 
than they are in SFF methods at the beginning of the 
classification process. Thus misclassified patterns have 
important features that must be focused on during the 
classification process. However, the performance is 
decreased gradually as the number of features is increased. 
This is probably due to the over-fitting and generalization 
problems that occur in classification of small data size with 
high-dimensional features.  

Overall, regarding the used classifier, the FS method 
SVM-MC performed the best, followed by DT-MC, 
kNN-MC, and ANN-MC.  

Regarding the used data, experimental results show that 
the best testing accuracies were obtained when GISETTE 
was used. Since ARCENE dataset includes many irrelevant 
features, the overall testing accuracies were very poor; 
especially when ANN and kNN are used as the classifiers.  

Irrespective of small size data problems, it should also be 
noticed that by forcing the learner to focus only on 
misclassified patterns, it can learn more accurately than being 
distracted by the complete set of the training data. Thus, the 
proposed technique can be used to generate a quick feature 
set that roughly describes the data with an accepted accuracy. 
This suggests the validity of the statement “We must learn 
from our mistakes” in the machine learning process. 

 
(a) Classifier DT 

 

(b) Classifier ANN 

 
(c) Classifier kNN 

 
(d) Classifier SVM 

Fig. 1.Testing accuracies on ARCENE using TTEST and methods: (a) 
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d) 

SVM-SFF, SVM-MC.  
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(b) Classifier ANN 

 

 
(c) Classifier kNN 

 
(d) Classifier SVM 

Fig. 2.Testing accuracies on ARCENE using IG and methods: (a) DT-SFF, 
DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d) 

SVM-SFF, SVM-MC. 

 
 

(a) Classifier DT 
 

 
(b) Classifier ANN 

 

  
(c) Classifier kNN 

 
                                         (d) Classifier SVM 

Fig. 3.Testing accuracies on ARCENE using RANKSUM and methods: (a) 
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d) 

SVM-SFF, SVM-MC. 

 

VI. CONCLUSIONS AND FUTURE WORK 
Since it is too expensive to use all available features in 

classification tasks especially when the dimension of features 
is in the order of thousands, we need advanced approaches to 
mine the minimum features with the highest prediction 
accuracy for complex datasets. 

 In this paper, an approach for FS using misclassified data 
is introduced. The presented approach is inspired by the 
analogy to human learning process where a stress on weak 
learning points can increase the learning activity. Our method 
of selecting features from misclassified patterns provides an 
efficient and inexpensive method of searching for the optimal 
or approximate optimal subset of features in 
high-dimensional data. We evaluated our approach against 
the popular sequential forward FS method, and experimental 
results on datasets with challenging difficulties were 
promising.  

Further research issues may be concerned in studying 
threats to validity that our approach may suffer from. 
Especially those resulting from small sample size which may 
result in an inaccurate performance assessment as proposed 
in [36]. In addition, we intend to provide a mathematical 
justification of the obtained results by modeling the effect of 
extracting features from misclassified data on the 
classification error. In order to decrease the over-fitting 
problems, we may study the performance of the proposed 
method if -at some point- we stop focusing on the 
misclassified patterns only and use the complete training data 
instead. Thus, we intend to use an approach that combines the 
misclassified data with the complete training data. 
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APPENDIX 
 

 
 

(a) Classifier DT 

 
(b) Classifier ANN 

 
(c) Classifier kNN 

 

 
(d) Classifier SVM 

Fig. 4.Testing accuracies on MADELON using TTEST and methods: (a) 
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d) 

SVM-SFF, SVM-MC. 

 
(a) Classifier DT 

 
(b) Classifier ANN 

 
(c) Classifier kNN 

 
 

 (d) Classifier SVM 
Fig. 5.Testing accuracies on MADELON using  IG and methods: (a) 

DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d) 
SVM-SFF, SVM-MC. 
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(b) Classifier ANN 

 
(c) Classifier DT 

 
(d) Classifier SVM 

Fig. 6.Testing accuracies on MADELON using  RANKSUM and methods: 
(a) DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, 

and (d) SVM-SFF, SVM-MC. 

 
(a) Classifier DT 

 
(b) Classifier ANN 

 
(c) Classifier kNN 

 
(d) Classifier SVM 

Fig.7.Testing accuracies on GISETTE using TTEST and methods: (a) 
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d) 

SVM-SFF, SVM-MC. 

 
(a) Classifier DT 

 
(b) Classifier ANN 

 
(c) Classifier kNN 
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(d) Classifier SVM 

Fig. 8.Testing accuracies on GISETTE using IG and methods: (a) DT-SFF, 
DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d) 

SVM-SFF, SVM-MC. 

 
(a) Classifier DT 

 
(b) Classifier ANN 

 
(c) Classifier kNN 

 
(d) Classifier SVM 

Fig. 9.Testing accuracies on GISETTE using RANKSUM and methods: (a) 
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d) 

SVM-SFF, SVM-MC. 
 

REFERENCES 
[1] I. Inza, P. Larranaga, R. Blanco, and A. J. Cerrolaza, “ Filter versus 

wrapper gene selection approaches in DNA microarray domains,” 
Artificial Intelligence in Medicine, vol. 31, pp. 91-103, 2004. 

[2] G. Forman, “An extensive empirical study of feature selection metrics 
for text classification,” Machine Learning Research, vol. 3, pp. 
1289-1305, 2003. 

[3] D. L. Swets and J. J. Weng, “Efficient content-based image retrieval 
using automatic feature selection,”IEEE International Symposium On 
Computer Vision, pages 85-90, 1995. 

[4] W. Lee, S. J. Stolfo, and K. W. Mok, “Adaptive intrusion detection: A 
data mining approach,” AI Review, vol. 14, no.6, pp. 533- 567, 2000. 

[5] L. Yu, C. Ding, and S. Loscalzo, “Stable feature selection via dense 
feature groups,” In Proceedings of the 14th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, 
2008. 

[6] C. Ding and H. Peng, “Minimum redundancy feature selection from 
microarray gene expression data,” In Proceedings of the 
Computational Systems Bioinformatics conference (CSB'03), pp. 
523-529, 2003. 

[7] Z. Zhao and H. Liu, “Multi-source feature selection via 
geometry-dependent covariance analysis,” JMLR Workshop and 
Conference Proceedings, vol. 4, pp. 36-47, 2008. 

[8] Z. Zhao, J. Wang, H. Liu, J. Ye, and Y. Chang, “Identifying 
biologically relevant genes via multiple heterogeneous data sources,” 
In Proceedings of the Fourteenth ACM SIGKDD International 
Conference On Knowledge Discovery and Data Mining, 2008. 

[9] K. Coombes, “Pre-processing mass spectrometry data,” In 
Fundamentals of Data Mining in Genomics and Proteomics, M. 
Dubitzky, Ed., Boston: Kluwer, 2007,pp. 79–99. 

[10] C. Ding, and H. Peng, “ Minimum redundancy feature selection from 
microarray gene expression data,” In Proceedings of the IEEE 
Conference on Computational Systems Bioinformatics, pp. 523–528, 
2003. 

[11] NIPS 2003 workshop on feature extraction and feature selection 
challenge, http://clopinet.com/isabelle/Projects/NIPS2003/. 

[12] Y. Cai, J. He, and L. Lu, “Predicting Sumoylation Site by Feature 
Selection Method,” Bimolecular Structure and Dynamics, vol. 28, no. 
5, pp. 797-804, 2011. 

[13] G. John, and R. Kohavi, “Wrappers for feature subset selection,” 
Artificial Intelligence, vol. 97, no.1-2, pp. 272-324. 1997.. 

[14] M. A. Hall, “ Benchmarking attribute selection techniques for data 
mining,” Department of Computer Science, University of Waikato, 
Tech. Rep. Working Paper 00/10, 2000. 

[15] K. Kira and L. Rendell, “A practical approach to feature selection,” In 
Proceedings of the Ninth International Conference on Machine 
Learning, D. Sleeman and P. Edwards, Eds., pp. 249–256,1992. 

[16] I. Kononenko, “Estimating attributes: Analysis and extensions of 
relief,” In Proceedings of the 1994 European Conference on Machine 
Learning, pp. 171–182, 1994. 

[17] H. Alumualim and T. G. Dietterich, “Learning Boolean concepts in the 
presence of many irrelevant features,” Artificial Intelligence, vol. 69, 
no. 1-2, pp. 279–305, 1994. 

[18] M. Hall, “Correlation-based feature selection for machine learning,” 
Ph.D. dissertation, Department of Computer Science, University of 
Waikato, 1998. 

[19] Y. Saeys, I. Inza and P. Larranaga, “A review of feature selection 
techniques in bioinformatics”, Bioinformatics, vol. 23, no. 19, pp. 
2507–2517., 2007. 

[20] S. B. Kotsiantis, “Supervised Machine Learning: A Review of 
Classification Techniques”, Informatica, vol. 31, pp. 249-268, 2007. 

[21] T. Elomaa, and J. Rousu, “General and Efficient Multisplitting of 
Numerical Attributes,” Machine Learning, vol. 36, pp. 201–244, 1999. 

[22] P. Kristin Bennett, “Decision tree construction via linear programming,” 
In Proceedings of the 4th Midwest Artificial Intelligence and Cognitive 
Science Society Conference, pp. 97-101, 1992. 

[23] S. Schwartz, J. Wiles, I. Gough, and S. Philips, “Connectionist, 
rule-based and bayesian decision aids: An empirical comparison,” 
London, Chapman and Hall, 1993, pp. 264-278. 

[24] B. Saul Gelfand, C. S. Ravishankar, and J. Edward Delp, “An iterative 
growing and pruning algorithm for classification tree design,” IEEE 
Transaction on Pattern Analysis and Machine Intelligence, vol. 13, no. 
2, pp. 163-174, 1991. 

[25] D. E. Rumelhart, G. E.Hinton, and R. J. Williams, “Learning internal 
representations by error propagation” in Parallel Distributed 
Processing: Explorations in the Microstructure of Cognition, D. E. 
Rumelhart, and J. L. McClelland et al., Eds, Cambridge, MA: MIT 
Press, vol. 1, 1986, pp. 318-362.  

0.00
0.20
0.40
0.60
0.80
1.00
1.20

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g 

A
cc

ur
ac

y 

# of Features

SVM-
MC
SVM-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g 

A
cc

ur
ac

y

# of Features

DT-
MC
DT-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g 

A
cc

ur
ac

y 

# of Features

ANN-
MC

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g 

A
cc

ur
ac

y 

# of Features

KNN-
MC
KNN-
SFF

0.00

0.50

1.00

1.50

Te
st

in
g 

A
cc

ur
ac

y 

# of Features

SVM-
MC

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

650



  

[26] L. S. Camargo, and T. Yoneyama, “Specification of Training Sets and 
the Number of Hidden Neurons for Multilayer Perceptrons,” Neural 
Computation, vol. 13, pp. 2673–2680, 2001. 

[27] C. Neocleous, and C. Schizas, “Artificial Neural Network Learning: A 
Comparative Review,” LNAI 2308, Springer-Verlag Berlin Heidelberg, 
pp. 300–313, 2002. 

[28] Zhang, G. , “Neural networks for classification: a survey,” in IEEE 
Transactions on Systems, vol. 30, no. 4, pp. 451-462, 2000. 

[29] C. Cores, and V. N. Vapnik, “Support Vector Networks,” Machine 
Learning, vol. 20, pp. 273-29, 1995. 

[30] I. Guyon, and A. Elissee, “An introduction to variable and feature 
selection”, Machine Learning Research, Special Issue on Variable and 
Feature Selection, vol. 3, pp. 1157-1182, 2003. 

[31] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for 
cancer classification using support vector machines”, Machine 
Learning, vol. 46, pp. 389-422, 2002. 

[32] J. Platt, “Using sparseness and analytic QP to speed training of support 
vector machines”, in Advances in neural information processing 
systems, M. Kearns, S. Solla, and D. Cohn, Eds., MIT Press, 1999. 

[33] C. Burges, “A tutorial on support vector machines for pattern 
recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, 
pp.1-47, 1998. 

[34] G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer,  “ KNN Model-Based 
Approach in Classification,” Lecture Notes in Computer Science, vol. 
2888, pp. 986 – 996, 2003. 

[35] I. Guyon, “Design of experiments of the NIPS 2003 variable selection 
benchmark. http: // www.nipsfsc.ecs.soton.ac.uk/papers/Datasets.pdf, 
2003. 

[36] S. Lee, “Mistakes in validating the accuracy of a prediction classifier in 
high-dimensional but small-sample microarray data”, Statistical 
Methods in Medical Research, vol.17, pp. 635–642, 2008. 

 

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

651


