

Abstract—Feature selection (FS) is a key step in the data

mining process. In FS, the objective is to select the smallest
subset of features that reduces complexity and ensures
generalization. In this paper, we present a combined
filter-wrapper feature selection approach using misclassified
data. The learning process starts with only one feature, which
gives a large number of misclassified patterns. Only these
patterns are used to select the next best feature which is added
to the first one. By focusing on the misclassified patterns, the
learner is undistracted and hence, it can select the relevant
features more effectively and faster. The process continues until
the classification results are within the required accuracy. The
approach is applied to three datasets with high dimensional
features using a variety of selection models and search
strategies. Experimental results demonstrate the efficiency of
the proposed approach in the two-class classification tasks.

Index Terms—Feature selection, misclassified patterns,
pattern classification.

I. INTRODUCTION
In classification tasks, the existence of a large number of

features usually adds complexity and noise to the training
process. Thus, it is important to choose the most relevant set
of features to reduce the training time and increase the
classification accuracy. FS has been an active field of
research that is widely applied to many areas such as genomic
analysis [1], text mining [2], image retrieval [3], and
intrusion detection [4]. As new applications emerge in recent
years, many new challenges arise. Thus, novel theories and
methods addressing high-dimensional and complex features
are needed. Stable FS [5], optimal redundancy removal [6]
and the exploitation of auxiliary data and prior knowledge in
FS [7], [8] are among the most fundamental and challenging
problems in FS. In addition, FS faces problems that arise
from linearly non-separable data, the effect of the sampling
process, and the noise added during data generation [9], [10].

 In this paper, an approach for FS using misclassified
patterns (FSMC) is presented. The classification process
starts with only one feature describing the data as a result of
applying a FS criterion to the complete training data set. A
classification process is applied using the extracted feature.
The classification accuracy is then calculated. If it is not as
desired, the set of misclassified patterns is calculated. We
apply the FS criterion to the set of misclassified patterns only.
The generated feature is added to the first one and the
classification process is repeated but using the two features
generated so far. Again, the accuracy is calculated and if it is

Manuscript received May 5, 2011; revised September 22, 2011.
 D. M. Shawky is with the Engineering Mathematics Department, Cairo

University, Egypt, (e-mail: doaashawky@yahoo.com).
A. F. Ali is with the Biomedical Engineering Department, Helwan

University, Cairo, Egypt, (e-mail: ahmed.farag@mcit.gov.eg).

not as desired, the new set of misclassified data is calculated
and the process of FS is repeated until we reach the desired
classification accuracy. The set of features used in the last
classification process is the optimal set of features describing
the data. This set generated by focusing only on the
misclassified patterns. In this sense, we test the rule “We
must learn from our mistakes” to see whether it can be
beneficial in the context of machine learning.

To evaluate and to demonstrate the proposed method, we
applied it to three complex datasets that were used in the
NIPS 2003 FS challenge [11].We implemented FSMC with
different learning classifiers. We compared the performances
of these classifiers using FSMC and the popular sequential
forward feature (SFF) selection method using all available
training data. Experimental results show that, at the
beginning of the classification process, the proposed FS
approach has a higher classification accuracy compared to
SFF selection method. Thus, the proposed approach can be
used to generate a quick and efficient features set that can
roughly describe the given data. This suggests the suitability
of the proposed method for on-line classification problems.

The rest of this paper is organized as follows. Section 2
gives a review of the existing FS techniques. Section 3
introduces the proposed approach for FS. Section 4 presents
the experimental setup, while Section 5 presents the
experimental results and compares the proposed approach to
the SFF. Finally, Section 6 draws conclusions, limitations,
and outlines ideas for future work.

II. FEATURE SELECTION
There has been a great deal of research on FS, e.g.,

[12]-[14]. FS algorithms can be roughly grouped into two
categories: filter methods and wrapper methods. Filter
methods rely on general characteristics of the data to evaluate
and to select the feature subsets without involving the chosen
learning algorithm. Wrapper methods use the performance of
the chosen learning algorithm to evaluate each candidate
feature subset. Wrapper methods can be significantly slower
than filter methods if the learning algorithm takes a long time
to run [13]. As shown in the survey done by Hall [14],
wrapper methods such as forward selection and backward
elimination [15] have high performance with high
computational costs. On the other hand, filter methods such
as Relief [15], [16], Information Gain and FOCUS [17] can
be executed more quickly with lower performance than that
of wrapper methods. Some advanced wrapper methods such
as CFS [18], which executes a substitute evaluator instead of
a learned evaluator, have lower computational costs than
wrapper methods. However, these performances are still
non-practical, compared with wrapper methods. In [19], an
extensive review of existing work on FS is provided.

A Feature Selection Method Using Misclassified Patterns

D. M. Shawky and A. F. Ali

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

643

III. PROPOSED FEATURE SELECTION APPROACH
Corresponding to the basic ideas behind the approach

presented above, it consists of the following main steps:
1) Apply a suitable FS criterion to estimate the best feature

describing a given data set. This set represents the initial
set of features (IS).

2) Using IS, classify the data using a suitable classifier.
3) Calculate the classifier performance. If the performance

is not accepted, go to step 4. Otherwise, stop.
4) Generate the set of misclassified patterns.
5) Apply the FS criterion that was used in Step 1 to the set

of misclassified data and select its best feature. Add this
feature to the set IS.

6) Re-classify the original set of data using the set IS.
7) Go to step 3.

In the rest of this section, details about the above steps are
presented.

A. Applied Feature Selection Criteria: Filters
Filters are usually used as a pre-processing step since they

are simple and fast. A widely-used filter method is to apply a
uni-variate criterion separately on each feature, assuming that
there is no interaction between features.

We used as filters three different commonly used filters
that belong to different categories as reviewed in the
literature [19]. These filters include the following:
1) T-test (TTEST): which is a parametric (it assumes that

the data follows the normal distribution) uni-variate filter.
Using this test, we calculate the maximum separation
between classes and ranks the features according to the
maximum p-value, which means more confidence about
the differentiating power.

2) Wilcoxon rank sum test (RANKSUM): which is a model
free uni-variate filter similar to the t-test except that it is
a non-parametric test, i.e., it does not assume that the
data comes from normal distribution.

3) Information Gain (IG): This is a multi-variate filter. It
selects the features that make information gain
maximum. It works as follows: Let S be a set of instances,
pi is the fraction of instances with classi, Sv is the subset
of S with A = v, and Values(A) is the set of all possible
values of A, then: Entropy ሺSሻ ൌ െ ∑ p୧log ଶ୧ p୧ (1)

 IG ൌ EntropyሺSሻ െ ∑ |S౬||S|୴Vୟ୪୳ୣୱሺAሻ . EntropyሺS୴ሻ (2)

Using IG as a filter, the entropy and information gain is
calculated for all features using (1) and (2). Then the one with
highest IG is chosen. It should be noticed that TTEST and
RANKSUM methods do not consider interaction between
features. Thus, features selected based on their individual
ranking may also contain redundant information. However,
IG considers interaction between features.

B. Used Classifiers
We evaluated our algorithm using four different popular

learning classifiers belonging to different categories as
classified in [20].

C. A logic-based classifier: Decision Tree
Decision trees classify instances by sorting them based on

feature values. Each node in a decision tree represents a
feature in an instance to be classified, and each branch
represents a value that the node can assume. Instances are
classified starting at the root node and sorted based on their
feature values [20].

In order to avoid over-fitting problems we can pre-prune
the decision tree by not allowing it to grow to its full size [20].
Establishing a non-trivial termination criterion such as a
threshold test for the feature quality metric can be used.
Well-known pruning methods are presented in [21].

Many tree-splitting criteria are proposed in the literature
[22]. These criteria include rules derived from information
theory (e.g., Shannon entropy) [23], and rules derived from
distance measures which measure the distance between class
probability distributions. Gini’s index of diversity is one of
the most commonly used metrics. It is a measure of the
inequality of a distribution where a value of zero represents
total equality and a value of one represents maximal
inequality [24]. In addition to the splitting criterion, the
minimum number of observations (MinSplit) an impure node
must have to be split has to be set.

D. A perceptron-based classifier: A multi-layered
Artificial Neural Networks (ANNs)
Multilayered Perceptrons (Artificial Neural Networks)

have been created to classify non-linearly separable data [25].
A multi-layer neural network consists of large number of
units (neurons) joined together in a pattern of connections.
Units in a net are usually divided into three classes: input
units, which receive information to be processed; output units,
where the results of the processing are found; and units in
between known as hidden units. Feed-forward ANNs allow
signals to travel one way only, from input to output.
Generally, determining the size of the hidden layer is a
problem, because an underestimate of the number of neurons
can lead to poor approximation and generalization
capabilities, while excessive nodes can result in over-fitting
[26]. The weights of the net to be trained are initially set to
random values, and then instances of the training set are
repeatedly exposed to the net. The values for the input are
placed on the input units and the output of the net is compared
with the desired output. Then, all the weights in the net are
adjusted slightly in the direction that would bring the output
values of the net closer to the values for the desired output.
There are several algorithms with which a network can be
trained [27]. However, the most well-known and widely used
learning algorithm to estimate the values of the weights is the
Back Propagation (BP) algorithm [20]. A review of the
existing work in ANNs is provided in [28].

E. Support Vector machines (SVMs)
Support Vector Machines (SVMs) [29] have been widely

applied to pattern classification problems and non-linear
regressions. The basic idea of the SVM algorithm is to find an
optimal hyper-plane that can maximize the margin between
two groups. The vectors that are closest to the optimal
hyper-plane are called support vectors. Maximizing the
margin and thereby creating the largest possible distance
between the separating hyper-plane and the patterns on either

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

644

side of it has been proven to reduce an upper bound on the
expected generalization error. SVMs show excellent
performance in handling large feature space and over-fitting
problems [30]-[32]. An excellent survey of SVMs can be
found in [33].

If the training data is linearly separable, then a pair (w, b)
exists such that wTx୧ b 1 for all xi class 1 (3) wTx୧ b െ1 for all xi class 2 (4)

with the decision rule given by: f୵,ୠ ൌ sgnሺwT bሻ (5)
 where w is called the weight vector and b the bias (or
threshold). For linearly separable two classes, an optimum
separating hyper-plane can be found by minimizing the
squared norm of the separating hyper-plane. This is a convex
quadratic programming (QP) problem:

Minimize Φሺwሻ ൌ ଵଶ ԡwԡଶ (6)
Subject to y୧ሺwTx୧ bሻ 1 , i=1,2,…,n (7)
In the case of linearly separable data, once the optimum

separating hyper-plane is found, data points that lie on its
margin are known as support vector points and the solution is
represented as a linear combination of only these points.
Other data points are ignored. Therefore, the model
complexity of an SVM is unaffected by the number of
features encountered in the training data. For this reason,
SVMs are well suited to deal with learning tasks where the
number of features is large with respect to the number of
training instances. Many parameters must be set when using
an SVM. Firstly, the function used to map the training data
into kernel space (e.g., linear kernel, quadratic, or radial basis
function). Secondly, we must determine the method that is
used for finding the separating hyper-plane. These methods
include Quadratic Programming (QP), Sequential Minimal
Optimization (SMO), or Least Squares. Standard QP method
is time-consuming and is mostly impractical for large
problems. Meanwhile, SMO is a simple algorithm that can,
relatively quickly, solve the SVM QP problem [32]. It should
be mentioned that the training optimization problem of the
SVM necessarily reaches a global minimum, and avoids
ending in a local minimum, which may happen in other
search algorithms such as neural networks [21].

1) A statistical learner: k-Nearest Neighbour (KNN)
K-nearest neighbour (kNN) is used to predict the response

of an observation using a nonparametric estimate of the
response distribution of its k nearest (i.e., in predictor space)
neighbours. KNN classification is based on the assumption
that the characteristics of members of the same class should
be similar and thus, observations located close together in
covariate (statistical) space are members of the same class or
at least have the same posterior distributions on their
respective classes [34].

Given a set of training samples {p1, p2,…, pn} and an
unknown sample p , kNN finds k training samples closest to p.
Let these samples and their corresponding class labels be
defined by the sets { ,ଵ ,ଶ … , } and {y1, y2,…,yk}
respectively. KNN classifies p to the class which has the
greatest number of representatives in the latter set. In other
words, the classification is performed by taking the majority
vote among k nearest neighbours of p. The choice of k affects
the performance of the kNN algorithm [21]. Experiments

showed that the performance of kNN was not sensitive to the
exact choice of k when k was large. It was found that for
small values of k, the kNN algorithm was more robust than
the single nearest neighbour algorithm (1NN) for the
majority of large datasets tested [21]. The relative distance
between instances is determined by using a distance metric.
The distance metric must minimize the distance between two
similarly classified instances, while maximizing the distance
between instances of different classes. Some commonly used
metrics include Euclidean, Manhattan and Chebychev
distance metrics [21]. In addition to distance metrics, a rule
for classification is needed. Usually, the majority rule is used.
That is, a sample point is assigned to the class the majority of
the k nearest neighbours are from. When classifying to more
than two groups or when using an even value for k, it might
be necessary to break a tie in the number of nearest
neighbours. We can either select a random tiebreaker, or
nearest neighbour among the tied groups to break the tie.

IV. EXPERIMENTAL SETUP
The used datasets are presented in Table I together with

some important metrics. These data sets were used in the
NIPS 2003 variable selection benchmark [35]. Details about
how these data sets are processed and prepared can be found
in [35]. The reason for using these datasets is that they are
available. In addition, they span a variety of domains. The
data are split into training set and test set. One dataset
(MADELON) was artificially constructed to illustrate a
particular difficulty: selecting a feature set when no feature is
informative by itself [35].

TABLE I: USED DATASETS

Dataset ARCENE GISETTE MADELON
Domain Mass

Spectrometry
Digit
Recognition

Artificial

of Features 10000 5000 500
#of Training
Examples

100 6000 2000

#of Test
Examples

100 1000 600

Table II presents the set of parameters associated with the

used classifiers.
TABLE II: PARAMETERS OF USED CLASSIFIERS

Classifier Parameters
Decision Tree Split Criterion: Gini’s index,

MinSplit=10.
ANN 20 layers feed-forward back-

propagation network. Training
function: gradient-descent.
Transfer function: hyperbolic
tangent sigmoid for hidden
layers and linear for output
layer.

kNN K=3, Euclidean distance
metric, and the majority rule.

SVMs Linear kernel function with
QP.

V. EXPERIMENTAL RESULTS AND DISCUSSION
In order to evaluate the proposed approach, we applied it to

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

645

three datasets. The obtained results are compared to those
obtained when a sequential forward FS is applied to the
complete training dataset. We compared the results obtained
using these two modes. We call the former method FS using
misclassified patterns (FSMC). Since the performance
depends on the used classifiers, we combined the proposed
method with the classifier’s name. For example, using a
decision tree classifier with sequential forward FS on the
complete training data is denoted by DT-SFF. Meanwhile,
using the same classifier but applying the used FS criterion to
the misclassified patterns is denoted by DT-MC.

Fig.’s 1-3 show the testing accuracies on the ARCENE
using the three used FS criteria TTEST, IG and RANKSUM,
and the four used classifiers DT, ANN, kNN and SVMs
respectively. Accuracies are shown for feature dimension 1 to
100. In each figure, the used classifier is tested against the
two modes of FS; our method which is denoted by
classifier-MC and the SFF denoted by classifier-SFF. Results
obtained when using the other two datasets are shown in
Fig.’s 4-9 which are presented in the Appendix.

 Regarding the FS criterion, IG outperforms TTEST and
RANKSUM. The weakness of TTEST and RANKSUM is
that selection ignores the redundancy and interaction among
the features. On the other hand, IG filters detect features
interactions.

 In addition to the FS criterion, learning classifier is
important to the testing performance. It is obvious from the
shown figures that SVM-MC outperforms other
combinations, especially at the beginning of the classification
process where the number of misclassified patterns is still
large. Testing accuracies are higher in all FSMC methods
than they are in SFF methods at the beginning of the
classification process. Thus misclassified patterns have
important features that must be focused on during the
classification process. However, the performance is
decreased gradually as the number of features is increased.
This is probably due to the over-fitting and generalization
problems that occur in classification of small data size with
high-dimensional features.

Overall, regarding the used classifier, the FS method
SVM-MC performed the best, followed by DT-MC,
kNN-MC, and ANN-MC.

Regarding the used data, experimental results show that
the best testing accuracies were obtained when GISETTE
was used. Since ARCENE dataset includes many irrelevant
features, the overall testing accuracies were very poor;
especially when ANN and kNN are used as the classifiers.

Irrespective of small size data problems, it should also be
noticed that by forcing the learner to focus only on
misclassified patterns, it can learn more accurately than being
distracted by the complete set of the training data. Thus, the
proposed technique can be used to generate a quick feature
set that roughly describes the data with an accepted accuracy.
This suggests the validity of the statement “We must learn
from our mistakes” in the machine learning process.

(a) Classifier DT

(b) Classifier ANN

(c) Classifier kNN

(d) Classifier SVM

Fig. 1.Testing accuracies on ARCENE using TTEST and methods: (a)
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d)

SVM-SFF, SVM-MC.

(a) Classifier DT

0.00

0.20

0.40

0.60

0.80

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

DT-MC

DT-SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-MC

ANN-SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

kNN-
MC

kNN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM-MC

SVM-SFF

0.00
0.20
0.40
0.60
0.80

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

DT-
MC

DT-
SFF

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

646

(b) Classifier ANN

(c) Classifier kNN

(d) Classifier SVM

Fig. 2.Testing accuracies on ARCENE using IG and methods: (a) DT-SFF,
DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d)

SVM-SFF, SVM-MC.

(a) Classifier DT

(b) Classifier ANN

(c) Classifier kNN

 (d) Classifier SVM

Fig. 3.Testing accuracies on ARCENE using RANKSUM and methods: (a)
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d)

SVM-SFF, SVM-MC.

VI. CONCLUSIONS AND FUTURE WORK
Since it is too expensive to use all available features in

classification tasks especially when the dimension of features
is in the order of thousands, we need advanced approaches to
mine the minimum features with the highest prediction
accuracy for complex datasets.

 In this paper, an approach for FS using misclassified data
is introduced. The presented approach is inspired by the
analogy to human learning process where a stress on weak
learning points can increase the learning activity. Our method
of selecting features from misclassified patterns provides an
efficient and inexpensive method of searching for the optimal
or approximate optimal subset of features in
high-dimensional data. We evaluated our approach against
the popular sequential forward FS method, and experimental
results on datasets with challenging difficulties were
promising.

Further research issues may be concerned in studying
threats to validity that our approach may suffer from.
Especially those resulting from small sample size which may
result in an inaccurate performance assessment as proposed
in [36]. In addition, we intend to provide a mathematical
justification of the obtained results by modeling the effect of
extracting features from misclassified data on the
classification error. In order to decrease the over-fitting
problems, we may study the performance of the proposed
method if -at some point- we stop focusing on the
misclassified patterns only and use the complete training data
instead. Thus, we intend to use an approach that combines the
misclassified data with the complete training data.

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-
MC

ANN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

kNN-
MC

kNN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM-
MC
SVM-
SFF

0.00

0.20

0.40

0.60

0.80

10 30 50 70 90

Te
st

in
g

A
cc

ur
ac

y

of Features

DT-MC

0.00
0.20
0.40
0.60
0.80
1.00

10 30 50 70 90

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-
MC

ANN-
SFF

0.00

0.20

0.40

0.60

0.80

1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

kNN-
MC

kNN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 30 50 70 90

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM-
MC
SVM-
SFF

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

647

APPENDIX

(a) Classifier DT

(b) Classifier ANN

(c) Classifier kNN

(d) Classifier SVM

Fig. 4.Testing accuracies on MADELON using TTEST and methods: (a)
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d)

SVM-SFF, SVM-MC.

(a) Classifier DT

(b) Classifier ANN

(c) Classifier kNN

 (d) Classifier SVM
Fig. 5.Testing accuracies on MADELON using IG and methods: (a)

DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d)
SVM-SFF, SVM-MC.

(a) Classifier DT

0.00

0.50

1.00

10 20 30 40 50 60 70 80 90 10
0Te

st
in

g
A

cc
ur

ac
y

of Features

DT-
MC
DT-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-
MC
ANN-
SFF

0.00

0.20

0.40

0.60

0.80

1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

KNN-
MC

KNN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM-
MC
SVM-
SFF

0.00

0.20

0.40

0.60

0.80

1.00

10 30 50 70 90

Te
st

in
g

A
cc

ur
ac

y

of Features

DT-
MC
DT-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-
MC

ANN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y
of Features

KNN-
MC

KNN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00
1.20

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM-
MC

SVM-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

DT-
MC
DT-
SFF

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

648

(b) Classifier ANN

(c) Classifier DT

(d) Classifier SVM

Fig. 6.Testing accuracies on MADELON using RANKSUM and methods:
(a) DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC,

and (d) SVM-SFF, SVM-MC.

(a) Classifier DT

(b) Classifier ANN

(c) Classifier kNN

(d) Classifier SVM

Fig.7.Testing accuracies on GISETTE using TTEST and methods: (a)
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d)

SVM-SFF, SVM-MC.

(a) Classifier DT

(b) Classifier ANN

(c) Classifier kNN

0.00

0.20

0.40

0.60

0.80

1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-
MC

ANN-
SFF

0.00

0.20

0.40

0.60

0.80

1.00

10 30 50 70 90

Te
st

in
g

A
cc

ur
ac

y

of Features

KN
N-
MC

0.00
0.20
0.40
0.60
0.80
1.00
1.20

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM
-MC
SVM
-SFF

0.00

0.20

0.40

0.60

0.80

1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

DT-
MC

DT-
SFF

0.00

0.20

0.40

0.60

0.80

1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-
MC
ANN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

KNN-
MC

KNN-
SFF

0.00
0.20
0.40
0.60
0.80
1.00
1.20

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM
-MC

SVM
-SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

DT-
MC
DT-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-
MC
ANN-
SFF

0.00

0.50

1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

KNN
-MC
KNN
-SFF

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

649

(d) Classifier SVM

Fig. 8.Testing accuracies on GISETTE using IG and methods: (a) DT-SFF,
DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d)

SVM-SFF, SVM-MC.

(a) Classifier DT

(b) Classifier ANN

(c) Classifier kNN

(d) Classifier SVM

Fig. 9.Testing accuracies on GISETTE using RANKSUM and methods: (a)
DT-SFF, DT-MC, (b) ANN-SFF, ANN-MC, (c) kNN-SFF, kNN-MC, and (d)

SVM-SFF, SVM-MC.

REFERENCES
[1] I. Inza, P. Larranaga, R. Blanco, and A. J. Cerrolaza, “ Filter versus

wrapper gene selection approaches in DNA microarray domains,”
Artificial Intelligence in Medicine, vol. 31, pp. 91-103, 2004.

[2] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” Machine Learning Research, vol. 3, pp.
1289-1305, 2003.

[3] D. L. Swets and J. J. Weng, “Efficient content-based image retrieval
using automatic feature selection,”IEEE International Symposium On
Computer Vision, pages 85-90, 1995.

[4] W. Lee, S. J. Stolfo, and K. W. Mok, “Adaptive intrusion detection: A
data mining approach,” AI Review, vol. 14, no.6, pp. 533- 567, 2000.

[5] L. Yu, C. Ding, and S. Loscalzo, “Stable feature selection via dense
feature groups,” In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2008.

[6] C. Ding and H. Peng, “Minimum redundancy feature selection from
microarray gene expression data,” In Proceedings of the
Computational Systems Bioinformatics conference (CSB'03), pp.
523-529, 2003.

[7] Z. Zhao and H. Liu, “Multi-source feature selection via
geometry-dependent covariance analysis,” JMLR Workshop and
Conference Proceedings, vol. 4, pp. 36-47, 2008.

[8] Z. Zhao, J. Wang, H. Liu, J. Ye, and Y. Chang, “Identifying
biologically relevant genes via multiple heterogeneous data sources,”
In Proceedings of the Fourteenth ACM SIGKDD International
Conference On Knowledge Discovery and Data Mining, 2008.

[9] K. Coombes, “Pre-processing mass spectrometry data,” In
Fundamentals of Data Mining in Genomics and Proteomics, M.
Dubitzky, Ed., Boston: Kluwer, 2007,pp. 79–99.

[10] C. Ding, and H. Peng, “ Minimum redundancy feature selection from
microarray gene expression data,” In Proceedings of the IEEE
Conference on Computational Systems Bioinformatics, pp. 523–528,
2003.

[11] NIPS 2003 workshop on feature extraction and feature selection
challenge, http://clopinet.com/isabelle/Projects/NIPS2003/.

[12] Y. Cai, J. He, and L. Lu, “Predicting Sumoylation Site by Feature
Selection Method,” Bimolecular Structure and Dynamics, vol. 28, no.
5, pp. 797-804, 2011.

[13] G. John, and R. Kohavi, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no.1-2, pp. 272-324. 1997..

[14] M. A. Hall, “ Benchmarking attribute selection techniques for data
mining,” Department of Computer Science, University of Waikato,
Tech. Rep. Working Paper 00/10, 2000.

[15] K. Kira and L. Rendell, “A practical approach to feature selection,” In
Proceedings of the Ninth International Conference on Machine
Learning, D. Sleeman and P. Edwards, Eds., pp. 249–256,1992.

[16] I. Kononenko, “Estimating attributes: Analysis and extensions of
relief,” In Proceedings of the 1994 European Conference on Machine
Learning, pp. 171–182, 1994.

[17] H. Alumualim and T. G. Dietterich, “Learning Boolean concepts in the
presence of many irrelevant features,” Artificial Intelligence, vol. 69,
no. 1-2, pp. 279–305, 1994.

[18] M. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, Department of Computer Science, University of
Waikato, 1998.

[19] Y. Saeys, I. Inza and P. Larranaga, “A review of feature selection
techniques in bioinformatics”, Bioinformatics, vol. 23, no. 19, pp.
2507–2517., 2007.

[20] S. B. Kotsiantis, “Supervised Machine Learning: A Review of
Classification Techniques”, Informatica, vol. 31, pp. 249-268, 2007.

[21] T. Elomaa, and J. Rousu, “General and Efficient Multisplitting of
Numerical Attributes,” Machine Learning, vol. 36, pp. 201–244, 1999.

[22] P. Kristin Bennett, “Decision tree construction via linear programming,”
In Proceedings of the 4th Midwest Artificial Intelligence and Cognitive
Science Society Conference, pp. 97-101, 1992.

[23] S. Schwartz, J. Wiles, I. Gough, and S. Philips, “Connectionist,
rule-based and bayesian decision aids: An empirical comparison,”
London, Chapman and Hall, 1993, pp. 264-278.

[24] B. Saul Gelfand, C. S. Ravishankar, and J. Edward Delp, “An iterative
growing and pruning algorithm for classification tree design,” IEEE
Transaction on Pattern Analysis and Machine Intelligence, vol. 13, no.
2, pp. 163-174, 1991.

[25] D. E. Rumelhart, G. E.Hinton, and R. J. Williams, “Learning internal
representations by error propagation” in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, D. E.
Rumelhart, and J. L. McClelland et al., Eds, Cambridge, MA: MIT
Press, vol. 1, 1986, pp. 318-362.

0.00
0.20
0.40
0.60
0.80
1.00
1.20

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM-
MC
SVM-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

DT-
MC
DT-
SFF

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

ANN-
MC

0.00
0.20
0.40
0.60
0.80
1.00

10 20 30 40 50 60 70 80 90 10
0

Te
st

in
g

A
cc

ur
ac

y

of Features

KNN-
MC
KNN-
SFF

0.00

0.50

1.00

1.50

Te
st

in
g

A
cc

ur
ac

y

of Features

SVM-
MC

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

650

[26] L. S. Camargo, and T. Yoneyama, “Specification of Training Sets and
the Number of Hidden Neurons for Multilayer Perceptrons,” Neural
Computation, vol. 13, pp. 2673–2680, 2001.

[27] C. Neocleous, and C. Schizas, “Artificial Neural Network Learning: A
Comparative Review,” LNAI 2308, Springer-Verlag Berlin Heidelberg,
pp. 300–313, 2002.

[28] Zhang, G. , “Neural networks for classification: a survey,” in IEEE
Transactions on Systems, vol. 30, no. 4, pp. 451-462, 2000.

[29] C. Cores, and V. N. Vapnik, “Support Vector Networks,” Machine
Learning, vol. 20, pp. 273-29, 1995.

[30] I. Guyon, and A. Elissee, “An introduction to variable and feature
selection”, Machine Learning Research, Special Issue on Variable and
Feature Selection, vol. 3, pp. 1157-1182, 2003.

[31] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines”, Machine
Learning, vol. 46, pp. 389-422, 2002.

[32] J. Platt, “Using sparseness and analytic QP to speed training of support
vector machines”, in Advances in neural information processing
systems, M. Kearns, S. Solla, and D. Cohn, Eds., MIT Press, 1999.

[33] C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp.1-47, 1998.

[34] G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, “ KNN Model-Based
Approach in Classification,” Lecture Notes in Computer Science, vol.
2888, pp. 986 – 996, 2003.

[35] I. Guyon, “Design of experiments of the NIPS 2003 variable selection
benchmark. http: // www.nipsfsc.ecs.soton.ac.uk/papers/Datasets.pdf,
2003.

[36] S. Lee, “Mistakes in validating the accuracy of a prediction classifier in
high-dimensional but small-sample microarray data”, Statistical
Methods in Medical Research, vol.17, pp. 635–642, 2008.

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

651

