

Abstract—Main objective of writing this paper is to adopt a

common database in a Comprehensive Information System of
a particular domain of interests. This will result in reducing
data redundancy, in reducing database maintenance time, in
simplifying the development phase of the front-end interface,
in minimizing the size of the system, in maximizing the
database throughput and in implementing a transaction pool.
The transaction pool will reduce the number of times new
connection objects are created, will promote connection object
reuse, will quicken the process of getting a connection and will
control the amount of resources spent on maintaining
connections. We also illustrate some examples of a transaction
pool to connect transaction databases with a common database.
We have also illustrated how to create non-visual transaction
objects within the system.

Index Terms—Relational database, information system,
client-server, transaction pool, distributed databases.

I. INTRODUCTION
Keeping in mind the progress in communication and

database technologies (concurrency, consistency and
reliability) has increased the data processing potential.
Various protocols are proposed and implemented for
network reliability, concurrency, atomicity, consistency,
recovery and replication. Keeping in mind these, a demand
of a Comprehensive Information System for any
organization/institution is also tremendously increased for
the automation of manual processes and for the decision
supports with quick information retrieval either using a
Client-Server Database Management Systems (DBMS) or a
Web-based systems. In this paper we have considered an
approach of Client-Server DBMS.

In this paper we propose a method to adopt a common
database concept during design and development phase of
the Comprehensive Information System that will reduce
data redundancy, will reduce database maintenance time,
will simplify the development phase of the front-end
interface, will minimize the size of the system, will

Manuscript received June 19, 2011; revised September 22, 2011
Mohammad Ghulam Ali, System Engineer, Academic Post Graduate

Studies and Research, Indian Institute of Technology Kharagpur, West
Bengal, INDIA, (e-mail: ali@hijli.iitkgp.ernet.in, ali_iit@yahoo.com),
(Phone: 91-3222-282056, 282188, 220176).

Mohammad Ghulam Murtuza, Computer Programmer, Research
Service Center, Post Graduate Department of Physics, Tilka Manjhi
Bhagalpur University, Bhagalpur, Bihar, INDIA, (e-mail:
mgm_rsc@yahoo.co.uk), (Phone : 91-641-2405729)

maximize the database throughput and will explain how to
fetch common information in various sub-domains (as
stated in the paragraph four of the introduction section) of a
particular domain of interests through a transaction pool.
The comprehensive information system of a particular
domain of interests is based on the Client-Server Database
Model [2].

In this paper we are considering functionalities of the
academic institution. The main domain of interests is
Academic Programme. The Comprehensive Information
System Service for any academic institution may
provide information on annual budget, perspective budget,
budget vs. actual expenditure, donors, investments, civil
constructions, projects, recruitment, establishment, stores
and purchase, finance and accounts, salary and wages,
leave, retirement and pension, housing, medical, grants,
loans, provident fund, insurance, students admission,
semester examination, student grades, course information,
library, trainings and placement, awards, alumnus, research
and results for the decision support. Through the service,
students can also submit applications for academic leave or
report their return from leave, browse course schedules and
course syllabi, check grades, apply for scholarships, print
tuition bills and payment receipts and find many other
useful information.

In this paper we consider only four sub-domains which
are Recruitment & Establishment, Salary, Finance &
Accounts and Students.

If we adopt a common database that stores common
information in number of tables that will be used in all sub-
domains according to their requirements, then database of
all sub-domains will not create those common tables
separately and will not maintain that information. Hence the
fact, the data redundancy will reduce, no additional
interface will be required to create separately in all sub-
domains to maintain all these common information, and
hence the size of the integrated/comprehensive information
system will reduce and the development time of the
comprehensive information system will also reduce.

Since every sub-domain will require common
information in the comprehensive information system and
for this it is not necessary to create tables and store all those
information in all sub-domains, every sub-domain will fetch
common information from a common database through a
transaction pool. The process of establishing a database
connection can be time consuming depending upon network
connectivity. Connection pooling is a viable option if the
network is an issue, and database server resources are

A Common Database and a Transaction Pool to Reduce
Data Redundancy and to Maximize Database Throughput
in a Comprehensive Information System of a Particular

Domain of Interests
Mohammad Ghulam Ali, Member, IACSIT, and Mohammad Ghulam Murtuza

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

617

available[4]. A connection pool is a cache of database
connection objects. The objects represent physical database
connections that can be used by an application to connect to
a database. At run time, the application requests a
connection from the pool. If the pool contains a connection
that can satisfy the request, it returns the connection to the
application. If no connections are found, a new connection
is created and returned to the application. The application
uses the connection to perform some work on the database
and then returns the object back to the pool. The connection
is then available for the next connection request.
Connection pools promote the reuse of connection objects
and reduce the number of times that connection objects are
created. Connection pools significantly improve
performance for database-intensive applications because
creating connection objects is costly both in terms of time
and resources. Tasks such as network communication,
reading connection strings, authentication, transaction
enlistment, and memory allocation all contribute to the
amount of time and resources it takes to create a connection
object. In addition, because the connections are already
created, the application waits less time to get the connection.
Connection pools often provide properties that are used to
optimize the performance of a pool. The properties control
behaviors such as the minimum and maximum number of
connections allowed in the pool or the amount of time a
connection can remain idle before it is returned to the pool.
The best configured connection pools balance quick
response times with the memory spent maintaining
connections in the pool. It is often necessary to try different
settings until the best balance is achieved for a specific
application, Applications that are database-intensive
generally benefit the most from connection pools. As a
policy, applications should use a connection pool whenever
database usage is known to affect application performance.
Benefits of Using Connection Pools are 1) reduces the
number of times new connection objects are created, 2)
promotes connection object reuse, quickens the process of
getting a connection, 3) reduces the amount of effort
required to manually manage connection objects, 4)
minimizes the number of stale connections, and 5) controls
the amount of resources spent on maintaining
connections.[7].

Therefore, we propose to construct a separate common
database that will store all those information in number of
tables. This will certainly reduce data redundancy, will
reduce the time to be taken in the database maintenance,
will simplify the development of the front-end interface,
will minimize the size of the system, will maximize the
database throughput and will implement transaction pool
that will save time in database connectivity. When we adopt
a common database that will store information in number of
common tables will be used throughout the comprehensive
information system.

To use a transaction pool mechanism to fetch common
information from a common database in any sub-domain,
we consider in this paper PowerBuilder as a front-end
development tool and Sybase Relational Database as a
back-end for all sub-domains. The database for all four sub-
domains and for a common database may be created in five
different Sybase Database Servers or in a single Sybase
database server. Here we have considered five different
Sybase Database Servers with distinct network
identification. In stead of PowerBuilder, we can also
consider or choose other front-end development platforms
[3,4,5,6,7] to develop a comprehensive information system
using a transaction pool mechanism and to fetch common
information from a common database and process then in
the any sub-domain. Please see more about transaction pool
in [8,9,10,11,12,13].

II. PROTOTYPE OF THE ACADEMIC INSTITUTION
DOMAIN

Through figure 1 we illustrate prototype of the Academic
Institution domain, a Comprehensive Information System
on distributed databases over computer LAN. Each
database server has unique network name such as in this
paper for a sub-domain Recruitment and Establishment
database we named SYBASE2, for a sub-domain Finance
and Accounts database we named SYBASE3, for a sub-
domain Salary database we named SYBASE4, for a sub-
domain Students database we named SYBASE5 and for a
Common Database we named SYBASE1. Each unique
network name of the database server has IP address with
unique network listeners TCP port. On the basis of servers’
interfaces information, all transaction objects are created
and a transaction pool is defined.

We illustrate an example of SYBASE interfaces file
which is available in the $SYBASE directory that stores
following information:

SERVERNAME on HOSTNAME
Services:
query tcp (Port Nos)
master tcp (Port Nos)

SYBASE1
 query tcp ether hpaclass 5000
 master tcp ether hpaclass 5000

where SYBASE1 is the name of the SYBASE database
engine which is running on the hpaclass UNIX server host
having unique server IP. We can run more than one
SYBASE engine in the same host on different unique
network listeners TCP port. The interfaces file also contains
information about all other database servers ensuring that all
Sybase products on the network interact with one another.

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

618

Fig. 1.Prototype of the Academic Institution Domain

III. CLIENT-SERVER DATABASE MODEL
We discuss few about Client-Server architecture [2] in

this paper as shown in figure 2.

A. Client
Provides appropriate interfaces through a client software

module to access and utilize the various server resources.
Applications running on clients utilize an Application
Program Interface (API) to access server databases via
standard interface such as ODBC (Open Database
Connectivity) standard or JDBC for Java programming
access.

B. Server
Provides database query and transaction services to the

clients

C. Client-Server Architectures

1) Work division: Thin client

Client implements only the graphical user interface and
Server implements business logic and data management.

2) Work division: Thick client

Client implements both the graphical user interface and
the business logic and Server implements data management

D. Two and three Tier Client-Server Architecture
In two-tier client/server architecture, the client

communicates directly with the database server. The
application or business logic either resides on the client or
on the database server.

In a three-tier or multi-tier environment, the client
implements the presentation logic (thin client). The business
logic is implemented on an application server(s) and the
data resides on database server(s).

Fig. 2.Client-Server Database Model

IV. TRANSACTION POOL
PowerBuilder is an event-driven, object-oriented front-

end development tool with powerful high level Powerscript
scripting language.

To optimize database processing, an application can pool
database transactions. Transaction pooling [1] maximizes
database throughput while controlling the number of
database connections that can be open at one time. When
we establish a transaction pool, an application can reuse
connections made to the same data source.

When an application connects to a database without using
transaction pooling, PowerBuilder physically terminates
each database transaction for which a DISCONNECT
statement is issued.

When transaction pooling is in effect, PowerBuilder
logically terminates the database connections and commits
any database changes, but does not physically remove them.
Instead, the database connections are kept open in the
transaction pool so that they can be reused for other
database operations.

Transaction pooling can enhance the performance of an
application that services a high volume of short transactions
to the same data source.

Sets up a pool of database transactions for an application,
SetTransPool allows us to minimize the overhead associated
with database connections and also limit the total number of
database connections permitted.

We create transaction objects and define transaction pool,

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

619

we write scripts using a powerful powerscript language in
the open event of the comprehensive information system.

In a PowerBuilder database connection, a transaction
object is a special non-visual object that functions as the
communications area between PowerScript and the database
as shown in figure 3. The transaction object specifies the
parameters that PowerBuilder uses to connect to a database.
We must establish the transaction object before we can
access the database from our application.

Fig. 3.Transaction object to access database

In order for a PowerBuilder application to display and

manipulate data, the application must communicate with the
database in which the data resides. To communicate with
the database from our PowerBuilder application; we assign
the appropriate values to the transaction object, connect to
the database, assign the transaction object to the
DataWindow control, perform the database processing and
Disconnect from the database.

When we create server application connection/transaction
objects the first thing our object will probably make a
connection to the database. This is a time consuming
process and can take between 2 - 5 seconds depending on
network traffic and our DBMS.

To minimize this connection time we will setup a
transaction pool. The transaction pool works by not
releasing previously made connections to the database.

When we connect to the database for the first time the
development tool checks to see if there is a transaction that
matches our request in the pool. If not, it performs the
normal processing, if it finds a match, we are pointed to the
old alive transaction and we go with minimal connection
time.

When we disconnect from the server the transaction is
sent back to the pool. We can specify a minimum and
maximum amount of connections. This will be determined
by the type of processing performed by our application
server.

We can also specify the timeout period for a user to wait
for a transaction to become available.

To setup the transaction pool we go to the open event of
our application and add following codes:

//Create a non-visual transaction object to connect to a
CommonDatabase Database
Transaction To_ CommonDatabase
To_ CommonDatabase = Create Transaction
To_ CommonDatabase.DBMS = “SYC Sybase System 10
CTLB”
To_CommonDatabase.database=“CommonDatabase”
To_ CommonDatabase.userid = “******”
To_ CommonDatabase.dbpass = “******”
To_ CommonDatabase.logid = “******”
To_ CommonDatabase.logpass = “******”
To_ CommonDatabase.servername = “SYBASE1”

To_ CommonDatabase.dbparm = ProfileString (“pb.ini”,
“CommonDatabase”, “dbparm”, “”)

//Create a non-visual transaction object to connect to a
RecruitmentEstablishment Database
Transaction To_ RecruitmentEstablishment
To_RecruitmentEstablishment = Create Transaction
To_RecruitmentEstablishment.DBMS = “SYC Sybase
System 10 CTLB”
To_RecruitmentEstablishment.database=
“RecruitmentEstablishment”
To_RecruitmentEstablishment.userid = “******”
To_RecruitmentEstablishment.dbpass = “******”
To_RecruitmentEstablishment.logid = “******”
To_RecruitmentEstablishment.logpass = “******”
To_RecruitmentEstablishment.servername=“SYBASE2”
To_RecruitmentEstablishment.dbparm= ProfileString
(“pb.ini”, “RecruitmentEstablishment”, “dbparm”, “”)

//Create a non-visual transaction object to connect to a
FinanceAccounts Database
Transaction To_ FinanceAccounts
To_ FinanceAccounts = Create Transaction
To_ FinanceAccounts.DBMS = “SYC Sybase System 10
CTLB”
To_ FinanceAccounts.database = “FinanceAccounts”
To_ FinanceAccounts.userid = “******”
To_ FinanceAccounts.dbpass = “******”
To_ FinanceAccounts.logid = “******”
To_ FinanceAccounts.logpass = “******”
To_ FinanceAccounts.servername = “SYBASE3”
To_ FinanceAccounts.dbparm = ProfileString (“pb.ini”,
“FinanceAccounts”, “dbparm”, “”)

//Create a non-visual transaction object to connect to a
Salary Database
Transaction To_ Salary
To_ Salary = Create Transaction
To_ Salary.DBMS = “SYC Sybase System 10 CTLB”
To_ Salary.database = “Salary”
To_ Salary.userid = “******”
To_ Salary.dbpass = “******”
To_ Salary.logid = “******”
To_ Salary.logpass = “******”
To_ Salary.servername = “SYBASE4”
To_ Salary.dbparm = ProfileString (“pb.ini”, “Salary”,
“dbparm”, “”)

//Create a default non-visual transaction object to connect to
a Students Database
sqlca.DBMS = “SYC Sybase System 10 CTLB”
sqlca.database = “Students”
sqlca.userid = “******”
sqlca.dbpass = “******”
sqlca.logid = “******”
sqlca.logpass = “******”
sqlca.servername = “SYBASE5”
sqlca.dbparm = ProfileString (“pb.ini”, “Students”,
“dbparm”, “”)
connect using sqlca;

There is a file called pb.ini that will come with a
Comprehensive Information System and that will initialize
database connectivity between the client interface and the

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

620

database servers. In case of the thick client, pb.ini file
resides in the client PC where client software is installed
and supports client software to establish connection to the
database server. In case of the thin client, pb.ini resides in
the application server, and the thin client just contains
published icon of the client application such as through
citrix metaframe. All five databases for four different sub-
domains and for a common database are created in the five
different database engine servers and their connectivity
information are stored in pb.ini file.
// set up transaction pool for a comprehensive information
system
this.SetTransPool(Min, Max, TimeOut) or
where this represents to existing application.
myapp.SetTransPool(Min, Max, TimeOut)
where myapp is the name of the existing application, Min is
the minimum number of transactions to be kept open in the
pool , Max is the maximum number of transactions that can
be open in the pool and TimeOut is the number of seconds
to allow a request to wait for a connection in the transaction
pool.

Example

this.SetTransPool(12,16,10)

In the above example, this represents that the transaction
pool is defined in the existing application; statement
specifies that up to 16 database connections will be
supported in this application, and that 12 connections will
be kept open once successfully connected. When the
maximum number of connections has been reached, each
subsequent connection request will wait for up to 10
seconds for a connection in the pool to become available.
After 10 seconds, the application will return an error.

In our proposed prototype we can set value as
this.SetTransPool(5,16,10)

where Min is 5, Max is 16 and Timeout is 10.
To perform operations in multiple databases at the same

time, we need to use multiple transaction objects, one for
each database connection. We must declare and create the
additional transaction objects before referencing them.

V. HOW TO FETCH DATA FROM A COMMON DATABASE
AND PROCESS THEN IN THE APPLICATION OF ANY SUB-
ROMAIN OF A COMPREHENSIVE INFORMATION SYSTEM

A. Open connection object, check connectivity and close
connection object

Connect using to_CommonDatabase;
If To_CommonDtabase.sqlcode <> 0 then
 This.title = “Connection Failed”;
Else
 This.title = “Connected”;
 Disconnect using To_CommonDatabase;
End if;

B. Using more than one connections in any SQL
statement that are used in the development of the client
interface

Example 1

Connect using To_CommonDatabase;

Select a.RollNo, a.NameOfStudents, b.CGPA,
b.YearOfPassing
Into :RollNo, :NameOfStudents,:CGPA, :YearOfPassing
 from Students a, DegreeAward b
Where a.RollNo = b.RollNo
using to_CommonDatabase;
disconnect using To_CommonDatabase;

In the above SQL statement we join two tables from two
different databases in which first database is a common
database and the second one database is related to the sub-
domain. Where default connection object is sqlca for a
Students database and to_CommonDatabase transaction
object is for a Common database and connections are taking
through a transaction pool. The above SQL statement will
fetch data from two different databases using a transaction
pool. A table DegreeAward is a transaction table of the
Students Database and Students is a common table created
in the Common Database.

Example 2

Connect using To_Salary;
Connect using To_CommonDatabase;
Select a.EmployeeCode, a.NameOfEmployee, b.BasicScale,
b.GrossSalary
Into :EmployeeCode, :NameOfEmployee, :BasicScale, :Gr
ossSalary
from Employees a, CurrentMonthSalary b
Where a.EmployeeCode = b.EmployeeCode
using To_CommonDatabase;
Disconnect using To_Salary;
Disconnect using To_CommonDatabase;

where we use two transaction objects To_Salary for a
Salary database and To_CommonDatabase for a Common
Database from a transaction pool. The above SQL statement
will fetch data from two different databases using a
transaction pool. The table CurrentMonthSalary is a
transaction table of the Salary Database and Employees is a
common table created in the Common Database.

Example 3

Connect using To_RecruitmentEstablishment;
Connect using To_CommonDatabase;
declare cursor_update_increment cursor for
Select EmployeeCode, NameOfEmployee, DateOfJoining
from Employees where EmployeeFlag=”Y”
using To_CommonDatabase;
open cursor_update_increment;
do WHILE true
fetch cursor_update_increment into
Into :EmployeeCode, :NameOfEmployee, :DateOfJoining;
// Update Increment Transaction Table of the
RecruitmentEstablishment
FullYear = SystemDate-DateOfJoining ;
If FullYear = 365 then
 Update Increment Table
End if;
//
loop;
close cursor_update_increment;
Disconnect using To_ RecruitmentEstablishment;
Disconnect using To_CommonDatabase;

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

621

where we use two transaction objects
To_RecruitmentEstablishment for a Recruitment and
Establishment Database and To_CommonDatabase for a
Common Database from a transaction pool. The above SQL
statement will fetch row-wise data from a common database
using transaction pool and a cursor and process then. A
transaction table Increment of a Recruitment and
Establishment Database will be updated with satisfying the
where clause

Similarly, we can use all other common tables of a
Common Database in the database of all sub domains as and
when required according to the situation of the system
requirements with more than one transaction connections in
the development of the entire system. We can fetch data
from a common database in any sub-domain’s system,
process then in different way according to the situation and
requirements such as we can straight way fetch data into
variables and then go for further processing, we can fetch
row-wise data using a cursor and go for further processing,
we can fetch data from a common database and then update
the transaction database of any sub-domain.

VI. CONCLUSION
This paper will provide a method to develop a

Comprehensive/Integrated Information System for any
organization/institution using a Client-Server DBMS
technology with a better quality and performance. This
paper will provide an adequate support in an area of the
Software Engineering. We can also use the same transaction
pool technique in the development of the Comprehensive
Information System using a different front-end development
platforms. In future we shall address other issues involved
in the development of the Comprehensive Information
System.

ACKNOWLEDGEMENTS
We have tested this approach in our one project. This is

an effective technique that we have proposed.

REFERENCES
[1] SYBASE, Application Techniques, PowerBuilder 11.5 online manual.
[2] Al-Sukairi, Abdallah.: ‘Advance Database Systems’, King Fahd

University of Petroleum & Minerals, Information & Computer
Science Department.

[3] http://msdn.microsoft.com / en-us library / 8xx3tyca (v=vs.71).aspx,
“Connection Pooling for the .NET Framework Data Provider for SQL
Server”.

[4] http://www.techrepublic.com / article/take-advantage-of-adonet-
connection –pooling / 6107854, “Take advantage of ADO.NET
connection pooling”.

[5] http://publib.boulder.ibm.com / infocenter / db2luw/
v8/index.jsp?topic=/com.ibm.db2.udb. doc/conn/c0006170.htm,
“Connection pooling”.

[6] Dave Robinson, “Database Access with WebLogic Server”, March
26, 2003.

[7] “Oracle® Universal Connection Pool for JDBC Developer’s Guide,
11g Release 2 (11.2), July 2009.

[8] http://www.datadirect.com/docs/public/ tutorials/ Connect-For-
ADO.NET/dotnet-connpool.pdf, “Connection Pooling in .NET
Applications”, DATADIRECT TECHNOLOGIES JANUARY 2006.

[9] Deb Erickson, Shawn Lauzon, Melissa Modjeski, “WebSphere
Connection Pooling” First Edition (August 2001).

[10] Mark Matthews, “Connection pooling with MySQL Connector/J”,
May 29, 2003.

[11] Michael J. Shelton, “Connection Pooling in PostgreSQL”. June 2004.
[12] http://pdf.coreservlets.com / first-edition / CSAJSP-Chapter18.pdf,

“JDBC and Database Connection Pooling”. Prentice Hall and Sun
Microsystems.

[13] Giles Winstanley, “DBPool: Java Database Connection Pooling”,
May 2010.

Mohammad G. Ali He obtained the degree of
Master Diploma in Computer Science (1991) and
Master of Science in Mathematics (1993) with 1st
class. He stood 1st in the Computer Science in the
University. He is a Fellow (FBCS), British
Computer Society, the Chartered Institute for IT,
UK. He is a life member of IAENG, Hong Kong
and IACSIT, Singapore. His two papers were
published in the International Journal of Computer
Science and Information Security, USA in the
month of November 2009.

Another paper was published in the Global Journal of Computer
Science and Technology, USA in the month of April, 2010. Another paper
was accepted in the International Conference, IASTED, ACIT-ICT 2010,
Russia. Another paper was published in International Journal of Computer
Applications, Foundation of Computer Science, New York, USA in the
month of September 2010. Another paper was published in the
International Journal of Computer Theory and Engineering, International
Association of Computer Science and Information Technology, Singapore.
His one paper was accepted in the international conference, (ICMLC-2011),
Singapore which was held in Feb 26-28, 2011 (The conference was
sponsored by the IACSIT, IEEE, IE). He is a member of the Editorial
Board of IJCA, USA and IJCTE, Singapore. He is a member of Reviewer
Board of IAENG IJCS, Hong Kong. He was a Peer Reviewer of the
International Conferences, ICMLC-2011, Singapore and IEEE ICCSIT
2011, China. He is a System Engineer Grade I in the Indian Institute of
Technology, Kharagpur, West Bengal, India. He is associated with IT
project Management, System Analysis and Design Methods, System
Development Life Cycle, Programming, Implementation and Maintenance
of Client-Server DBMSs and Web Applications Development. He is also
associated with Database Administration, Web Server Administration,
System Administration and Networking of the Institute. He has deployed
many small to big projects in the Institute Network. He has been guiding
undergraduate and post graduate students of the Institute in their projects.
His areas of research are Parallel and Distributed Computing
(Heterogeneous Distributed Databases), Software Engineering, Networking
and Network Security.

Mohammad G. Murtuza He obtained the degree of
Master of Science in Mathematics from the
Bhagalpur University and Diploma in System
Analysis & Programming (Datamatics Corporation,
Kolkata). His one paper was published in the Global
Journal of Computer Science and Technology, USA.
Another paper was published in the International
Astronomical Society, Nova Science Publisher,
USA.

He has been providing statistical analysis supports to research students
and faculty of the University, computerizing various works of the
University, analyzing and interpreting statistical data and taking computer
classes of Computer Diploma Course of the University.

International Journal of Computer Theory and Engineering, Vol. 3, No. 5, October 2011

622

